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SUMMARY

Several topics of theoretical and practical
importance to the field of translator writing
systems are presented in this paper. These are

(1). implementation of generalized syntax-
directed transduction (GSDT) on a finite-
state tree transducer;

(2). implementation of GSDT on a tree-walking
pushdown store transducer;

(3). transformation of the context-free
grammar underlying a GSDT and the resulting
transformation of the transduction elements
of that GSDT;

(4). tree transduction of parse trees between
equivalent context-free grammars.

1. Introduction

Studies of theoretical models of the
translation of camputer programming languages
have led to a better understanding of the nature
and design of the compilation process. The
study of syntax-directed transduction [1, 2]
has been particularly fruitful in this respect.
Models of transformational grammar such as tree
transductions [3] have related uses.

The following topics are covered in this
paper:

(1) relation between generalized syntax-
directed transduction (GSDT) ard tree
transduction;

(2) implementation of GSDT on a tree-walking
pushdown store transducer;

(3) transformation of the context-free grammar
underlying a GSDT and the resulting
transformation of the transduction elements
of that GSDT;

(4) tree transductions of parse trees between
equivalent context-free grammars,
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2. Definitions ard Notation
A context-free grammar is a system
G = (VN, Vs P, S), where V, and Vi, are

N
respectively the nonterminal and terminal
alphabets, S € VN is the distinguished symbol,

and P, the set of productions, is a finite
subset of Vy x V¥, The symbol ¢ denotes the

empty set, and X denotes the null string. When
x is a string, 1lg(x) denotes the length of x;
1g(A) = 0.

A stratified alphabet is a pair (Z, r),
where I is a finite, nonempty set of symbols and
r: r-+{0,1, 2,...} associates a non-negative
integer with each element of £. The function r
partitions I into a finite nunber of subsets
Zgs Lyseees Iy, where I, = {o e 2| r(o) =1}.

Often only I will denote a stratified alphabet, r
being understood. The set of trees TE generated

by a stratified alphabet I is defined
irductively as the smallest set containing ZO

and such that whenever ¢ € ):n and to, tl’ cees
t, € Ty, then c(totl...tn_l) € Tp. It is

convenient to introduce variable leaf labels
for trees, and this 1s done following Rounds [3].
Let A be a set. The set of trees T;(A), where

L i1s a stratified alphabet, is the smallest set
containing 20 u A and such that whenever

cel andty, ty, ooy b q € TZ(A)’ then
oty tl...tn_l) € Tp(A) . Thus Ty = Ty (¢) =
Ty (£)). When t is a tree, ||tl|C is the string
composed of a left-to-right concatenation of
the leaf labels of t,

A tree transducer (TT) is a system
A=(Q,I, X, 8, a5 F), where

Q = finite, nonempty set of states

z

stratified alphabet

X = set of variables
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qy € Q 1s the initial state

F < Q 1s the set of final states
§ , the direct transition function, is in its
most general form, a mapping of TZ(Q x TE
({xgs Xy5+.05% ;1)) Into the finite subsets of
TZ(Q x Tz ({xo, xl,...,xk_l})), where Xgs Xpseees
X 1 € X. In general tree transducers can

operate nondeterministically, although only
deterministic ones will be used here. Certain
restrictions can be placed on the direct transi-
tion function:

(1). Ifé: Q x {c(xoxl...xk_l)} + Ty
(Q x {XO, Xyseees xk—l})’ where
oel, thenA= Q, I, X, aps F) is a

(deterministic) finite-state tree
transducer (FSTT).

If 6: Q x {o(xx .00, )} » Ty
({xo, xl,...,xk_l})), then A = (Q, I, X,
55 F) 1s called a context-free tree

(2).

transducer.

These tree transducers are almost the same as
Rounds' tree grammars [3], except that a
transition function rather than tree rewriting
rules 1s used, and the set of trees accepted
(and transduced) by the device may be infinite.
Viewing the camponents of § as tree rewriting
rules, the tree transducers opeate in the same
manmner as the tree grammars of Rounds [3].

