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MDELTA - A Digital Program for Control System Analysis

Introduction

Design and analysis of high-order control systems requires a great
deal of laborious calculations. Stability analyses are usually
conducted with standard techniques such as root locus or frequency
response. The calculations involved in these analyses are generally
too complex to do by hand. Graphical techniques and approximations
may be used, but often introduce unacceptably large errors.

The advent of modern digital computers led to the development of a

great many programs to perform stability analysis. Generally, these
programs were designed to perform one specific analysis using a single
technique such as root locus. Such programs seldom shared common input
formats, making multiple analyses difficult. Program input was often

in the form of polynomial coefficients of the system's transfer function.
The determination of these coefficients was difficult, for all but the
most simple control systems.

The inconvenience of such programs demonstrated the need for a more
flexible analysis tool. To provide general usefulness a new program
would require a more basic input scheme. The input language should
heve the flexibility to allow concise descriptions of both large and
small systems. In addition, it would be desirable for more than one
analysis technique to be available in a single computer run. To reduce
input errors, the program should use self-explanatory control cards.

A complete plotting capability would also be essential.

The MCELTA program was designed to satisfy all of the above requirements.
New features are still being included after three years of successful
usage in Boeing aerospace projects. The major analytical techniques

used within the program are outlined below.

Program Descriptior

The configuration of the control system to be analyzed is defined to
the program using a block diagram input language. An example for a
small system is shown below.
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BLOCK DIAGRAM EQUAT IONS
EPS=1-H1%C~H2*D
C=GI*%EPS

D=C*G2

TRANSFER FUNCT IONS
G1=$-1.//5+1.
G2=S-2.//S5+2.
H1=K2

H2=K 1

FORC ING FUNCT IONS
1==1.//S

END

As seen above, the user has chosen variable names for the variables
in the block diagram, i.e.,

k1'~ K1
k2 ~ K2
€ ~ EPS

The variable name ''S'' is reserved to represent the Laplace transform
operator. Double slashes indicate separation between numerator and
denominator polynomials in s for Laplace transforms and transfer
functions.



The MDELTA program accepts the above control system description and
automatically generates Laplace transform equations in matrix form.
The equations are written so that each matrix element is a proper
polynomial function of s. A two-step derivation illustrates the
process for the above example system:

R K2 kK1 | {EPS -%

1. -g—i- 1 0 C = 0
s=2

| o = 1 | o 0

This initial form of the matrix equation is somewhat cumbersome to
process, so the program writes the nonhomogeneous equation in the
following modified form, clearing each row of denominator polynomials
in s:

3 K2%s Kl*s EPS -1.
2. -s+1, s+1. 0 cC = (0]
0 ~s+2, s+2, D 4]

or

[Aa(s)] {x(s) = {F(s)

where [A(s)] Is the system characteristic matrix, elements of which
are functions of the control system parameters and
proper polynomial functions of s.

{X(s) is the vector of Laplace transforms of the control system
variables (displacements, voltages, torques, etc.).

{F(s) Is the vector of Laplace transform terms independent of
the control system variables.
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The elements of the characteristic matrix and forcing function
vector are each formed symbolically (as explicit functions of
system parameters). Elements of [A(s)] are transformed into
FORTRAN card images of the form:

A(I;J;k) =

where | and J represent the row and column indices of the element
and k is an indicator of the degree in 's''. Card images defining
the elements of {F(s) are also gererated.

Before specifying the block diagram equations the user is allowed

to define other parameters. This can be dcne with FORTRAN arithmetic
statements and may use standard library functions such as the square
root or sine. Single or double argument table look-ups are also
available. The parameters so calculated can form coefficlents cf
the block diagram transfer functions.

Some complex systems are not easily expressed in the block diagram
input language. For these cases, the user may elect to specify
the elements of [A(s)] directly. A third input option is the
state variable form:

5. [ae)] - fs0] - [a1]]

where [I] represents the identity matrix.

