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SUGARY 

Several topics of theoretical and practical 
importance to the field of translator wrltlng 
systems are presented in this paper. These are 

(1). in~plementation of generalized syntax- 
directed transduction (GSDT) on a finite- 
state tree transducer; 

(2). implementation of GSDT on a tree-vralklng 
pushdown store transducer; 

(3). transformation of the context-free 
grammar underlying a GSDT and the resulting 
transformation of the transduction elements 
of that GSDT; 

(4). tree transductlon of parse trees between 
equivalent context-free grammars. 

I. Introduction 

Studies of theoretical models of the 
translation of computer progranwLing languages 
have led to a better understanding of the nature 
and design of the compilation process. The 
study of syntax-directed transduction [1, 2] 
has been partlcularly fruitful in this respect. 
Models of transformational grammar such as tree 
transductions [3] have related uses. 

The following topics are covered In this 
paper: 

(1) relation between generalized syntax- 
directed transductlon (GSDT) and tree 
transduction; 

(2) i~plementatlon of GSDT on a tree-walklng 
pushdown store transducer; 

(3) transformation of the context-free grammr 
underlying a GSDT and the resulting 
transformation of the transductlon elements 
of that GSDT; 

(4) tree transductions of parse trees between 
equivalent context-free grammars. 
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2. Definitions and Notation 
A context-free grammar is a system 

G = (VN, VT, P, S), where V N andV T are 

respectively the nontermlnal and term.tnal 
alphabets, S E V N is the distinguished symbol, 

and P, the set of productions, is a finite 
subset of V N x V*. The symbol ¢ denotes the 

empty set, and k denotes the null string. When 
x is a string, lg(x) denotes the length of x; 
~ ( X )  = O. 

A stratified alphabet Is a pair (Z, r), 
where Z Is a finite, nonempty set of symbols and 
r: Z ÷ {0, l, 2,...} associates a non-negative 
integer wlth each element of Z. The function r 
partitions Z Into a finite number of subsets 
Z0, El,... , Zk, where Z i = {o E Z I r(o) = i}. 

Often only Z will denote a stratified alphabet, r 
being understood. The set of trees T Z generated 

by a stratified alphabet Z is defined 
inductively as the smallest set containing Z 0 

and such that whenever o c Znand to, tl, ..., 

tn_ 1 c TZ, then o(t0tl...tn_ l) E T z. It is 

convenient to intreduce variable leaf labels 
for trees, and this is done following Rounds [33. 
Let A be a set. The set of trees Tz(A) , where 

Z is a stratified alphabet, is the smallest set 
containing Z 0 u A and such that whenever 

o c Znand t0, tl, ..., tn_ 1 E Tz(A) , then 

o(t 0 tl...tn_ I) e Tz(A) . Thus T£ = T z (¢) = 

T z (Zo). When t Is a tree, lltll C is the string 

composed of a left-to-right concatenation of 
the leaf labels of t. 

A = 
A tree transducer (T2) is a system 
(Q, Z, X, 5, q0,'F), where 

Q = finite, nonempty set of states 

: stratified alphabet 

X = set of variables 

the Atomic Energy Commission, contract AT(Ii-i) 
Gen i0 Project 14. Reproduction of whole or part 
is permitted for any purpose of the United 
States government. 

-129- 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800161.805158&domain=pdf&date_stamp=1970-05-04


qo e Q is the initial stat_____~ 

F c Q is the set of final states 

, the direct transition function, is in its 
most general form, a mapping of Tz(Q x T Z 

({Xo, X l , . . . , X k _ l } ) )  i n t o  the  f i n i t e  subsets  o f  

T~(Q x T Z ({x0, x I .... ,Xk_l})) , where x0, x I ..... 