An instantaneous description (ID) of a
tree transducer 1s a representation of the
partially transformed input tree plus the state
symbols labeling the roots of its subtrees,
i.e., an element of Ty(Q x Tz(d>)). Informally,

an atomic move }-A- of a tree transducer A relates
two ID's separated by a single direct transition,

The set Y(A) of trees accepted by a finite-
state tree transducer A = EQ, Z, X, ay» F)
is
*
Y(a) ={x e Ty () | (qp> X) v, ye Ty
(Fxz)} .

Final states will not come into play in this
paper, but are included here for completeness.
The set Z(A) of trees output by a finite-state
tree transducer A = (Q, I, X, > F) is just

the set of accepting ID's of A, l.e.,
*
Z(A) = {y € Ty (F x I) | (ags X) IT Vs

x € Y(A)} .
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A generalized syntax-directed transduction
(GspT) 2] is a system G, = (G, T, A, R), where
G = (Vs Vi,
I' is a finite, nonempty set of translation
symbols of the form t (4), ST,

AeVy-

plus the symbol tl(s) H

A = output alphabet

R: P + finite subsets of (I' v A)*, such that if

hOBlhlB2' . 'hm—lehm e R(C + gOAlglAz. 81

Angn) ’

thengiev*, hy e A%, A
where the B1
{Al, A2,...,An} . Implying an ordering on the
elements of R(A + x) = {yl,...,yk}, the notation
used in [2] and here is

P, S) is a context-free gﬁarrmar;

EVN,B el ,

i i
are of the form tJ(A), Ae

Avx ot (W) =y
ty (A) =y,
ty (n) = Yy

where Yis Yoo eees ¥y are the transduction

elements associated with A + x. The translation
Induced by G, = (¢, T, A, R) 1s a mapping

t : L(G) + subsets of A¥ ,

3. GSDT's and Finite-State Tree Transducers

Theorem 1

Corresponding to each GSDT G, = G, T, A,
R) there exists a deterministic FSTT A such
that |[Z(A)]], = t(L(@)) .

Proof':

Let G, = (G, T, A, R) be the given GSDT,
where G = (VN, Vps P, ). Let
P ={P), Py, ..., P} , and form

P ={Pyy, P12”"’P1k1 >

Poys Pops

wees P,
DKy
},

Pnk
n

av)

Pnl’ n2%**°?

where k, 1s the number of transduction elements

1
associated with Pi'
Let
max max
p t4(Aer () 1 k)

conszr'uct the FSIT A = ({ql""’qp}va’
PUPUVTU{A}uA,{xo,xl,... Y,
5, Lay, s1, 9 .



The stratified alphabet P u P u Vp u {A} v 4 is
partitioned as follows:
):O =Vpu {)\}_u A
Z-—ZO=PuP,wher'e
r(Pi) r(A + x) = max (1, lg(x)), where

P g = A + x 1s the i-th production;
r(?ij) = max (1, lg(yJ)), where P, = A + x and
A) = .
‘cJ( ) Yy

To construct § , let, for each production
P1 =A > gOAlgl”'gn-lAngn in P, the j-th
translation of A be

t,j (a) = hoByhyeehyy By, -

Corresponding to the above, include iné§ the
transition

6([qJ,A], Pi(xoxl"'xk-l)) =
Pij(ho([qjl’Ak1]’xll)hl([qu’Ak2]’ x‘z) -
(Tay sA 1,x, ) ),
An-1t9 K%

where if B

4 = t,(A.), then
g = r
kg = max(l, le(gAg...8, 1A )-1)
2.1 = 8

The translation of the input tree by the FSIT
corresponds to the "top-to-bottom" interpreta-
tion of the corresponding GSDT along the lines
suggested by Lewis and Stearns [1]. The states
of the FSIT act as "marks" which pass through
the tree, directing the translation in the
same marner as the tree grammars of [3]. Once
this and the above construction are understood,
the proof becomes straightforward without
additional details.

