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MDELTA - A Digital Program for Control System Analysis 

Introduction 

Design and analysis of high-order control systems requires a great 
deal of laborious calculations. Stability analyses are usually 
conducted with standard techniques such as root locus or frequency 
response. The calculations involved in these analyses are generally 
too complex to do by hand. Graphical techniques and approximations 
may be used~ but often introduce unacceptably large errors. 

The advent of modern digital computers led to the development of a 
great many programs to perform stability analysis. Generally~ these 
programs were designed to perform one specific analysis using a single 
technique such as root locus. Such programs seldom shared common input 
formats~ making multiple analyses difficult. Program input was often 
in the form of polynomial coefficients of the system's transfer function. 
The determination of these coefficients was difficult~ for all but the 
most simple controi systems. 

The inconvenience of such programs demonstrated the need for a more 
flexible analysis tool. To provide general usefulness a new program 
would require a more basic input scheme. The input language should 
have the flexibility to a11ow concise descriptions of both large and 
small systems. In additions it would be desirable for more than one 
analysis technique to be available in a single computer run. To reduce 
input errors~ the program should use self-explanatory control cards. 
A complete plotting capability would also be essential. 

The MCELTA program was designed to satisfy all of the above requirements. 
New features are still being included after three years of successful 
usage in Boeing aerospace projects. The major analytical techniques 
used within the program are outlined below. 

Proqram Description 

The configuration of the control system to be analyzed is defined to 
the program usin~ a block diagram input language. An example for a 
small system is shown below. 
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BLOCK DIAGRAM EQUATIONS 
EPS= I -H i*C-H2*D 
C=GI*EPS 
D=C*G2 
TRANSFER FUNCTIONS 
GI=S- i . / /S+I .  
G2=S-2 .//S+2. 
HI=K2 
H2=K i 
FORC ING FUNCTIONS 
I=- i  . / /S 
END 

As seen above~ the user has chosen v a r i a b l e  names f o r  the va r i ab l es  
in the b lock  diagram~ i . e .~  

k I '-, KI 

k 2 "-- K2 

,-- EPS 

The v a r i a b l e  name "S" is reserved to  represent  the Laplace t rans fo rm 
o p e r a t o r ,  Double s lashes i n d l c a t e  sepa ra t i on  between numerator and 
denomlnator po lynomla ls  In s f o r  Laplace t rans forms and t r a n s f e r  
f u n c t i o n s .  
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The MDELTA program accepts the above control system description and 
automatically generates Laplace transform equations in matrix form. 
The equations are written so that each matrix element is a proper 
polynomial function of s. A two-step derivation i11ustrates the 
process for the above example system: 

I .  

1 K2 KI 

s - I  i 0 
s+l 

s-2 
0 1 

s+2 

EPS 

C = 

D 

( _ !  
S 

Thls i n i t l a l  form of the mat r i x  equat ion is somewhat cumbersome to 
process~ so the program w r l t e s  the nonhomogeneous equat ion in the 
f o l l o w i n g  modi f ied form, c l ea r i ng  each row of denomlnator polynomlals 
in s: 

. 

s K2*s K l*s 

-s+ 1. s+ 1. 0 

0 -s+2. s+2. 

EPS 

C 

D 

-I. 

0 

0 

o r  

where [A (s) ]  

{x(s) 

[A(s)] Ix(s)  : t (s) 

Is the system characteristic matrlx~ elements of which 
are functions of the control system parameters and 
proper polynomlal functions of s. 

is the vector  of Laplace t ransforms of the c o n t r o l  system 
var lab les  (dlsplacements~ voltages~ torques~ e t c . ) .  

Is the vector  of  Laplace t ransform terms independent of 
the con t ro ]  system va r l ab les .  
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The elements of the characteristic matrix and forcing function 
vector are each formed symbolically (as explicit functions of 
system parameters). Elements of [A(s)] are transformed Into 
FORTRAN card images of the form: 

A(I , j  ,k) = 

where i and j represent the row and column indices of the element 
and k is an indicator of the degree in "s". Card images defining 
the elements of IF(s) are also generated. 

Before specifying the block diagram equations the user is allowed 
to define other parameters. Thls can be done with FORTRAN arithmetic 
statements and may use standard library functions such as the square 
root or sine. Srngle or double argument table look-ups are also 
available. The parameters so calculated can form coefficients cf 
the block diagram transfer functions. 

