
- 155-

A model for the local area of a data communication network
Software organization

P. T. WILKINSON
National Physical Laboratory

Teddington, Middlesex
England

I. !ntroduotion

A general purpose store-and-forward data communication network is under

• papers(1 development at NPL. The background to this work is described in companion)(2~

which also detail the hardware environment in which the software of the central

message switching computer (MSC) operates.

A user of this system sees it as a star-connected network by mesns of which his

terminal may exchange data with any other terminal via the MSC. Because this centre

is stored-program controlled, it is possible to offer the User other communications-

oriented facilities in addition to the basic data transmission function. The MSC

may be described as a multi-access computer controlled by a timesharing operating

system.

Section 2 gives a description of the way in which terminals use the network,

illustrating the main principles of operation of the system as a whole and outlining

the features provided by software. Section 3 is a description of the operating

system of the MSC.

2. T~e interaction of terminals with the network

The interaction of a terminal with the MSC is controlled by a set of ' status'

characters which are tagged so that they can be distinguished from data traffic.

These status codes are exchanged between the 'peripheral control unit' (PCU) module

at the terminal (2) and the MSC software. Some status codes are automatically

generated by the PCU, others may be generated manually at a control panel which

provides the terminal user with the necessary network signalling functions. Some

of the status characters received by the PCU will cause the state of a group of

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800165.805242&domain=pdf&date_stamp=1969-10-13

-156-

whereby a user knows when he may transmit and when he must await a response, is

entirely a matter for prior agreement between the subscribers. Consequently, the

user is only involved in network signalling procedures during call initiation and

termination.

The 'conversational' type of interaction outlined above is expected to be used

mainly for communication between multi-access computer services and keyboard/display

terminals. Since computers are potentially high data-rate devices, it is possible

for them to lock out a keyboard terminal, for example by generating a lengthy

printout which the user may wish to suppress without ending the call. For this

purpose an INTERRUPT control button is provided to allow a receiving terminal to

break in. On receiving this signal, the MSC cancels any blocks which may be awaiting

output and allows the interrupting terminal to transmit.

It was stated above that the PCU is responsible for informing the MSC that the

input of a block is complete by sending the ETB signal. For peripheral devices

such as paper tape readers, the ETB is generated on exhaustion of a character count.

For keyboard/display devices, however, a line of type is a more natural unit than a

fixed-length block, and interaction between such terminals and multi-access computers

is usually organized on a line by line basis. The PCU for such devices is therefore

constructed to recognize the device's 'end of line' character and follow this with

the ETB code. The users of such terminals therefore need not be aware of the block

organized store-and-forward operation of the MSC provided that they interact in

units of one or more complete lines.

In many existing multi-access systems, terminals are connected directly (or

via a switched network) to a satellite computer. While the satellite and main

computers may communicate in line units, the satellite and terminal often do so

in character units and advantage is sometimes taken of this fact to provide the user

with facilities such as current line editing and with various control functions.

For example, in echo-printing systems a user may be allowed to turn the echo off

on to suppress the printing of passwords. However, it is nearly always possible to

provide these desirable facilities on a line-organized basis. Thus in the Cambridge

Multi-access System (3), the user is provided with a heavily printed line over which

• ,- 157-

display lamps on this control panel to changep to inform the user of the current

state of his ~terminal.

For manually operated terminals, use of the data network is similar to the use

of the telephone system. To initiate a "call", the calling subscriber presses a

HELLO button causing input of status TRANSMIT. If the MSC can accept a new call,

it will return a status code (TX) which causes the SEND lamp on the PCU to light.

The peripheral device is then enabled to send data.

Data transfers between terminals and the MSC are organized into blocks of

variable length up to 1 28 (8-bit) bytes. The transfers take place byte-serially

to or from buffers in the MSC store, the buffer full (or empty) condition being

recognize d by hardware at the MSC. However, the end of an inward block transfer is

normally indicated by receipt of a status code (ETB) from the PCU. This signal may

be generated by the PCU on detection of a special\data code from the peripheral, on

exhaustion of a character count or after a preset time has elapsed. The particular

metho~ adopted will depend on the type of peripheral handled by the PCU. Following

despatch of E~YB, the PCU extinguishes the SEND lamp and disables further data

transfers from the peripheral "until the MSC has allocated a free buffer and returne&

status TX to the terminal. It must be emphasized that network terminals contain

single byte buffers, not full 1 28-byte buffers. The organization of data input/output

into blocks promotes the efficient operation of the MSC and a user need not normally

be aware of it. However, this point merits further attention and will be taken up

I at er.

The block of data initially input by a terminal is known as a 'heading' and

contains commands by means of which a subscriber may specify the address of the

the terminal which he desires to 'call', and may select other communication functions

provided by the MSC. The MSC is thus 'dialled' by using the peripheral device

itself. Provided that the heading commands are acceptable and the called subscriber

is available, the MSC returns status TX to the calling terminal which may then

proceed to transmit data. Otherwise, the MSC returns status QUIT which causes the

PCU REJECT lamp to light, informing the user that his request cannot be accepted.