Example 1

The GSDT in Example 3.1 of (2] is implicitly
defined by

1. S+ A tl(S) = t2(A)ctl(A)
2. A=+ aA t,(A) = t2(A)ctl(A)
t2(A) = at2(A)
3. ApDbA t(A) = t,(A)et, (A)
te(A) = btg(A)
b, a+a t,(a) =
t2(A) =3
5. A+Db  t,(A) =2
t,(A) = b
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This GSDT produces, for each w € {a,b}+,
a string composed of the suffixes of w
separated by c¢'s. The corresponding FSTT is

A= ({ql’ q2} x {s, A}, Z, {xos xl}’ s, [ql’SJ’
o),

where

L= {Pl""’PS’ Pll’ P21, P22,...,P51, P52}a'nd

§ consists of

§ ([a,,51, Py(x,)) = B3 (([ay,A1,%)e
([ay,A1,%))

8 (Lay,Al, Pylxgxy)) = By (([ay,Al, xq) ¢
([ql,A],Xl))

§ ([a,,Al, Pylxyxy)) = ?é2(a([q2,A], %))

§ ([ay,Al, P3(x0xl)) = Fél(([qz’A]’ %) e
(EQl,A],xl))

§ ([ay,Al, P3(XOX1)) = T"32(b([q2,A], x1))

§ ([ag,Al, Py(xg)) = Fyy (V)

§ (Lay,Al, Pylxy)) = Py (a)

§ ([ay,Al, P5(xo)) = Pgy )

§ ([gy,Al, P5(xo)) = ?52 (b)

Theorem 2 (Rounds [3])

Deterministlic finite-~state tree transductions
are effectively closed under composition,
Immediately from thecrems 1 and 2 we have

Corollary
GSDT's are effectively closed under composition.

4, Tree-Walking Pushdown Store Transducers

A tree-walklng pushdown store transducer
(TPDT) is a system A = (Q, G, T, 8, 5, dp»

Zps F), where

Q = finite, nonempty set of states

G = (Vy, Vs P, 8) 1s a context-free
gramar,

I' = pushdown store alphabet

A = output alphabet

§=Qx (PuVyu{A) xT>Qx
{-1, 0, 1,...,p} x T* x A¥
is the direct transition function

qq € Q 1is the initial state

Z, € T is the initlal pushdown store
symbol

F € Q 1s the get of final states

0



The TPDT operates similarly to the tree
automata of [2], except that a pushdown store
is involved. Another view of the TFDT is a
pushdown store transducer whose input is a
parse tree on G and whose input head executes
a "two-way" movement over this tree.

The TPDT makes an atomic move as follows.
If (p, d, w, y) €68(q, A, Z), the TPDT is in
state q, its input head is located at a node
labeled A in the input tree, and Z is the top-
most symbol of the pushdown store. The TPDT
then changes to state p, replaces Z by w, outputs
¥, and moves its input head in direction d. If
d = 0, no head movement is made. If d = -1,
the head moves to the ancestor of the node
where it previously resided. If d =3, 1 > 0,
the head moves to the i-th descendent of the
node previously read. The symbols of w, read
left-to-right, are the topmost symbols of the
pushdown store read top~to-bottom.

Theorem 3

Each GSDT can be implemented on a one-state,
deterministic TPDT.

Proof':

Let G_ = (G, T, A, R), G = (Vyy, Vi, P, S) be the
given GSDT., A one-state, deterministic TPDT
will be constructed that simulates a preorder
traversal [4] of the output tree corresponding
to the given GSDT, as if it were implemented on
a FSIT. As the leaves of this output tree are
"visited," their labels are output by the TPDT.
Construct

A= ({a}, G, T x {1,2,...,p}, 4,8, q,
[tl(S),l], % ), where

p = 1 + maximum value of m attained in a
transduction element hOBlhl' . .hm_lehm.

Let P = {Pl,P2,...,Pk} . The transition

function § 1s constructed as follows. Let

Py = A~ goh8y-ey afndy
and let the j-th transduction element associated
with this production be

3

tJ.(A) = hOBlhl“'hm-lehm .
Corresponding to the above, include iné the
transitions

§ (q,P;,[t,(8),1]) =
s (q,Pi,[tJ(A),Q])

(a,1,,[B,1] [£,(0),2],0))
(a,1,,[B,, 1104 (A),3],hy)

G(Q,Pi,[tj(A),m]) = (a, im,[Bm,l][tj(A),mFl],

h

m—l)

8 (q,Py,[t,(A),m1]) = (a, -1, X, hy) .