Some complex systems are not eas i l y  expressed in the b lock diagram 
input language. For these cases~ the user may e lec t  to spec i fy  
the elements of [A(s)] directly. A third input o~tlon is the 
state variable form: 

3. [A(s)] = Is[l] -[A']i 

where [I] represents the identity matrix. 

To def ine  a s ta te  va r l ab le  system~ only the A' mat r i x  elements must 
be input .  Special  t ime response techniques discussed l a te r  are 
ava i l ab le  f o r  a system def ined in t h i s  form. 

The set of card images comprising the system definition forms the 
body of a FORTRAN subroutine. The program detects all variable 
names employed by the user and necessary statements such as 
SUBROUTINE ...~ COMMONs RETURN~ etc.~ are automatically formed. 
A second subroutine is also generated to define the elements in 
the forcing function and initial conditions vectors. The final results 
are subroutines which can be called to evaluate [A(s)] or IF(s) and 
Ixi(O) for various user parameter values. 

After specifying the system definition the user may select any of 
the four currertly available analysis options: Frequency Response~ 
Root Locus~ Time Responses or Galn Boundary. Each option is discussed 
separately in the sections to follow. 
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Frequency Response 

In general~ any control system may be described in the following 
form for the purpose of analyzing the margins of stability for any 
specified galn parameter "k": 

~ G (s) I 

Fig. 2 

The system appears to have just one loop~ although many others may 
be Impilcltly contained in the transfer functions G(s) and H(s). 
Stability analysis for the gain "k" may be accomplished by "opening" 
the "k" loop end studying the frequency response of the transfer 
function G(s)H(s): 

-- - ~ - - - - O  
a b 

Flg. 3 

The analysls performed corresponds to applying a uni t  sine wave signal 
source at point "a" and measuring the magnitude and phase of the 
resu l t ing  signal at point "b" as the frequency of the source is 
varied over a range of In terest .  

This analysis can be obtained directly from the characteristic matrix 
equation. The system loop which is to be opened is specified to the 
program by a control card which states the varlable names "k"~ for 
the gain parameter within that loop. 

The homogeneous characteristic equation is: 

4. [A(s)] IX(s) = IO 
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or~ equivalently: 

5. IA(s) t = Q.(s) + k P ( s )  = 0 

where Q(s) represents that portion of the characteristic polynomial 
which is Independent of the gain "k" and P(s) represents the char- 
acteristic polynomial coefficient of the gain "k". 

The open-loop frequency response for loop "k" Is: 

. ~(~S s "~" F(JcDi ) = P s is=jcD l 
IA(S) lk= 1 - IA(s) ik=01 

i I s=jco i 

where j represents the complex operator ~-I and ~. the frequency 
in radians/sec, i 

Equation 6. is implemented by direct calculation of the eigenvalues 
for both denominator and numerator (open-loop poles and zeros for 
galn "k"). Thls is accomplished by manipulation of [A(s~ to 
yield matrix equiva]ents for Q(s) and P(s). These poles and zeros 
provide valuable information toward a clear understanding of frequency 
response results. 

The user may specify only a frequency maximum and minimum and the 
program will generate a frequency array composed of evenly-spaced 
points on a 1ogarlthmic scale. Additio#al points are also generated 
around points of rapid change in the response magnitude. These can be 
predicted by examination of the open-loop poles and zeros for each 
case. Conjugate roots very near the Imaginary axls in the s-plane are 
detected and appropriate frequency values calculated. 

Plottlng in the Frequency Response option consists of any combination of: 
I) Bode Plots (response magnitude in db. and phase angle vs. 1o 9 fre- 
quency)~ 2) Nichols Plots (response magnitude in db. vs. phase angle)~ 
or 3) Nyquist Plots (response magnitude vs. phase angle in polar coord- 
irates). 

Root Locus 

Root 1ocl for the closed loop system may be obtained by evaluatlng elgen- 
values of the characteristic equation: 

7 .  I A ( s )  I = 0 
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as any desired system parameter (e.g.~ "k") Is varied over a range of 
values. In most practical cases the characteristic equation is equiva- 
lent to the form: 

8. Q(s) + k P(s) = 0 

where P(s) and Q(s) are Independent of the parameter "k". 