-158-

During the heading phase, the MSC and the subscriber interact through the peripheral

device. The MSC must therefore be able to interpret the device's character code.

During the communication phase, in which two terminals exchange data, the network

is transparent to this information unless the c~ller has specified a processing

function such as code conversion.

Once a 'connection' has been established, the two terminals may exchange data

until one of the subscribers ends the call by pressing the GOODBYE button which

causes the input of status EM. If one of the terminals contains an input-only or

an output-only peripheral, then obviously the transmission of data will be simplex.

The sender's data will be assembled into a buffer. When the PCU terminates the

block by sending ETB, the buffer will be queued for output to the receiver. When

the NSC has another buffer available to accept data, the sender will be re-enabled

by means of the TX code.

When a block of data is available for output to a terminal, the MSC despatches

a status RX character which causes the PCU to generate a series of status READY

codes, requesting each byte from the NSC store as the acceptor peripheral becomes

ready for them (2) The RX code also causes the PCU RECEIVE lamp to light.

This lamp stays on at the acceptor terminal for the duration of a simplex call,

thus an operator is informed that transmission is not yet complete even though the

peripheral may be currently inactive.

The transfer of blocks between terminals is double-buffered to smooth the

operation of the peripherals. However, the devices are effectively 'tied together',

being constrained to operate at the same overall data rate. This method, the storing

and forwarding of messages on a block by block basis, is sometimes referred to as

'cut-through'.

If the connected terminals are both capable of input and output, a half-duplex

mode of operation is permitted in which the devices exchange blocks singly or in

groups. The mechanism of block transfer is the same as for the simplex case.

However, the MSC automatically enables a terminal to send whenever there are no

blocks awaiting output. This means that the 'turnaround' procedure, the convention

-159-

he may type his password. One important exception is the 'escape' function which

allows the user to break in while his printer is operating, this being implemented

as the network control function INTERRUPT.

The use of network terminals falls into two phases, the heading phase and the

communication phase, both of which have been described above. The operation of a

terminal is controlled at all times by the interchange of status characters between

PCU and MSC, this interaction being referred to as a 'control procedure'. For all

simple peripheral devices which may form part of a network terminal, the control

procedure is the same. The simple device control procedure is described further in

section 3.

In computer te~ninals, most functions of the PCU will be taken over by the

subscribing computer itself. One of the most important differences between computer

and simple terminals is that the former can operat e in a multi-access mode, engaging

in concurrent communication with a number of other terminals. The control procedure

is split into two levels, the lowest of these controlling the flow of data blocks

between subscriber and MSC by the exchange of status characters. Each data block

will contain the address of the other terminal involved in the communication and

status information of relevance to the particular interaction, which is used by the

second level of the control procedure. This information will be held in a fixed

position in each block. It is not proposed to describe the operation of computer

terminals in any more detail in this paper.

A number of facilities may be made available to users, by the MSC, through the

medium of heading commands. Some of the facilities which could be offered are

discussed in (4). However, the only feature to be offered in the first version of the

NPL network will be the permanent storage of heading information. A terminal having

a permanent heading is able to set up a call merely by the use of the HELLO control

button. This facility will be useful for those terminals which normally access only

one destination, being equivalent to having a private wire, and those for which

heading input is inconvenient, for example, paper tape readers. Terminals will be

divided into two classes, priviledged and non-priviledged, at the discretion of the

network management. Terminals belonging to the former category are allowed to input

-160-

permanent headings on behalf of non-priviledged terminals. Thus a keyboard device, for

example, may be used to control the access to the network of a group of other

peripherals.

3. The organization of the MSC software

The MSC is a real-time multi-access system controlling the operation of terminals

in a time-shared manner. The software has a generalised structure in which the

various system functions are carried out by entities known as 'Processes', which may

conceptually r~ in parallel with each other.

The problems of organizing the co-operation of such Processes have been discussed

by Dijkstra (5) in terms of synchronisation operators ("semaphores"). In this system

the required synchronisation is achieved by allowing Processes to communicate with

each other using fixed format messages. A technique similar to this has been used

in the RC4000 multiprogramming system (6).

There are two types of Process in the MSC system. Normal Processes (NPs)

operate on an input queue of messages, possibly generating messages for other NPs

as a result. Interrupt Processes (IPs) are activated in response to hardware

signals (i.e. interrupts) and may generage messages for NPs as a result. IPs may

be regarded as acting on an input queue of 'hardware messages', which they may

process in their entirety or which they may turn into standard internal messages

for the attention of NPs.

The time-shared execution of the NPs is controlled by a primitive operating

system called the gonitor, according to a simple strategy based on thes~te of the

NP input queues. The Monitor also controls the allocation of temporary working

storage to NPs. In the MSC system these storage areas will be used, for example,

to buffer the data passing between two 'connected' terminals.

The operation of the Monitor is described in more detail in Section 3.1. Its

function is essentially independent of the hardware and software features, embodied

in the IPs and NPs, which give the MSC system its particular characteristics.