Xk_ 1 e X. In general tree transducers can 

operate nondeterministically, although only 
deterministic ones will be used here. Certain 
restrictions can be placed on the direct transi- 
tion function: 

(i). If 6: Q x {~(xoXl...X~_l)}__ ÷ T Z 

(Q x {x0, x I .... , Xk_l}) , where 

o e Zk, then A = (Q, Z, X, q0' F) is a 

(deterministic) finite-state tree 
transducer (FSTrT~ 

(2). If 6: Q x {o(x0xl...Xk_l)} ÷ T Z 

({x0, Xl,...,Xk_l})) , then A = (Q, Z, X, 

q0' F) is called a context-free tree 

transducer. 

These tree transducers are almost the same as 
Rounds' tree grammars [3], except that a 
transition function rather than tree rewriting 
rules is used, and the set of trees accepted 
(and transduced) by the device may be infinite. 
Viewing the components of 6 as tree rewriting 
rules, the tree transducers opeate in the same 
manner as the tree granmars of Rounds [3]. 

An instantaneous description (ID) of a 
tree transducer is a representation of the 
partially transformed input tree plus the state 
symbols labeling the roots of its subtrees, 
i.e., an element of Tz(Q x TZ(¢)). Informally, 

an atcmlc move ~A of a tree transducer A relates 

two ID's separated by a single direct transition. 
The set Y(A) of trees acce~ by a finite- 
state tree transducer A = (Q, Z, X, q0' F) 
is 

Y(A) : {x e T Z (¢) I (q0' x) ~ y, y 6 T Z 

(F × ~0)} 
Final states will not come into play in this 
paper, but are included here for co~91eteness. 
The set Z(A) of trees output by a finite-state 
tree transducer A : (Q, Z, X, q0' F) is just 

the set of accepting ID's of A, i.e., 

Z(A) = {y e T Z (F x Z0) ) (q0' x) ~ y, 

x e Y(A)} . 

A generalized syntax-directed transduction 
(GSDT) [2] is a system G t ~ Tj A, R ), where 

G = (VN, VT, P, S) is a context-free grammar; 

F is a finite, nonempty set of translation 
symbols of the form tj(A), A e V N - {S} , 

plus the symbol tl(S) ; 

A = output alphabet 

R: P ÷ finite subsets of (F u A)*, such that if 

h0BlhlB2...hm_iBmhm e R(C ÷ g0AlglA2.. "gn-i 

Ang n) , 

then gl e VT* , h i e A*, A i e VN, B i e £ , 

where the B i are of the form tj(A), A e 

{A1, A2,... ,A n} . In, plying an oz~ering on the 

elements of R(A ÷ x) = {Yl'""" "Yk }' the notation 

used in [2] and here is 

A ÷ x t I (A) = Yl 

t 2 (A) = Y2 

t k (A) : Yk 

where Yl' Y2' """' Yk are the trarmduction 

elements associated with A -~ x. 9he translation 
induced by G t = (G, £, A, R) is a mapping 

t : L(G) ÷ subsets of A* . 

3. GSDT's and Finite-State Tree q~ansducers 

Theorem i 

Corresponding to each GSDT G t = (G, r, A, 

R) there exists a deterministic FSTP A such 
that I#Z(A>)IC : t(L(G)) . 

Proof: 

Let G t : (G, F, A, R) be the given GSDT, 

where G = (VN, VT, P, S). Let 

P = {Pl' P2' "'" Pn ) ' and form 

: { ll, P- 2, .... P l' 
-- -- h 

P21' P22' "'" P2k 2 ' 

P--nl' P--n2'" ""'ink }' 
n 

where k i is the number of transduction elements 

associated with Pi" 

Let 
max max (ki) 

P = tj (A)eF (j) i 

construct the FSIT A = ((ql'"',~p}XVN' 

P u ~" u V T u {~} u A , {x0,xl,... } , 

6,  [q l '  S] ,  ¢) . 
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The stratified alphabet P u ~ u V T u {k} u a is 

partitioned as follows: 

Z 0 =V T u {l} u A 

Z - Z 0 : P u ~ , where 

r(P i) = r(A ~ x) =max (i, ig(x)), where 

Pi = A ÷ x is the i-th production; 

r(~ij)__ = max (i, ig(yj)), where Pi = A ÷ x and 

tj(A) = yj . 