Q(s) and P(s) represent the polynomial expansions of open-loop poles 
and zeros of the system. The method used to calculate open-loop 
eigenvalues in the Frequency Response option may also be used in 
Root Locus. The calculated eigenvalues are expanded to polynomial 
form to yield Q(s) and P(s). The root locus equation 8. is then 
solved repeatedly for various values of "k" using polynomial root- 
finding techniques. Identical results can be obtained by finding the 
eigenvalues of the characteristic determinant (equation 7.) evaluated 
for the same values of "k". This method Is available as an option 
but is se]dom used due to run time considerations. Plots made by the 
Root Locus option consist of large X's denoting system poles~ large O's 
for zeros of P(s), and small boxes denoting points of the Iocl. 

G_ain Boundary 

Gain Boundary Is a technique for determining stabillty ranges for two 
loop gains in a multl-loop system. This technique defines a closed 
region of values for two gains wherein stable system operation is 
assured (provided all other system parameters are maintained at 
constant value). 

For any specified operating frequency it may be pcssible to calculate 
one or more sets of values for the two selected gain parameters such 
that the Frequency Response for both locps is at the boundary between 
stable and unstable operation (phase angle = 180°). The curve of 
such points for a specified range of frequency values defines the 
boundary between stable and unstable operating regions. One closed 
region of stable operation may be defined by thls curve. 

As the program is Implemented~ the characteristic equation Is assumed 
to be: 

9. Q1(s) + k I Q2(s) + k 2 Pl(S) + k I k 2 P2(s) = 0 

as an e x p l l c l t  funct ion of "k1" and "k2"~ galn parameters for  the 
two loops of in te res t .  

9-7 



Two simultaneous equations in k I and k 2 can be found by letting s = j~ 
and separating real and imaginary components. Solutlon of these equations 
for k I and k 2 Is then performed for various values of m. A set of gain 
values defining a bounded area is produced. For P2(s) non-zero the 
equations become quadratic and two solutions for k I and k 2 are found. 

Plotted output is shown in the example problems. The four quadrants 
on the plot represent different configurations of sign for the loop 
feed-back. These plots thus slgnFfy if a different choice of sign 
for the feedback element would be more desirable in terms of gain margin. 

Time Response 

Two methods are available to calculate the tlme response of variables 
within the control system. The first method is used for systems 
defined using the block diagram input language. Time histories of the 
variables in contlnuous~ linear systems can be found from: 

10. [A(s)] IX[ = IF(s) 

where [A(s)] represents the system characteristic matrix 

X i = vector of system variables 

IF(s) = vector of the Laplace transformations of system forcing 
functions. 

Inverse Laplace transformation by partial fraction expansion is used. 
The denominator elgenvalues are calculated initially. Partial fraction 
expansion car, be accomplished without finding the numerator eigenvalues 
which results in a considerable savings in machine time. The numerator 
is formed by a Cromer's Rule column substitution. 

A second method may be used if the system is described by the state 
variable form input option. An advantage of this method is the capa- 
bility for introducing system non-llnearities. A solution to the 
following system of simultaneous tlme-domaln differentia] equations 
(which correspond directly to the Transfer Function equations discussed 
earlier) is calculated: 

I i .  {EA] -  sei]} lx I = (F(s) 
or  

, 2 .  EA'3 Ixi+ 
and i n i t i a l  c o n d i t i o n s  t ~x l (O+) I 
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The f(t~X.~X.) vector may contain any non-linearlties desired. Numerical 
• I I 
integration By variable-step Runge Kutta methods is used to solve the 
set of simultaneous equations. 

Example Prob lems  

The control system Illustrated in Flg. l was chosen as the first example 
problem. 

Open-loop frequency response for only the inner loop is obtained by 
setting gain kl to zero and opening the loop at k 2. This results 
in the transfer function GI*HI from the block diagram. Results from 
this analysis are a Bode Plot with a magnitude of i. for all frequencies 
and the corresponding Bode phase plot shown in Fig. 4. 

Root locus results for the gain k I with k 2 = 0 are shown in Fig~ 5. The 
root locus equation solved is: 

(s+l) (s+2) + kl(S-i ) (s-2) = 0 

Fig. 6 shows the gain boundary option results for the two gains in the 
system. The figure is composed of four quadrants~ each plotting the 
magnitude of k I against the magnitude of k 2 in db. This allows user 
visibility of the gain boundary results~ even though wide excursions 
in functional value may cccur. It does~ however~ cause plot discon- 
tinuities when k I = 0 or k 2 = O. The stable operating region Is in 
the closed area enclosing the origin. 