When a NP is in execution, the Monitor has no means of forcibly regaining

control. In addition, it has no control over the execution of IPs. This lack of

-161-

constraint is not inappropriate in a system in which the Processes themselves

represent the main operating system, and is desirable in the interests of simplicity

and efficiency.

While the standard message interface is the principal means of synchronisation

between Processes, it is clearly necessary to have semaphores linked with the

operation of IPs, for example where common data areas may be readandwritten both

by a NP and an IP. Since the operation of IPs is tied to a computer's interrupt

hardware, these synchronising operations can most simply be implemented by means

of the (selective or non-selective) inhibit/enable functions which are provided on

most modern machines.

The MSC operating system may be described as 'event-driven'. Thus each status

word, for example, originating from the communication network hardware Will

ultimately cause an interrupt at the central computer. This signal will in turn

cause an IP to be activated, which may generate a message for a NP. The NP

receiving the message may extend the train of events to embrace other NPs before

the system activity triggered by the original signal is completed. Clearly, therefore,

the software framework described here is a very natural one for this type of real-

time system. However, it is imperative that overheads due to message transfer and

scheduling operations should be very low, since the amount of CPU time required to

deal with a message will usually be small, i.e. a few milliseconds.

V,~en a real-time system is to be implemented using this queue-processing approach,

it is important to ensure that strictly periodic functions, or functions which must

be undertaken within a fixed time-limit, are not performed by NPs. One may only

talk of the mean time which an NP takes to respond to a message, and this mean

will in turn depend on the overall system loading. Such time-related operations are

the province of the IPs, and most such systems will require an IP linked to a clock

interrupt. The hardware of the NPL network is such that the MSC software has no

strictly time-related scheduling requirements.

Sections 3.2 and 3.3 describe the way in which the MSC's operations are

implemented within the basic framework outlined above and in Section 3.1.

=162-

~.I The Monitor

All inter-Process messages pass through the ~onitor and are the means b~v~ich

it controls the operation of the system. In addition, messages concerning store

management pass between NPs and the Monitor.

All messages are held in queues whose organization is shown schematically in

Figure 1. Each NP input queue (NPIQ) is serviced by its associated NP wheneter the

latter is executing. The currently executing NP may place messages into the single

output queue (NPOQ). The NPOQ is serviced by the Monitor when it regains control;

store management messages result in appropriate Monitor actions, while messages

for other NPs are added to the ends of the specified NPIQs. IPs place messages

into a single output queue (IPOQ) which is serviced periodically by the Monitor;

IPs may only generate messages for NPs.

The Monitor maintains a state variable for each NP. A NP can be in one of

four states: Idle (I), Waiting for compute time (W), Waiting for a store block (WB)

or Computing (C). The transitions between these states are shown in Figure 2.

Once a NP enters state I, it will remain there until the Monitor receives a

message addressed to that NP. When this happens, the NP is transferred to state W

and its identifier is placed at the end of a 'Waiting for compute time' queue.

This queue is serviced by the Monitor on a 'round-robin' basis, the next NP to be

executed at each stage being the one whose identifier is currently at the head of

the queue. A priority scheme superimposed on this mechanism is introduced below.

When the NP reaches the head of the W queue, it is placed in state C and

its execution commenced. V~en the Monitor regains control, it scans the NPOQ.

If a message requesting a store block is found, the NP is transferred to state WB

and its identifier placed at the end of a 'Waiting for store block' queue. This

queue is serviced periodically by the Monitor, which grants store blocks in order

of request until either all outstanding requests are satisfied or until no blocks

remain. When a store block is allocated to a NP, a message containing the block

address is placed in its NPIQ and the NP transferred to state W.

If the currently terminated NP has made no store block request, the Monitor

-163-

will place it in state I if its NFIQ is empty, otherwise it will be returned to

state W.

A flowchart summarizing the operation of the Monitor is shown in Figure 3.

It consists simply of a main loop which is cycled once for each NP activation, and

a subsidiary loop which may be cycled when system activity is low. While NPs are

only activated in a controlled fashion by the Monitor, IPs may be activated at any

time by the system hardware. The Monitor therefore samples the results of IP

activity at the beginning of every cycle, scanning the IPOQ into which all IPs

place their messages. While the Monitor is cycling the idle loop, the system is

simply waiting for the next external event to occur.

NPs are allocated to one of four priority levels according to the importance

of their tasks. For each level there is a W and a WB queue. The next NP to

be activated is that at the head of the highest priority W queue. Thus the highest

priority level having any waiting NPs retains control until all its NPs revert to

I or V~B states or until a higher priority level becomes active. The WB queues are

serviced in a similar manner.

The Monitor changes NP priority dynamically to prevent large message queues

building up. Each time that a message is added to a NPIQ, the queue length is

checked. If this exceeds a preset limit, the NP priority is raised by one level,

the NP identifier being removed from its current position in the W or WB queue

and placed at the end of the corresponding queue for the higher priority level.

After a NP execution, the length of its NPIQ is again checked. If this is less

than a second preset limit, the ~F priority is returned to normal.