To construct ~, let, for each production 

Pi = A ÷ g0Algl...gn_iAngn in P, the J-th 

translation of A be 

tj(A) = h0Blhl...hm_ 1 Bmh m . 

Corresponding to the above, include in ~ the 
transition 

6([qj,A], Pi(X0Xl...Xk_l)) = 

Pij(h0([qJl,Akl],X£1lhl([qJ2,Ak2], x£ 21 -.. 

hm_l( [qjm,Akm], X£m)hm ) , 

where if B i = tr(As) , then 

Jl = r 

k i = max(l, ig(gOAlgl...gs_iAs)-l) 

£i = s 

The translation of the input tree by the FSSIT 
corresponds to the "top-to-bottom" interpreta- 
tion of the corresponding GSDT along the lines 
suggested by Lewis and Stearns [i]. The states 
of the FsrlT act as "marks" which pass through 
the tree, directing the translation in the 
same manner as the tree grammars of [3]. Once 
this and the above construction are understood, 
the proof becomes straightforward without 
additional details. 

Example i 

The GSDT in Exa~le 
defined by 

3.1 of [2] is In~plicitly 

i. S ÷ A tl(S) = t2(A)Ctl(A ) 

2. A ÷aA tl(A) = t2(A)Ctl(A ) 

t2(A) = at2(A) 

3. A~ DA tl(A) = t2(A)Ctl(A ) 

t2(A) = bt2(A) 

4. A ÷ a tl(A) = k 

t2(A) = a 

5. A ~ b  tl(A) = k 

t2(A) = b 

This GSDT produces, for each w e {a,b} +, 
a string comDosed of the suffixes of w 
separated by c's. The corresponding FSTF is 

A = ({ql' q2 } × {S, A}, Z, {x0, xl} , 6, [ql,S], 
¢), 

where 

: (P1,  21, % .... 
6 consists of 

6 ([al,S] , Pl(X0)) = ~ll(([q2,A],x0)c 

([ql,A],x 0) ) 

6 ([ql,A], P2(X0Xl )) = ~21(([q2,A], x l) c 

([ql,A],Xl)) 

([q2,A], P2(X0Xl )) = ~22(a([q2,A], Xl)) 

([al,A] , P3(X0Xl)) --~31(([q2,A], x l) c 

( [ql,A] ,x l) ) 

([q2,A], P3(X0Xl)) = ~32(b([q2,A], Xl)) 

([ql,A], P4(x0)) = ~41(k) 

6 ([q2,A], P4(x0)) = ~42(a) 

([ql 'A]' Ps(X0 )) -- P51 (k) 

([q2 'A]' P5(Xo )) = ~52 (b) 

Theorem 2 (Rounds [3]) 

Deterministic finite-state tree transductions 
are effectively closed under composition. 
Immediately from theorems 1 and 2 we have 

Corollary 

GSDT's are effectively closed under composition. 

4. ~ree-Walklng Pushdown Store Transducers 

A tree-walking pushdown store transducer 
(TPDT) is a system A = (Q, G, F, A, 6, q0' 

Z0, F), where 

Q = finite, nonempty set of states 

G = (V N, VT, P, S) is a context-free 

~r~mmar 

r = pushdown store alphabet 

A = output alphabet 

=Qx (p u VT u {~}) x r÷qx 

{- i, 0, l,...,p} x F* × A* 

is the direct transition function 

q0 e Q is the initial state 

Z 0 c P is the initial pushdown store 

symbol 

F c Q is the set of final states 
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The TPDT operates similarly to the tree 
automata of [2], except that a pushdown store 
is involved. Another view of the TPDT is a 
pushdown store transducer whose input is a 
parse tree on G and whose input head executes 
a "two-way" movement over this tree. 