J
If B, = tv(Al), then i = lg(gOAlgl...gl_lAz) .
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The above transitions break up the computation

of t 3 (A) into mtl "phases":

1. Out;.)ut ho; compute Bl;

m, Output hrrbl; compute Bm;
m+l, Output hm; return to predecessor node.

The reader can readily convince himself that the
recursively applied rules for preorder tree
traversal

"visit the root;
"visit the subtrees in left-to-right order"

are indeed being applied to the output tree, and
the leaves of this tree are being output in
left-to-right order.

Example 2

Let Gt be the GSDT of Example 1. The

corresponding TPDT is

M= ({q}, G, {t(S),t(R),t,(R)} x {1,2,3},
{a,b,c}, §, q, [£(5),11, @), vhere §
consists of

6(a,P1,[t,(8),1]) = (a, 1, [t,(R),1][t,(8),2],})

§(a,P;,[t,(8),21) = (g, 1, [t,(R),1][t,(5),3],¢)

8(a,Py,0£,(8),3D = (a,-1,3,})

§(a,P,,[t,(A),11) = (q, 1, [t,(A),1][t,(A),2],))

§(a,P,,[t(R),2]) = (a, 1, [t;(A),11[t,(A),3],0)

8(q,Py,[t,(A),3]) = (a, -1, A, M)

8(a,P,,[t,(8),1]) = (a, 1, [t,(A),110t,(A),2],2)

§(a, P2,[t2(A),2]).= (q, =1, A, A)

§(q, Pg,[t1(A),1]) = (a, 1, [t,(A),1]0t,(A),2],1)

§(a, P3,[t,(A),21) = (g, 1, [t;(A),1][t,(R),3],¢)

§(a, P3,[61(A),31) = (a, = 1, A, A)

8(a, P3,[t,(A),11) = (a, 1, [t,(R), 11[t5(A),2],
: b)

8(q, Pg,[t5(A),2]) = (q, -1, A, A)

§(aq, Py,[t;(8),1]) = (a, -1, A, })

§(a, Pys[t,5(R),1]) = (g, -1, A, a)

§ (a, Pg,Lty(8),1]) = (q, -1, 4, 2)

8(q, PS’[t2(A)’lJ) = (q, ~1, A, b)

5. Transformations of the Grammars

Underlying Syntax-Directed Transductions

Transforming the grammar underlying a
syntax~-directed transduction generally changes
the transduction elements associated with the
new productions. Only transformations that
result in weakly equivalent grammars will be
considered in this section.



(1). Substitution of Productions

Let G = (VN, Vs P, S) be a context-free
gramar, Let A -+ lez2 e P, Be VN, and let
B+ Yy» i=1,2, ..., k be all the
B-productions in P. Let G' = (VN, Vo B's s),
where P' = (P - {A + z,Bz,}) v {A > z,y,2, |
i=1, 2, ..., k}; clearly L(G') = L(G) .
Theorem 4
GSDT''s are effectively closed urnder substitution
of productions.

Proof':

Let Gt =(G I, A, R), G = (VN, VT, P, S) be the

given GSDT. Let A + lez2 be the production to

be deleted, via replacement of B by B » Yyseees

B+ y,. Construct G{ = (¢g', T, A, R"),

G' = (VN, Vs PY, S), where

P' = (P~ {A~ z,Bz,}) v {A + 2
1i=1,2, ...,k} .

Wi%o |

To construct R', define homomorphisms hi:
(I v A)¥ > (T v A)* such that 1if

R(B + yi) = {xil’ xi2""’x1ki} s
then hi('cJ(B)) = xij’ J=1,2,...5k

i
hi(X) =X, X # tJ (B) for same
l1s3csx k1 .
Obtain R' via

R'(X) =X, XeP-{A~+2z }

182,
R'(A » zlykz2) = {hi(xl)""’hi(xm)}
=h; (R(A » lezz)) .
where R(A -+ lezz) = {xl,...,xm} .
Clearly G,"; and Gt produce the same transduction.