To define a state varlable system, orly the A' matrix elements must
be Input. Special time response techniques discussed later are
avallable for a system defined in this form.

The set of card Images comprising the system definition forms the

body of a FORTRAN subroutine. The program detects all variable

names employed by the user and necessary statements such as

SUBROUTINE ..., COMMON, RETURN, etc., are automatically formed.

A second subroutine is also gererated to define the elements In

the forcing function and initial conditions vectors. The final results
are subroutines which can be called to evaluate [A(s)] or {F(s) and
{x;(0) for various user parameter values.

After specifying the system definition the user may select any of

the four currertly available analysis options: Frequency Response,
Root Locus, Time Response, or Gain Boundary. Each option is discussed
separately In the sections to follow.



Frequency Response

In general, any control system may be described in the following
form for the purpose of analyzing the margins of stability for any
specified galn parameter 'k'':

G(s)

1

H(s)

Fig. 2

The system appears to have just one loop, although many others may

be Implicitly contained in the transfer functions G(s) and H(s).
Stabllity analysis for the gain "k'' may be accomplished by ''opening'
the ""k'"" loop end studying the frequency response of the transfer
function G(s)H(s):

G(s) -

Fig. 3

The analysls performed corresponds to applying a unit sine wave signal
source at point ''a'' and measuring the magnitude and phase of the
resulting signal at point ''"b' as the frequency of the source is

varied over a range of Interest.

This analysis can be obtained directly from the characteristic matrix
equation. The system loop which is to be opened is specified to the
program by a control card which states the variable name, 'k, for
the gain parameter within that loop.

The homogeneous characteristic equation is:

L. [A(s)] {x(s) = {o



or, equlivalently:
5. |A(s)] = Q(s) + kP(s) =0

where Q(s) represents that portion of the characteristic polynomial
which is Independent of the gain 'k'" and P(s) represents the char-
acteristic polynomial coefficient of the gain "'k,

The open-loop frequency response for loop "k'' Is:

P(s l |A(5) lk=1 - |A(5) ‘k=0

6. F(jml) ~ s s=jw, =

]A(s)|k=0 s=jo,

where j represents the complex operator V-1 and w; the frequency
in radians/sec.

Equation 6. is implemented by direct calculation of the eigenvalues
for both denominator and numerator (open-loop poles and zeros for

gain '"k"). This is accomplished by manipulation of [A(s)] to

yield matrix equivalents for Q(s) and P(s). These poles and zeros
provide valuable information toward a clear understanding of frequency
response results.

The user may specify only a frequency maximum and minimum and the
program will generate a frequency array composed of evenly-spaced
points on a logarithmic scale. Additioral points are also generated
around points of rapid change in the response magnitude. These can be
predicted by examination of the open-loop poles and zeros for each
case. Corjugate roots very near the imaginary axis in the s-plane are
detected and appropriate frequency values calculated.

Plotting in the Frequency Response option consists of any combination of:
1) Bode Plots (response magnitude in db. and phase angle vs. log fre-
quency) , 2) Nichols Plots (response magnitude in db. vs. phase angle),
or 3) ?yquist Plots (response magnitude vs. phase angle in polar coord-
Irates).

Root Locus

Root loci for the closed loop system may be obtained by evaluating eigen-
values of the characteristic equation:

7. |A(s)] =0



as any desired system parameter (e.g., "k'') is varlied over a range of
values. In most practical cases the characteristic equation is equiva-
lent to the form:

8. Q(s) + kP(s) =0

where P(s) and Q(s) are independent of the parameter ''k''.

Q(s) and P(s) represent the polynomial expansions of open-loop poles
and zeros of the system. The method used tc calculate open-loop
eigenvalues in the Frequency Response option may also be used in

Root Locus. The calculated eigenvalues are expanded to polynomial
form to yield Q(s) and P(s). The root locus equation &. is then
solved repeatedly for various values of k' using polynomial root-
finding techniques. Identical results can be obtained by finding the
eigenvalues of the characteristic determinant (equation 7.) evaluated
for the same values of 'k''. This method is available as an option
but is seldom used due to run time considerations. Plots made by the
Root Locus option consist of large X's denoting system poles, large O's
for zeros of P(s), and small boxes denoting points of the loci.