The TPDT makes an atomic move as follows. 
If (p, d, w, y) c6(q, A, Z), the TPDT is in 
state q, its input head is located at a node 
labeled A in the input tree, and Z is the top- 
most symbol of the pushdown store. The TPDT 
then changes to state p, replaces Z by w, outputs 
y, and moves its input head in direction d. If 
d = 0, no head movement is made. If d = -I, 
the head moves to the ancestor of the node 
where it previously resided. If d : i, i > 0, 
the head moves to the i-th descendent of the 
node previously read. The symbols of w, read 
left-t~rlght, are the topmost symbols of the 
pushdown store read top-to-bottom. 

Theorem 3 

Each GSDT can be implemented on a one-state, 
deterministic TPDT. 

Proof: 

Let G t : (G, £, A, R), G = (VN, VT, P, S) be the 

given GSDT. A one-state, deterministic TPDT 
will be constructed that simulates a preorder 
traversal [4] of the output tree corresponding 
to the given GSDT, as if it were i~plemented on 
a FS~T. As the leaves of this output tree are 
"visited," their labels are output by the TPDT. 
Construct 

A : ({q}, G, £ x {l,2,...,p}, A, 8, q, 

[tl(S),l] , ¢ ), where 

p = 1 + maximum value of m attained in a 
transduction element h0Blh I. . .hm~lBmhm. 

Let P = {Pi,P2,...,Pk } . The transition 

function 6 is constructed as follows. Let 

Pl : A ~ g0AZgl ...gn_lAn~ , 

and let the J-th transduction element associated 
with this production be 

t j (A )  = h0B lh l . . . h  iBmh m • 

Corresponding to the above, include in ~ the 
transitions 

6 (q,Pi,[tj(A),l]) : (q,il,[Bl,1] [tj(A),2],h 0) 

(q,Pi,[tj(A),2]) ~ (q,i2,[B2,1][tj(A),B],hl) 

(q,Pi,[tj(A),m]) : (q, im,[Bm,1][tj(A),m+l], 

6(q,ei,[tj(A),m+l]) = (q, -1, I, h m) . 

If B r = tv(Ag) , then i r = lg(g0Algl...g~_lA g) . 

The above transitions break up the computation 
of tj (A) into m+l "phases" : 

I. Output h0; compute B1; 

m. Output h 1; compute Bin; 

m+l. Output hm; return to predecessor node. 

The reader can readily convince h~nself that the 
recursively applied rules for preorder tree 
traversal 

"visit the root; 
"visit the subtrees in left-to-right order" 

are indeed being applied to the output tree, and 
the leaves of this tree are being output in 
left-to-rlght order. 

Example 2 

Let G t be the GSDT of Example 1. 'lhe 

corresponding TPDT is 

M = ({q}, G, {tl(S),tl(A),t2(A)} x {1,2,3}, 

{a,b,c}, 8, q, [tl(S),l] , ¢), where 

consists of 

~(q,Pl,[tl(S),l]) = (q, l, [t2(A),l][tl(S),2],l) 

6(q,Pl,[tl(S),2]) = (q, l, [tl(A),l][tl(S),3],c) 

6 ( q , P l , [ t l ( S ) , 3 ] )  : ( q , - l , l , l )  
6 ( q , P 2 , [ t l ( A ) , l ] )  : (q, l ,  [ t 2 ( A ) , l ] [ t l ( A ) , 2 ] , ~ )  
6 ( q , P 2 , [ t z ( A ) , 2 ] )  : (q., l ,  [ t l ( A ) , l ] [ t l ( A ) , 3 ] , c )  
6 ( q , P 2 , [ t l ( A ) , 3 ] )  : (q, - i ,  l ,  ~) 
6(q,P2,[t2(A),l]) = (q, I, [t2(A),l][t2(A),2],a) 

~(q, P2,[t2(A),2]) = (q, -1, ~, ~) 

6(q, e3,[tl(A),l]) = (q, l, [t2(A),l][tl(A),2],l) 

6(q, PB,[tl(A),2]) : (q, I, [tl(A),l][tl(A),3],c) 

6(q, P3,[tl(A),3]) : (q, - i, ~, ~) 

6(~, e3,[t2(A),l]) : (q, 1, [t2(A) , 1][t2(A),2] , 

b) 