The Monitor controls the use of a dynamic working store which, in the present

implementation, is divided up into blocks of a fixed length. Free blocks are held

on a chained list; a NP may 'book' a block by the mechanism described above. When

a NP has finished with a block, it returns the block address in a special message.

The Monitor does not guard against the possibility of a ' deadly embrace' situation

arising (5), in which the pattern of store block requests is such that all NPs end

up in the WB state. This decision was taken in the interests of simplicity, the

-164-

necessary checking algorithm being rather time-consuming. In systems where the

behaviour of all Processes in this respect is known, it is possible to ensure at

the outset that such situations cannot logically arise.

Since the number of messages in the NPIQs can grow very large at times of

heavy system loading, these queues are implemented as simple chained lists. The

NPOQ is similarly implemented. The message queues are backed up by a list of free

message cells. ~r~en system activity is high, the Monitor may replenish the free

list by taking a free block from the dynamic working store. Conversely, when

activity is low, a garbage collection phase maybe entered, in which references

to a selected block are removed and the block returned to the free block list.

The IPOQ is organized as a circular buffer of message cells. The use of a

separate mechanism from the NP message queues minimises the number of interrupt

lockouts which would otherwise occur. However, since the IPOQ is of fixed length,

the system must safeguard itself against overflow by locking out all interrupts

when the queue fills. In this connection, a 'software interrupt' flag is set when

the number of messages reaches a preset limit. This flag is checked periodically

by the currently executing NP and, if set, will cause a return to the Nonitor

where the backlog of interrupt activity can be dealt with. The probability of

total interrupt lockout can be adjusted by changing the maximum length of the IPOQ

and the level at which the software interrupt flag is set.

The interface between NPs and the Monitor consists of two global subroutines,

one to take messages from the head of the appropriate NPIQ, the other to append

messages to the tail of the NPOQ. A third global subroutine is used by IPs to

place messages at the end of the IPOQ. This subroutine is also responsible for

setting the software interrupt flag and for locking out all interrupts when the

queue becomes full.

Other aspects of Process discipline, in particular the decision as to when a

NP is to return control to the Monitor, are implemented by the Processes themselves.

Thus a NP will return control whenever its NPIQ is found to be empty or whenever

the software interrupt flag is found to be set. In addition, NPs have access to a

timer location which allows them to check the (elapsed) time of execution for

each activation, control being returned when a set limit is reached.

~.2 The messa6e switching software

Figure $ shows the main hardware and Process components of the MSC system

proper and the communication paths between these components. The princip~l software

components of the system are the Terminal Processes (TNPs). To each network terminal
J

there corresponds a unique TNP which controls all aspects of the terminsl's interaction

with the MSC.

The remaining Processes implement common system functions, forming a suitable

environment for the operation of the TNPs, which are therefore described in the

last subsection (3.3)~

3.2.1 The logging processes

The Logging NP (LNP) receives coded messages describing various types of

network hardware failures from TNPs and system Processes. These messages are turned

into textual form and output to an Alarm Printer. This printer is local to the MSC

(i.e. it is not itself a network ter:~inal) andits character-at-a-time operation is

controlled by the Alarm Printer IP (APIP), which passes a message to LNP when the

output of a report to the printer is complete.

Messages giving call accounting information are received from TNPs and cause

LNP to output a record to a paper tape punch. The Logging Punch IP (LPIP) controls

the output of each record, in a similar manner to APIP.

Lastly, the receipt of a message from the Clock NP (CNP) causes LNP to generate

a 'snapshot' summary of the system's current operatd~ng status. This information is

output to the tape punch; it includes the lengths of the message queues and other

parameters of relevance to Monitor operation. The lo~ging tapes will be processed

off-line to give a record of MSC operation which should be useful for gauging

system performance and adjusting parameters so that this may be improved. In the

case of the NPL network no subscriber charging procedures are planned for the

present.

-166-

3.2.2 The Clock Processes

The MSC system has an interval timer which is set to activate the Clock IP (CIP)

every second. CIP maintains a time-of-day indicator which may be accessed by NPs

for 'time-stamping' reports or for long-term timeouts. NPs may also access the

interval timer location (which is incremented every 20 milliseconds) for short-term

timeouts, in particulsr execution timing, mentioned in Section 3.1.

Every 10 seconds, the CIP sends a message to the Clock NP (CNP), which is

responsible for sending messages to all NPs which require to be activated periodically.

This task is given to CNP rather than CIP because of the limited capacity of the

IPOQ. CNP holds three units of information for each hrP, a flag which indicates

whether the NP requires timing messages, an integer specifying the interval (in

10 second units) and a current count.

The clock messages received by NPs cannot represent an accurate interval ~ of

time because of the queueing inherent in the system. The messages are intended for

the periodic triggering of NP activity which does not need to meet rigid ~ime

constraints. Thus a signal will be sent to LNP every 5 minutes, say, to trfgger a

system snapshot; the fact that the interval may vary to some extent is of no

importance here, since the record can be time-stamped by reference to the time of day

indicator.