Gain Boundary

Gain Boundary is a technique for determining stability ranges for two
loop gains in a multi-loop system. This technique defines a closed
reglon of values for two gains wherein stable system operation is
assured (provided all other system parameters are maintained at
constant value).

For any specified operating frequency It may be pcssible to calculate
one or more sets of values for the two selected gain parameters such
that the Frequency Response for both locps is at the boundary between
stable and unstable operation (phase angle = 180°). The curve of
such points for a specified range of frequency values defines the
boundary between stable and unstable operating regions. One closed
region of stable operation may be defined by this curve.

As the program is Implemented, the characteristic equation Is assumed
to be:

9. Ql(s) + k1 Qz(s) + k, Pl(s) + Ky k2 Pz(s) =0

as an expliclt function of “kl” and ”kz“, gain parameters for the
two loops of Interest.



Two simultaneous equations in kj and ky can be found by letting s = jw
and separating real and imaginary components. Solutlon of these equations
for ki and ky Is then performed for varlous values of w. A set of gain
values defining a bounded area is produced. For P,(s) non-zero the
equations become quadratic and two solutions for k; and k, are found.

Plotted output is shown in the example problems. The four quadrants

on the plot represent different configurations cf sign for the loop
feed-back. These plots thus signify if a different choice of sign

for the feedback element would be more desirable in terms of gain margin.

Time Response

Two methods are available to calculate the time response of varlables
within the control system. The first method is used for systems
defined using the block diagram input language. Time histories of the
variables in continuous, linear systems can be found from:

10.  [A(s)]{x; = {F(s)
where [A(s)] represents the system characteristic matrix

{x,
{F (s)

vector of system variables

1l

vector of the Laplace transformations of system forcing
functions.

Inverse Laplace transformation by partial fraction expansion is used.
The denominator elfgenvalues are calculated initially. Partial fraction
expanslon can be accomplished without finding the numerator eigenvalues
which results in a considerable savings in machine time. The numerator
Is formed by a Cramer's Rule column substitution.

A second method may be used if the system Is described by the state
variable form input option. An advantage of this method is the capa-
bility for introducing system non-linearities. A solution to the
following system of simultaneous time-domain differential equations
(which correspond directly to the Transfer Function equations discussed
earlier) is calculated:

11. {[A] - s[l]}{xi = {F(s)

or

12. {xi = [A1] {xi + {f(t,Xi,XI)
and initial conditions {Xi(0+) .



The f(t,X,,X,) vector may contaln any non-linearities desired. Numerical
integration by variable-step Runge Kutta methods is used to solve the
set of simultaneous equations.

Example Problems

The control system [llustrated in Fig. 1 was chosen as the first example
problem.

Open-loop frequency response for only the inner locp is obtained by
setting gain k] to zero and opening the loop at kg. This results

in the transfer function Gl*Hl from the block diagram. Results from
this analysis are a Bode Plot with a magnitude of 1. for all frequencies
and the correspording Bode phase plot shown in Fig. 4.

Root locus results for the gain k] with kg = 0 are shown in Fig. 5. The
root locus equation solved is:

(s+1) (s+2) + kl(s-l)(s-z) =0

Flg. 6 shows the gain boundary option results for the two gains in the
system. The figure is composed of four quadrants, each plotting the
magnitude of k; against the magnitude of k, In db. This allows user
visibllity of the gain boundary results, even though wide excursions
in functional value may cccur. It does, however, cause plot discon=-
tinulties when k; = 0 or kp = 0. The stable operating region is in
the closed area enclosing the origin.

Fig. 7 shows the time response for variable ''C'"' to a step input with

gains ky and kp both set to unity. The stable response shown can be

verified by observing that the point (kj = 1, kp, = 1) lies within the
stable region in Fig. 6.