8(q, PB,[t2(A),2]) : (q, -1, I, I) 

6(q, P4,[tl(A),l]) = (q, -1, ~, ~) 

~(q, P4,[t2(A),i]) : (q, -i, I, a) 

(q, Ps,[tl(A),l]) = (q, -1, ~, ~) 

6(q, P5,[t2(A),l]) : (q, -1, I, b) 

5. Transformations of the Grammars 

Underlying Syntax-Directed TransductlorLs 

Transforming the grammar underlying a 
syntax-dlrected transduction generally changes 
the transductlon elements associated with the 
new productions. Only transformations that 
result in weakly equivalent gramm~?s will be 
considered in this section. 
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(i). Substitution of Productions 

Let G = (VN, VT, P, S) be a context-free 

grammar. Let A ÷ ZlBZ 2 e P, B ~ VN, and let 

B + Yi' i = l, 2, ..., k be all the 

B-productions in P. Let G' = (VN, VN, P', S), 

where P' = (P - {A ÷ ZlBZ2}) u {A ÷ zlYlZ 2 { 

i = i, 2, ..., k}; clearly L(G') = L(G) . 

Theorem 4 

GSDT's are effectively closed under substitution 
of productions. 

Proof: 

Let G t = (G, F, A, R), G = (VN, VT, P, S) be the 

given GSDT. Let A ÷ ZlBZ 2 be the production to 

be deleted, via replacement of B by B ÷ Yi'''" 

B ÷ Yk" Construct G~ = (G', F, A, R'), 

G' = (VN, VT, P', S), where 

P' = (P - {A ÷ ZlBZ2}) u {A ÷ zlYiZ 2 { 

i = i, 2, ...,k} . 

TO construct R', define hcmomorphisms hi: 

(F u A)* + (F u A)* such that if 

R(B ÷ yi ) = {Xil , xi2,...,Xiki } , 

then hi(tj(B)) = xij , J = 1,2,...,k i 

hi(X) = X, X ~ tj (B) for some 

l~J~k i 

Obtain R' via 

R'(X) = X, X e P - {A ÷ ZlBZ 2} 

R'(A ÷ ZlYkZ2 ) = {hi(Xl),...,hi(Xm)} 

= h i (R(A ÷ ZlBZ2)) , 

where R(A ÷ ZlBZ 2) = {Xl,...,x m} . 

Clearly G~ and G t produce the same transduction. 

Example 3 

S ÷ E tl(S) = tl(E)#t2(E) 

E ÷ E +T tl(E) = tl(E)tl(T) + 

t2(E) = + t2(E)t2(T) 

E ÷ T tl(E) = tl(T) 

t2(E) = t2(T) 

T ÷ T*a tl(T) = tl(T)a* 

t2(T) = *t2(T)a 

T ÷ a tl(T) = a 

t2(T) = a 

Eliminating the production S ÷ E through 
substitution of E ÷ E + T and E + T yields 
the GSDT 

S ÷ E + T tl(S) = tl(E)tl(T)+#+t2(E)t2(T) 

S ÷ T tl(S) = tl(T)#t2(T) 

E ÷ E+T tl(E) = tl(E)tl(T) + 

t2(E) = + t2(E)t2(T) 

E + T tl(E) = tl(T) 

t2(E) = t2(T) 

T ~T*a tl(T) = tl(T)a* 

t2(T) = *t2(T)a 

T ÷ a tl(T) = a 

t2(T) = a 

Corollary 

Syntax-directed transductions (SDT's) and simple 
SDT's are closed under substitution of produc- 
tions. Simple Polish SDT's are not closed under 
substitution of productions. 

(2). Redefinition 

Let G = (VN, VT, P, S) be a context-free 

grammar, and let A ÷ ylY2Y 3 be a production of 

P. Construct G' = (V N u {Z}, VT, P', S), 

where Z is a new nontermlnal and 

P' = (P - {A ÷ ylY2Y3}) u {A ÷ ylZY3 , 

Z + y2 } . 