Example 3
S+E Hw)=ﬁmw%m>

E =+ E 4T tl(E) = tl(E)tl(T) +
t2(E) =+ t2(E)t2(T)
E-+T H@)=HW)
tz(E) = £,(T)
T + T¥g t,(T) = tl(T)a*
tz(T) = *tz(T)a
T+a tl(T) =3
t2(T) =a

Eliminating the production S + E through
substitution of E+ E + T and E + T yields
the GSDT

S+E+T tl(S) tl(E)tl(T)+#+t2(E)t2(T)

S+ T tﬁs)=tﬁTMt§T)
E + E+T tl(E) = tl(E)tl(T) +
t2(E) =+ t2(E)t2(T)
E->T tl(E) = tl(T)
tg(E) = t,(T)
T + TH#g tl(T) = tl(T)a*
tz(T) = *t2(T)a
T+ a tl(T) =3
t2(T) =a
Corolm

Syntax-directed transductions (SDI's) and simple
SDT's are closed under substitution of produc-
tions. Simple Polish SDI''s are not closed under
substitution of productions.
(2). Redefinition
Let G = (VN, Vs P, S) be a context-free
grammar, and let A -+ ylyzy3 be a production of
P, Construct G' = (VN v {2}, V., P', S),
where Z is a new nonterminal and
Pr=(P-{a~ y1y2y3}) v {a >+ ylzy3,
7 -+ y2} .
Clearly L(G') = L(G) .
Theorem 5
GSDT's are effectively closed uder
redefinition.
Proof: Let Gt = (G, I', A, R),
G = (VN, VT’ P, S) be the given GSDT,
and let A »> ylyzy3 be the production that
participates in the redefinition.
Construct Gé = (G', I'', A, R"), G' =
(VN v {2}, Vi, P', S), where P' = (P = {A » ¥1
y2y3}) v {A > ylZy3, 7+ y2} .
I'* and R' are obtained as follows. Let A -+ ¥y
Yo¥3 = A Boh8y t By 1 A8y,
Let y, € (Wu Vip)¥, where W ¢ {Al, Az’“"An}'
In particular, suppose W = {Ai seeeshy 1o
1 In

Let R(A ~» y1y2y3) = {xl,x2,...,xk} . Then
RY(Z + y,) = {t (A, ), t,(A, )yeuny £, (A, ),...
2 17,7 2 kg

B8y ) bRy Dy B (8
and hence I'" =T v {tl(Z)""’tz(Z)}’ where

2= kl + k2 +...+km. Define a hamomorphism

h: (I v A)* + (T' v A)¥® such that
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+ k, +...

h(tJ(Ais)) =t (D), A eW, T =k +k,

8
thg_q +J
h(X) = X, otherwise.
Then R'(A + y,2y,) = h(R(A > yly2y3)) .
R'(X) =R(X) ,XeP-{A~ yly2y3} .

The above construction is based upon the fact
that in the redefinition transformation

replacing A -+ ylyzy3 by A + ylZy3 and

Z + y,, the nonterminal A "loses control" of
the translations of the nonterminals in Yos
and must "pass them on" to Z. Careful
scrutiny of the example below will convince

the reader that (}t and Gt induce the same
transduction.

Example 4

Consider the trivial GSDT defined implicitly
by

A -+ aBabcCD ’cl(A)

1

£,(C)xyt, (B)E, (D), ()t (B)

B+b t,(B) = A
t2(B) =b
cC+c t,(C) = ¢
£,(C) = A
D=d t,(D) = d

Let Yy =a ¥y, = BabceC, y3 = D. Then
w = {B,C} < {B,C,D}, and the translation symbols

t,(2),...,t,(Z) are added, where the homo-
mdrphism of the proof is

h(t{(B)) = t,(2) ; h(t,(B))
h(tl(C)) = t3(Z) H h(t2(C))
h(X) = X , otherwise.

t2(Z) H
tq(z) 3

The following GSDT results:

A~ aZD tl(A) = tu(Z)xytl(Z)’cl(D)t3(Z)xt2(Z)

Z » BabeC t,(Z) = £,(B) 5 t,(2) = £,(B)
t3(2) = £,(C) 5 £,(2) = t,(C)

B+b t,(B) =A;t,(B) =D

C~+c tl(c)=c;t2(C)=A

D+d t,(D)=d

Corollary

GSDT's are effectively closed under transforma-
tion to Chamsky normal form.