3~2.3 The ~/0 Hardware Interrupt Process (10HIP)

The IOHIP is activated in response to interrupts from the special purpose

hardware which interfaces the communication network pm~per to the MSC. This hardware

in fact consists of two units whose functions are described in (2).

The I/0 hardware places 7-bit status signals into a 'status dump t in the IdSC

core store. Each status signal is accompaniedby a 9-bit address which is added by

the network multiplexers to uniquely identify the originating terminal. Three

types of status signal will be distinguished in describing the operation of IOHIP,

(a) 'Inoperable' signals, (b) 'Normal' signals and (c) 'End of range' signals.

(a) Inoperable signals indicate a hardware-detected malfunction in some part

of the network. The signal and the address are passed in a message to

the Failure NP (q v).

-167~-

(b) Normal signals are all those (apart from status READY) which may be received

from ~ the terminal PCU. The terminal address is applied to a conversion table

to obtain the i&entifier of the associated TNP, to which the status code is

then passed in a message. If the terminal address is found to be illegal

(i.e. if there is no corresponding TNP), the status code and address are

passed to LNP.

(c) End of range signals arise when a data input or output operation terminates,

the !/0 hardware transferring an EOB or a READY code respectively to indicate

that the end of the buffer has been reached.

To each terminal address there corresponds a pair of 'command words', held in

core, which are used by the I/0 Hardware to control the transfer of data to and

from the terminals. Since the hardware cannot be selectively prevented from

transferring data following input by an end of range signal, it is necessary for

10HIP to reset the command words to a common 'garbage buffer' to prevent illegal

data input from corrupting s tore (this might occur, for example, if an undetected

address corruption has taken place). To ma~e the system completely safe, the

hardware ceases to function until it is reset by a signal from the central processor.

10HIP changes the appropriate command words before sending this signal.

Subsequently, the EOB and READY signals are processed as in (b) above.

~.2 The Failure Normal Process (FNP)

Messages indicating hardware-detected failures in the network are passed on

from IOHIP to FNP, which is responsible for interpreting them.

Whenever a multiplexer detects the failure Of an inferior hardware unit

(i.e. a unit nearer to the terminals), it will respond to any outgoing information

addressed to the failed channel by returning one of the status codes INOPi, INOP2 or

INOP3, depending on the level of the multiplexer in the hierarchy (2). Whenever a

PCU discovers that its attached peripheral has failed, it w~l respond with the

INOPI code, whatever its level of attachment.

In order to interpret the incoming INOP codes, FNP needs to know the current

network configuration. The structure is represented by three arrays, MI, M2, M3,

-168-

each containing information on the state of the multiplexer subchannels at the

corresponding level in the hierarchy. Three units of information are required:

(i) whether the channel is in use (connected to inferior hardware) and, if so,

(ii) Whether the hardware is a terminal or a multiplexer, and (iii) whether the

channel is inoperable.

The level of the failure indicated by the INOP code, and the associated

address determine the affected subchannel. FNP magks the subchannel as inoperable

and scans the arrays to determine the addresses of all terminals dependent upon

it, sending a failure message to each associated TNP. Whenever the failure of a

multiplexer is detected, a message is also sent to LNP.
@

If the subchannel was already marked as inoperable, no further action is taken,

thus avoiding repeatedly sending failure messages to the TNPs and to LNP. FNP must

be informed when the subchannel is available again, however. It is the responsibility

of each TNP to regain contact with its terminal after a failure. When this has been

achieved, a message is passed to FNP causing it to clear all inoperable marks on the

'path' to the terminal.

3.3 The Terminal Normal Processes

A TNP deals with all aspects of the communication between its associated

terminal and the NSC. A single re-entrant program module acts as a TNP for all

terminals of the same class. The class of a terminal is determined by the hardware

and the type of control procedure needed to interface the given peripheral device

to the network.

The PCU described in (2) and in section 2 of this paper, and the associated

control procedure, is capable of interfacing a wide variety of device types. Other

information of relevance to the terminal' s interoperaticn with the MSC, such as the

peripheral's input-only or input and output capability, character code and so on, can

be parameterised. The module dealing with this single device class is described

below. The other principal device class relates to subscribing computers, for which

a different type of PCU and control procedure, briefly discussed in section 2, will

usually be necessary.

-169-

The module acting as TNP for all simple terminals is divided into three levels.

The SchelulQr level is responsible for implementing the required NP discipline and

for routing incoming messages to the other two levels. The Master level (ML) deals

with the overall aspects of terminal operation, including communication with other

TNPs, data buffer management, heading interpretation and the provision of user-

oriented facilities. The Control Procedure level (CPL)is concerned with the

detailed handling of the terminals, checking the incoming status codes and initiating

data transfers.

3.3.1 The Scheduler level

On initial entry from the Monitor, the module has to decide which TNP it

currently represents. For this purpose the Monitor conveniently leaves the identifier

of the currently executing NP in a globally available location. The identifier is

used to load the base address of the appropriate TNP data area into a "signpost",

from a table of base addresses. The fact that NPs can return control to the Monitor

at a convenient point means that the amount of information which has to be held over

between activations of a TNP can be minimized.