Clearly L(G') = L(G) 

Theorem 5 

GSDT's are effectively closed uder 
redefinition. 

Proof: Let G t = (G, F, A, R), 

G = (VN, VT, P, S) be the given GSDT, 

and let A ÷ ylY2Y3 be the production that 

participates in the redefinition. 

Construct G~ = (G', F', A, R'), G' -- 

(V N u {Z}, VT, P', S), where P' = (P - {A ÷ Yl 

y2Y3 }) u {A ÷ ylZY3, Z ÷ y2 } . 
F' and R' are obtained as follows. Let A ÷ Yl 

y2y 3 = A ÷ g0Algl • • .gn_iAngn . 

Let Y2 e (W u VT)* , where W c {Ai, A2, .... An}. 

In particular, suppose W = {Ail,...,A~m} . 

Let R(A ÷ ylY2Y 3) = {Xl,X2,...,x k} . Then 

R'(Z ÷ y2 ) = {tl(Ail ), t2(A i ),..., tkl(Ail),... 
• 1 

tl(A!m)' tR(Aim)'"" tkm (Aim)} ' 

and hence F' = F u {tl(Z),...,t~(Z)}, where 

= k I + k 2 +...+~. Define a homomorphlsm 

h: (F u A)* ÷ (F' u A)* such that 
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h(tj(Ais)) = tr(Z) , A i c W, r = k I + k 2 +... 
S 

+ks_ 1 + J 

h(X) = X, otherwise. 

Then R'(A ÷ ylZY2 ) = h(R(A ÷ ylY2Y3)) . 

R'(X) : R(X) , X c P - (A ÷ ylY2Y3 } . 

The above construction is based upon the fact 
that in the redefinition transformation 
replacing A ÷ ylY2Y 3 by A ÷ ylZY3 and 

Z ÷ Y2' the nonterminal A "loses control" of 

the translations of the nontermlnals in Y2' 
and must "pass them on" to Z. Careful 
scrutiny of the example below will convince 

! 

the reader that G t and G t induce the same 
transduction. 

Example 4 

Consider the trivial GSDT defined implicitly 
by 

A ÷ aBabcCD tl(A) = t2(C)xytl(B)tl(D)tl(C)xt2(B) 

B ÷ b t l ( B )  : 

t2(B) -- b 

C ÷ c tl(C) : c 

t2(C) : 

D = d tl(D) = d 

Let Yl = a, Y2 = BabcC, Y3 = D. Then 

W = {B,C} c {B,C,D}, and the translation symbols 

t~(Z),...,t4(Z) are added, where the homo- 
m~phlsm of the proof is 

h(tl(B)) = tl(Z) ; h(t2(B)) = t2(Z) ; 

h(tl(C)) = t3(Z) ; h(t2(C)) = t4(Z) ; 

h(X) = X , otherwise. 

The following GSDT results: 

A ÷ aZD tl(A) = t4(Z)xytl(Z)tl(D)t3(Z)xt2(Z) 

B÷b 

C÷c 

D÷d 

Z ÷ BabcC tl(Z) : tl(B) ; t2(Z) : t2(B) 

t3(Z) = tl(C) ; t4(Z) : t2(C) 

tl(B) = ~ ; t2(B) : b 

tl(C) = c ; t2(C) = k 

tl(D) : d 

Corollaz V 

GSDT's are effectively closed under transforma- 
tion to Chomsky normal form. 

Proof: Transformation to Chomsky normal form 
consists of a finite number of redefinition 

transformations. 

(3). Arden's Transformation 

Let G = (VN, VT, P, S) be a context-free 

gra~uar. Let A ÷ Am i i = l, 2, ..., r be the 

left-recursive A-productions in P, and let 
A ÷B i , i = l, 2, ..., s be the remaining 

A-productions. 

Construct G' = (V N u {Z} , VT, P', S), where 

P' = (P - (A÷ Act I ..... A ÷ Aer}) u 

{A ÷6iZ I i,: 1,2, .... s} 

u {Z ÷ a i I i = I, 2, ..., r} u {Z ÷ aiZ I 

i : i, 2, ..., r} . 