Proof: Transformation to Chomsky normal form
consists of a finite number of redefinition

transformations.

(3). Arden's Transformation

let G = (VN, Vips Py S) be a context-free
grammar, Let A-»Ami i=12, ..., rbe the

left-recursive A-productions in P, and let
A -’Bi ,1=1,2, ..., s be the remaining

A-productions.
Construct G' = (V v {z} , Vps P', S), where

P'=(P-{A+Au,..., A> A0 D)y
{A+8,2|1=1,2,...,8

v {Z +a |1=1, 2, ...,r}u{z»aiz|
i=1,2, coo, 1} .
Then L{(G') = L(G) .

Arden's Transformation of Syntax-Directed
Transductions

Let G = (@, T, 8, R), G = (Vy, Vi, P, S)
be given, where Gt is not a GSDT, but rather
the simpler SDT of [1]. Construct Gé =
(@', T, A, R'), where G' is the grammar
constructed above. Let R(A + Aai) =
{xiAii} ,1=1,2, ou,r
RAA+B) =y, 1=1,2, ..., s.
Then R'(A » Bi) = R(A -rBi), 1=1,2, ..., s
R'(A » BiZ) = {tl(Z) yitz(Z)}' s, 1 =1,
2y seey B
R'(Z » aiZ) = {tl(z)xi’ ')'(itz,(z)} s, 1 =1,
2, ceey, I
R'(Z » ai) = {xi, )-(i} ,1=1,2, ..., r
R'(X) = R(X), all other X e P' .
Gt': and Gt induce the same transduction. Note

that Gt'; is a GSDT.

Conjecture
GSDT's are not closed under Arden's transforma-
tion or transformation to Greibach normal form.

6. Transformations of Parse Trees
Suppose a GSDT G, = (G, T, A, R) is given,

Suppose further that 1t 1s more cocnvenient to
parse strings of L(G) according to grammar G',
where L(G') = L(G). It may not always be
possible to transform G_. to an equivalent
syntax-directed transdugtion of the same class.
Rather than transform G_, the parse trees on G!'
could be transformed ba&k to their counterparts
on G, and G, applied. A preliminery result is
presented 1}3 this section.
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Inverse Chamsky Normal Form

Let G = (V, Vs P, S) be a context-free
grammar and G' = (V!, V., P', S) be a

Chomsky normal form grammar such that L (G')
L (G). A tree transduction can be used to
transform parse trees on G' to thelr counter-
parts on G. Consider the P-production

I}

P, = A > aAbBAb, A, BeVy, a, be Vg,
and its counterparts in P'
! =
Pi A~ Naxl
M =
Piyg = % > A%
' =
Pleo = X5 * NX3
! =
Plez = X3 > BXy
M =
Pioy = Xy > AN,
M =
Pi +5 Na +a
1 =
Pivg =Ny > P

The corresponding direct transitions of an
inverse Chomsky normal form general tree
transduction are

5(ay Pls(x)) = a

8(q, Pi+6(x0)) =b-

§(q, Pi(xgPi 1(x1%5))) = (a, Pl (x%,%5))

8@, Bl (xgxy Plyp(xyxg))) = (o, B plxgx xxg))

§(a, Piya(xgxyX%g Pi+u(xux5))) = P ((a, xp)...
(a, xs))

Other inverse transformations can be
accanplished using tree transductions, including
inverse Arden's transformation and inverse
Grelbach normal form. This and other work is
currently belng continued.

7. Conclusion

Several topics of theoretical and practical
importance to the field of translator writing
systems were presented in this paper., It is
instructive to note the practical difference
between the two lmplementations of GSDT
presented in Sections 3 and 4, The FSIT
implementation (Section 3) results in a
"program”" (transition function) of moderate
size, but requires a relatively camplex memory
management system for manipulating tree
structures. On the other hand, the TPDT
implementation (Section 4) requires a
relatively simple memory management system, since
the input tree 1is fixed and the output can.be
written into a sequential file. As payment, the
TPDT requires a relatively large program,

Much more work than appears in this paper
has been done [5]. The properties of a syntax-
directed transduction scheme more general than
GSDT', and equivalent to the scheme of [6],
have been investigated.
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