The setting of a control variable determines the next step taken by the

Scheduler. If the current message processing activity is incomplete, the appropriate

level is entered; CPL and ML may exchange internal messages during such activities.

Otherwise, the next message is taken from the NPIQ, its destination decided and

control again passed to the appropriate level. Signals from IOHIP, FNP, CNP are dealt

with by CPL, signals from other TNPs and from the Monitor, by ML.

On re-entry from CPL or ML, the Scheduler performs the termination checks

discussed in section 3.1. If control must be returned to the Monitor before the

processing of the current message is complete, the Scheduler ensures that the TNP

will be re-activated in due course by placing a dummy message addressed to itself

into the NPOQ, (provided that the NPIQ is empty). If the TNP can continue execution,

the Scheduler recycles for the nextphase of operation. The control variable will

always be set appropriately an exit from CHL or ML.

~.3.2 The Master level

~S, exchanges messages controlling the progress of a call with other T~Ps and

-170-

messages governing the operation of the terminal with CPL. The principal messages

are summarized in Table I.

The response made by NL to an incoming message will depend on the current state

of the call being processed. The operation of HL is controlled by a state variable

and a message/state table, which contains the entry address as of 'action' routines

to deal with every possible combination of circumstances. The states and transitions

are shown in a simplified form in Figure 5. Each transition is labelled with the

identity of the incoming message (underlined) which caused it. Messages which are

output by ML before the new state is entered are also shown (not underlined).

In state F, ML is free either to set up a call on behalf of its own terminal or
u

to accept a call from another TNP. Receipt of TRANS}.~IT from CPL signals the former

event; a request block (RQB) message is sent to the ~onitor and state HI entered to

await the response, BRG, giving the address of the allocated block. The size of the

store bloeks controlled by the Monitor is chosen to be sufficient to hold two

maximum length (128 byte) buffers plus some housekeeping information, since this is

their main use in the MSC system. A single block is used to buffer data input and

output while a call is in progress, the buffer references being exchanged, as

necessary, between the two "connected" TNPs by means of the OPB and EB messages.

The TNP initiating a call is responsible for obtaining a store block and for

returning it at the end of the call.

When BRG is received in state HI, the appropriate action routine checks to see

whether a permanent heading is stored on behalf of the terminal. If sO, a CALL

message can be output immediately to the TNP whose address is specified in the

heading. Otherwise, a TX message is sent to CPL to initiate the input of a heading,

ML entering state H2 to await its completion.

This event is signalled by the receipt of the ETB message from CPL. ML converts

the stored characters into a standard code and then interprets the heading command.

If the command is in error, a QUIT message is sent to CPL to cancel the call and

state F re-entered. Otherwise, a CALL request is sent to the TNP whose address is

specified in the heading, and state H3 entered to await the response.

-171~

The response to CALL may be REJ, in which case ML sends QUIT to CPL, or it may

be ACC, when the data transmission phase of the call is commenced. In the CALL and

ACC messages, the TNPs exchange information on the terminal I/0 capabilities, to

determine whether the 'connection' will be simplex or half-duplex. The parameter

which specifies the terminal capability must also be used to decide whether a call

can be initiated, thug the TNP for an input-only device can never accept CALL

requests.

In section 2 it was mentioned that certain priviledged terminals are allowed to

input permanent headings on behalf of other terminals. The CALL message is used to

impart this information to the specified TNP. If the response is ACC, ML outputs

TX to CPL and returns to state H2, allowing the subscriber to input another heading.

Thus a user always obtains a positive response if his attempt has succeeded. Not

all subscribers will wish their terminals to have permanent headings; a parameter

held by eac~TNP indicates the status of the terminal in this respect.

Having accepted a call, ML enters state 01 to await the first buffer of data

fromthe calling terminal. Having received confirmation of a call, the ML for the

calling terminal sends TX to CPL to initiate data input, and enters state 11 to

await th@ completion of this operation. If the call is simplex, ML for the sending

terminal will cycle round the 11 and 12 states. Similarly, that for the receiving

terminal will cycle round states 01 and 02.

When CPL signals the completion of input, a reference to the data buffer is

passed in an 0PB message to the other TNP. If the second buffer is available, ML

again sends TX to CPL and returns to state 11. Otherwise state 12 is entered to

await the return of a free buffer, by means of the EB message, by the other TNP.

If the receiving terminal has a higher data rate than the sender, the EB message

will be received while ~.~ for the latter is in state 11.

When MLfor the receiver, in state 01, is given the 0PB message, it passes RX,

with a reference to the buffer, to CPL which initiates the output process. ML then

enters state 02 to await ETB from CPL. When this arrives, the buffer reference is

returned to the connected TNP and state 01 entered to await the next 0PB. If,

-172-

however, there is already a buffer queued for output, state 02 is re-entered

immediately.

If the call is half-duplex, ML will switch between the 0 and the I states,

since a terminal is always enabled to send when there is no information available

for output (see section 2). Thus, on exit from state 02, ~ may make the previous

output buffer available for input and enter state II. While a low speed terminal is

sending a number of blocks to a higher speed terminal, the ML for the latter will

switch between states 02 and II. In state II, receipt of the 0PB message causes ML

to return the unused buffer. If one of the subscribers breaks the half-duplex

operating rules, it is possible for data to be lost.