The second example problem illustrated in Figures 8 and 9 represents a
basic autopilot with two bending modes and aerodynamic coupling. Fig-
ures 10-13 show the plotted Frequency Respcnse results for the KTHETA
loop. The parameters OMEGAl and OMEGA2 represent the two lightly-damped
structural bending modes which cause the spikes in Figure 10,

Figure 14 represents the root loci as a function of the gain KTHETA.

The origin is expanded in Flgure 15 to show break-away points and low-
frequency axis crossings.
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The shaded portion of Flgure 16 shows the region of stability for
the two gains KTHETA and KTHDOT. This region lies wholly in the
flrst quadrant which shows that only certain positive gain values
can produce a stable system.

The time response results shown in Figure 17 are for the variable
PSI1 with a step Input for variable DELCOM.

Summary

The MDELTA program provides the capability for comprehensive analysis
of control systems. The ease and flexibility of usage have resulted
in wide acceptance by control systems engineers. For one Boeing
missile contract alone, it is estimated that $250,000 was saved in
the control systems design activity without including the probable
savings which may result during the flight test program.

The heart of the program Is the eigenvalue routine which is required
in every analysis option. This routine has consistently proven successful
in cases involving more than 60 complex eigenvalues.

MDELTA Is coded entirely in FORTRAN IV for operation on the SRU 1108
Exec 11 and the CDC 6600. Current development is directed toward
sampled data system analysis with options paralleling those provided
for continuous analog systems. Preliminary versions of these sampled
data options have been in use for the past several months.
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BLOCK DIAGRAM EQUATIONS

DELTAC = DELCOM + KFL % THETAT + THETAT * XF2
DELTA = DELTAC * SERVO

PSI1 = BBl * DELTA

P3I2 = BB2 * DELTA

THETAT = PSI1 ¥ Pl + PSI2 % P2 + THETA * UNITY

ALPHA = A2 ¥ Z + Al % THETA
THETA = - T1 * ALPHA + T2 * PSI1 + T3 * PSI2 - Ty % DELTA
Z = - ALPHA * D1 + THETA * D2 + D3 * P3IL + P3I2 % D4 - DELTA * D5

TRANSFER FUNCIIONS

KF1 = KTHDOT * 8

KF2 = XTHETA

SERVO = OMEGAS**2 // S¥¥2 + 2. * ZETAS * OMEGAS * S + OMEGAS**2

BBL = 1. / MASS1 * {HBAR * MASSN * PHIE - IN * PHIPE) * S%¥2 + T *

PH1Z / MASSL // 8%¥2 + 2. % ZETA1l * OMEGAL * 5 + OMEGAL**2

1. / MASS2 % (NBAR * MASSN * PHOE - IN * PH2PE) % S¥%2 + T %

PHOE / MASS2 // S*¥2 + 2. * ZETA2 * OMEGA2 * 5 + OMEJA2*X

P1 = PHIPK

P2 = PH2PX

UNITY = 1.

A2 =8 // 0175 * U

Al = 8 * (XCG - XCP) // .0175 * U

TL = Q * ARSA ¥ CNAL * (XCG - XCP) / I // s¥x2

T2 =T / I % (PHIPE * (XCG - XB) - PHAE) // S¥*x

T3 =T / I * (PH2PE * (XCG - XE) - PH2E) // s5%%2

Th = 1. / I * (WBAR * MASSN * (XCG -~ XE) + IN)*S*¥*¥ + T / I *
(XCG - XB) /] s**2

Dl = Q * AREA * CNA1 / MA3SS // s%x2

D2 = U * 3 - G * SIN(THETAO / 57.3) // S*%

D3 = T * PHIPE / MASS // 8%x%2

Dh = T * PH2PE / MASS // s*%2

D5 = NBAR * MASSN / MASS *'S¥#2 + T / MASS // s%%

FORCING FUNCTIONS

DELCOM = 1. // 8

END

li

[t}

Figure 9
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