Fig. 7 shows the time response for variable "C" to a step input wlth 
gains k I and k 2 both set to unity. The stable response shown can be 
verified by observing that the point (k I = I~ k 2 = I) lies within the 
stable region in Fig. 6. 

The second example problem illustrated in Figures 8 and 9 represents a 
basic autopilot with two bending modes and aerodynamic coupling. Fig- 
ures 10-13 show the plotted Frequency Response results for the KTHETA 
loop. The parameters OMEGAI and OMEGA2 represent the two lightly-damped 
structural bending modes which cause the spikes in Figure i0. 

Figure 14 represents the root loci as a function of the gain KTHETA. 
The origin is expanded in Figure 15 to show break-away points and low- 
frequency axis crossings. 
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The shaded por t ion of Figure 16 shows the region of s t a b l I i t y  for  
the two gains KTHETA and KTHDOT. Thls reglon l ies wholly in the 
f i r s t  quadrant which shows that only cer ta in  pos i t i ve  gain values 
can produce a stable system. 

The tlme response resul ts  shown in Figure 17 are for  the var iable 
PSII wl th a step Input for  var iab le DELCOM. 

Summary 

The MDELTA program provides the capab l l l t y  for  comprehensive analysls 
of cont ro l  systems. The ease and f l e x i b l l i t y  of usage have resulted 
in wide acceptance by cont ro l  systems englneers. For one Boeing 
mlss i le  contract  alone~ I t  is estimated that $250~000 was saved in 
the cont ro l  systems design a c t l v i t y  wi thout including the probable 
savlngs which may resu l t  during the f11ght test  program. 

The heart of the program Is the elgenvalue routine which is required 
in every analysls option. Thls routine has conslstently proven successful 
In cases involving more than 60 complex elgenvalues. 

MDELTA Is coded ent irely in FORTRAN IV for operation on the SRU 1108 
Exec II and the CDC 6600. Current development is directed toward 
sampled data system analysls wlth options parallel lng those provided 
for continuous analog systems. PreIImlnary versions of these sampled 
data options have been in use for the past several months. 
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, I ,,,,,,, , ,,,, , ,, 

BLOCK DIAGRAM EQUATIONS 

DELTAC = DELCDM + * TitETAT + TktETAT * KLT2 

DELTA = D~ZLTAC * SE:qVO 

PSIi = BBi * DELTA. 

PS!2 = BB2 * DELTA 

THETAT = PSii * Pi + PSI2 * P2 + THETA * UNITY 

ALPHA : A2 * Z ÷ A.I * Ti~TA 

Ti~TA = - Ti * ALPHA + T2 * PSIi I: T3 * PSI2 - T4 * DELTA 

Z = - ALPHA * Di + T}~TA * D2 + D3 * PS!i + PS!2 *D4 - DELTA * D5 

T~%NSFER FUNCTIONS 

KFi = KT~IDOT * S 

KF2 = KTHETA 

SERV0 : 0MEGAS*-m2 // S*'2 + 2. * ZETAS * OMEGAS * S + 0MEGAS*~2 

BB! : i. / MASSi * (NB~R * MASSN * PHiE - IN * PHi PE) * S*'2 ~ T * 

PHiE / MASSi // S*m2 + 2. * ZETAi * 0MECAi * S + 0MEGAi**2 

BB2 = i. / MASS2 * (NBAR * MASON * PH2E - IN * PH2PE) * S*~2 + T * 

P~2E / ~ss2// s*~ + 2. * ZETA2 * 0ME~A2 * S + 0~,m2"~2 

Pi = PH~LPK 

P2 = PH2PK 

UNITY = 1. 

A2 = S / /  .0175 * U 

A1 = S * (XCG - XCP) / /  .0~-75 * U 

Ti = Q * AREA * CNAi * (XCG - XCP) / I // S*'2 

T2 = T / I * (PHiPE * (XCG - XE) - PHAE) // S*-~ea 

T3 : T I z * (P1{sPS * (xco - ~) - P~zs) II s**2 

T4 = i. / I * (NBi~R * ~91SSN * (XCG - XE) + IN)*S*-~2 + T / I * 

(.~CG - x ~ )  / / s * ~  

D2 = U * S - C~ * SiN(THETAO / 57:3) // S*~ 

D3 = T * i~}t~s  1 r o s s  1 /  s*-~2 

D5 = ~ * ~ S N  ,/ ~ S S  * S ~ S  + T / MASS / /  S*~2 

DELCOM : 1.  1 /  S 

END 

Figure 9 
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