Receipt of INTERRUPT via CPL while ML is in state 01, causes the output to be

cancelled and the buffer made available for input, Other messages and transition
J

paths, not shown in Figure 5, are used to ensure that the previously sending TNP

is forced into state 01.

Another a~pect of ~ operation not shown in the diagram is call termination.

The-ML receiving an EM message from its terminal, or a failure indication, passes

an END message to the connected ML which acknowledges with END. Thus the call

initiator, after receiving END, may assume that all references to the store block,

e.g. by command words, have been cancelled. This ML then places¢~ll accounting

information in the block and passes its address to LNP which eventually returns

the block to the Monitor.

~3.3 The Control Procedure level

CPL has a similar organization to NL, its operation being controlled by a

message/state table and a series of 'action' routines to deal with every possible

circumstance. A simplified statertransition diagram for CPL is shown in Figure 6.*

Table I of companion paper ~2jf ~ gives the status codes exchanged between CPL

and the PCU. While incoming status codes are received by CPL as messages

from IOHIP, the output of these codes takes place directly.

CPL is concerned with the d2tailed control of terminal operation, and in particular

with the detection and correction of faults which may arise from the loss or corruptior

of information transmitted on the serial links, or the malfunction of the various

system hardware units.

The states of CPL oorrespond to the phases of terminal operation. During a

simplex call, CPL for the receiving terminal will cycle round the RECEIVE and WAITING

TO RECEIVE states. That for the sender cycles round the WAITING TO SEND and SEND

states. During a half-duplex call, switching between these pairs of states will

occur. If ML requests CPL to switch from the SEND to the RECEIVE state, or vice-versa,

status EM is first output to halt terminal operation, followed by status ENQ. When

the response, status STATE is received, CPL sets the terminal command words to

point to the new I/0 buffer and outputs the appropriate status code, TX or RX, to

re-activate the terminal. This step cannot be taken immediately because data 'in

transit' oould corrupt the newly supplied buffer.

CPL is forced back into the IDLE state by the receipt of EM from the terminal,

or when ML sends a message to end the call, when CPL will output EM or QUIT to the

terminal.

0nly 'meaningful' status codes, i.e. those causing CPL to change state, cause

messages to be sent to ML. The receipt of invalid or out-of-context codes will

result in an error message being sent to LNP. If status NACK is received,

indicating that the PCU had been sent an invalid status code, the previous status

output is repeated. To guard against a hardware malfunction generating an endless

succession of NACKs, CPL counts the number of status repeats and takes a failure

action, described below, if the count reaches a preset limit.

An important function of CPL is terminal polling. Each time a message is

received from CNP, status ENQ is output to the terminal. The response, status

STATE, indicates the state of the PCU lamps. If the state of the terminal does not

correspond to the current CPL state, an error message is sent to LNP and a status

code output to reset the terminal. If the response is not forthcoming before the

next message is received from CNP, CPL again sends a message to LNP. Two successive

response failures are taken to indicate terminal inoperability.

-174-

If a terminal failure is detected by CPL or if a message is received from FNP,

an INOPER~2LE state is entered and a message sent to ML which will cause the current

call to be cancelled. In this state, CPL polls the terminal each time that it is

stimulated by CNP. When two successive STATE responses are obtained from the

terminal, it is assumed that the terminal is available again; a message is sent to

ML to indicate that calls may be accepted and CPL enters the IDLE state. A message

is also sent to FNP at this stage.

~. Concludin6 remarks

The software of the NPL communication network is still in the development stage

at the time of writing this paper, so that no assessment of the strategies described

above can be given in the light of operating experience. However, it seems worthwhile

to make a few comments on the implementation of the NSC software.

The machine chosen for this system is a Honeywell DDP-516 and the programs are

being written in the standard assembly language, DAP-16. The modular operating

system concept has proved invaluable. It is doubtful whether the task of implementing

such a system could proceed successfully without the imposition of a general framework

which allows the detailed specification, coding and testing of modules to be carried

out independently once the basic functional divisions have been decided, and the

messages interchange d between the modules have been defined.

Thus the Monitor was separately tested using a driver program to simulate the

behaviour of IPs and NPs. Each NP has been tested individually by providing a program

to interpret commands from the computer control typewriter and pass them on as

as standard messages to the NP, intercepting and printing out its responses. In the

case of the TNP, the routine sending status codes to the I/0 hardware was replaced

by one to print the information at the console, so that testing couldproceed

independently of the hardware. In the case of the IPs, hardware independent testing

is not possible. However, the philosophy of the MSC system is that each IP only

undertakes the essential interrupt processing tasks~ passing messages to NPs which

will complete the work under control of the ~onitor's priority scheduling system.

This approach also simplifies the testing. The implementation of each of the main

-175-

levels of the TNP by means of message/state tables has also considerably eased the

subsequent detailed design, coding and testing phases of this module. The approach

has the important advantage that the designer is forced to consider every unlikely

circumstance and cater for it explicitly.