Then L(G') = L(G) . 

Arden's Transformation of Syntax-Directed 
Transductions 

Let G t = (G, F, A, R), G = (~N, VT' P' s) 

be given, where G t is not a GSDT, but rather 

the simpler SDT of [1]. Construct G~ = 

(G', F, A, R'), where G' is the gran~ar 
constructed above. Let R(A ÷ Am i) = 

(xiA~ i} , i = I, 2, ..., r 

R(A ÷ 8 i) = Yi' i : i, 2, ..., s. 

Then R'(A ÷ 8 i) = R(A ÷Bi) , i : i, 2, ..., s 

R'(A ÷ 8iZ) : {tl(Z) Ylt2(Z)} , i = i, 

2, ..., s 

R'(Z ÷ ai Z) : {tl(Z)xi, ~it2(Z)} , i : i, 

2, ..., r 

R'(Z ÷ a i) = {xi, ~i} , i : i, 2, ..., r 

R'(X) = R(X), all other X E P' . 

G~ and G t induce the same transduction. Note 

that G~ is a GSDT. 

Conjecture 

GSDT's are not closed under Arden's transforma- 
tion or transformation to Greibach normal form. 

6. Transformations of Parse Trees 

Suppose a GSDT G t = (G, F, A, R) is given. 

Suppose further that it is more convenient to 
parse strings of L(G) according to gran~ar G', 
where L(G') = L(G). It n~y not a]ways be 
possible to transform Ge to an equivalent 
syntax-dlrected transdu6tion of the same class. 
Rather than transform G_, the parse trees on G' 
could be transformed bask to their counterparts 
on G, and G+ applied. A prelimln~y result is 
presented i~ this section. 
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Inverse Chcmsky Normal Form 

Let G = (V., YT' P' S) be a context-free 
grammar a~ G' = (V~, VT, P', S) be a 

Chomsky normal form grammar such that L (G') = 
L (G). A tree transduction can be used to 
transform parse trees on G' to their counter- 
parts on G. Consider the P-production 

Pk = A ÷ aAbBAb, A, B e VN, a, b e V T 

and its counterparts in P' 

P1 = A ÷ NaX 1 

P~+I = X1 ÷ AX2 

P{+2 = X2 ÷ NDX3 

P{+3 = X3 ÷ BX4 

Pi+4 = X4 ÷ ANb 

P~+5 = Na ÷ a 

Pi÷6 : Nb ÷ b 

The corresponding direct transitions of an 
inverse Chomsky normal form general tree 
transduction are 

(q, Pi+5(Xo)) = a 
6(q, P~.+6(Xo)) = b. 
6 (q, P~(XoP~_+l(XlX 2)))  = (q, ~l+l(XoXlX2 )) 
6 (q, ~l+l(X0Xl P{+2(x2x3 ))) = (q, ~l+2(X0XlX2X 3)) 

6(q, P~+3(X0XlX2X3 Pi+4(x4x5))) = Pk((q, x0)... 
(q, Xs)) 

Other inverse transformations can be 
accomplished using tree transductlons, including 
inverse Arden's transformation and inverse 
Greibach normal form. This and other work is 
currently being continued. 

7. Conclusion 

Several topics of theoretical and practical 
importance to the field of translator writing 
systems were presented in this paper. It is 
instructive to note the practical difference 
between the two implementations of GSDT 
presented in Sections 3 and 4. The FST2 
implementation (Section 3) results in a 
"program" (transition function) of moderate 
size, but requires a relatively cemplex memory 
management system for manipulating tree 
structures. On the other hand, the TPDT 
~mplementation (Section 4) requires a 
relatively simple memory management system, since 
the input tree is fixed and the output can be 
written into a sequential file. As payment, the 
TPDT requires a relatively large program. 

Much more work than appears in this paper 
has been done [5]. The properties of a syntax- 
directed transductlon scheme more general than 
GSDT, and equivalent to the scheme of [6], 
have been investigated. 
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