Since the NPL network is intended to be an experimental system, it is likely

that the operating system will evolve by modification and addition as experience of

its use is gained and as new types of peripherals are added. For example, new types

of facilities thought desirable by users will entail changes to ML. CPL may need

to be altered so that certain kinds of hardware failures may be detected more readily.

This expected evolution of the software will be made much simpler by its modular

construction.

Acknowledgements

The author would like to acknowledge the help of Keith Wilkinson, Rex Haymes

and Sue Connelly in the implementation of the operating system.

The work described herein has been carried out at the National Physical

Laboratory.

References

I. Barber, D.L.A. Experience with the use of the British Standard Interface in

computer peripherals and communication systems. ACM Data Communications

Symposium, Pine Mountain, Georgia, (Octobelj 1969)

2' Scantlebury, R.A. A model for the local area of a data communication network -

objectives and hardware organisation. ACM Data Communications Symposium,

Pine Mountain, Georgia, (October 1 969)

3. Hartley, D.F. (Ed.) The Cambridge Nultiple-Acces System, User's Reference

Manual. University Mathematical Laboratory, Cambridge, (1968)

4. Wilkinson, P.T. and Scantlebury, R.A. The control functions in a local data

network. Proceedings of the IFIP Congress 68, D16, (August 1968)

5. DiJkstra, E.W. Co-operating Sequential Processes. Nathematics Dept.,

Technological University, Eindhoven, (September 1 965)

6. Brinch Hansen, P. (Ed.) RC4000 Software: Multiprogramming S?/stem.

A/S Regnecentralen, Copenhagen (April 1969)

Normal
Processes

Normal Process
Input queues

Monitor

Interrupt Process
Output queue

Interrupt
Processes

< >

-I

-176-

<

F

Normal Process
Output queue

|

Figure I Processmessage queue organization

STORE BLOCK f

f - . ~ / . C0MPUT~I~ j

~igure 2 Norm

W ~ ~SSAGE TO NPIQ

C

~al Process state transitions

-177-

IDLE

LOOP

Transfer all messages from the IPOQ
to the specified NPIQs, changingNP
states and priorities as necessary.

I

Allocate store blocks to NPs in the WB
queues, generating a message for each
successful NP, altering its priority if
necessary and placing it in a W queue.

Select next NP for activation from the W queues

NONE

I Garbage collection I

Enter selected
NP

I I
t NP i

activity I
l ~ Control

returned

Transfer all messages from the NPOQ to
the specified NPIQs, changing NP states
and priorities as necessary. If a
store request message is found, place
current NP in a WB queue. Otherwise
place it in a W queue or in state I.
Decrease priority if necessary.

ACTIVE LOOP

Figure 3 The Monitor operating sequence

I Alarm
I printer

-178-

- 1 r
i I
i I
i I

I !
I I!

~ Logging
~ch I Interval

timer

" /
\ /

o

\ /
\ .

• , /
@

l
~t

I Network I/0
, hardware ,I

, , / \
Figure 4 Main Process and hardware components in the MSC system

KEY

Q Normal Process

Normal processes

TNP Terminal
CNP Clock
IMP Logging
FNP Failure

D Interrupt Process I] Hardware units

Interrupt Processes

APIP Alarm printer
LPIP Logging punch
CIP Clock
IOHIP I/0 Hardware

w a • @

Message path

Data path

Control path

Interrupt path

k.

-179-

TRANSMIT R~B/

L ~G.

QUIT

QUIT REJ

!ACC

TX

OPB EB
l

OPB

EB

INTERRUPT

ACC

OPB

RX

ETB

REJ

EB

EB

FIGURE5 Master level state-transition diagram

The circles represent states, the lines transitions. Underlined messages are

received, non-underlined messages are output. Refer to the text for a full

explanation.

RX

RX m

RX m

READY
,,

ETB m

~RANSI~IT
\ TRANS--'---'-~T m

TX m

TX

EM
~Q

~__m ~ 'x - -mJ I - - I ~ ~ ~'" ,.,,,m

ST

-180-

Figure 6 Control procedure level state-transition diagram

Key as for Figure 5. In this case the superscript m indicates messages

which are exchanged with ML. Non-superscripted messages are status codes

exchanged with the terminal PCU.

-181-

Table I

Master level control messages

Message Significance

.,,,, , j,., ,,,

(a) Exchanged between TNPs

CALL

ACC

REJ

0PB

EB

END

Request to set up a call

CALL request accepted

CALL request unacceptable

Output the specified buffer

The specified buffer is available for input

Terminate the call

(b) Sent to CPL

,,,, . , - - , ,, ,.,, ,,,,,,, .,,|

TX

RX

EM

QUIT

Initiate input to the specified buffer

Initiate output 'from the specified buffer

Terminate the call normally

Cancel the call

(c) Received from CPL

TRANSMIT

ETB

INTERRUPT

EM

The terminal requests a call

The current input or output operation is complete

The terminal has requested to break-in

Call ended by terminal

