Check for
Updates

APPLICATION OF A SYNTAX DRIVER TO LOGIC
EQUATION PROCESSING AND DATA-CONTROL
CARD SCANNING

J. A, RADER

Design Automation Group
Hughes Aircraft Company
Culver City, California

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800167.805406&domain=pdf&date_stamp=1968-07-15

INTRODUCTION

This paper will describe the use of a syntax driver in writing a logic
equation compiler (LOGCOM). By such a compiler or processor we
mean a program which takes logic equations punched on cards and
converts them into a tabular form which subsequently is used by other
design automation programs. In the body of the paper it is assumed
that the reader possesses a casual familiarity with syntax., This
assumption is made mostly for organizational convenience and an
appendix discussing syntax is included at the end of the paper. My
terminology is summarized at the end of this appendix and the reader
familiar with syntax can check there to see if his terminology and
mine agree. Sample syntax applied to a specific problem is shown in
figure 3 and is discussed in Section 2.

SECTION 1

DESCRIPTION OF LOGIC COMPILER PROGRAM (LOGCOM)

The purpose of our logic equation processor (hereafter referred to as
LOGCOM) is really two-fold. First of all LOGCOM compiles logic
equations into a set of tables which are then used by the rest of the
programs in our Design Automation system. Secondly, it prints a
document called a logic release which lists the equations and allows
considerable flexibility for documentation purposes.

A brief description of this flexibility follows. The logic designer, by
placing the appropriate character in column one, can effect a single
spaced or double spaced line or eject to a new page. He can also specify
an entire line as a comment line with the same carriage control as for
an equation line. Comments can be placed on the same line as an
equation by pre ceeding them with a dash. Provision is also made for a
title and subtitle on each page and these can be changed at any point in
the listing, Page numbering is automatic and at the logic designer's
option can be started with an integer other than one. An equation can
be extended over numerous lines or two equations may be written on
one line, Just to the right of each card image appears an alter number
which is generated by the program. LOGCOM writes a tape containing
images of the cards each time it is run and this tape can be saved and
used as input in place of cards the next time the program is run. The
alter numbers mentioned above are provided for update or alter

21-1

purposes. Also available with the logic release are lists of signals
generated but not used, undefined signals plus a complete usage list
for each signal and an index of equation name versus alter number.

One last feature that need be mentioned is the ability to handle common
collector sequences. A string of signals separated by commas and
enclosed in parentheses is recognized as a common collector sequence
and is replaced by the generated signal, X,nnnn, where nnnn is an in-
teger unique to each distinct common collector sequence. An example
is included in figure one. The line with alter number zero is generated
by LOGCOM for the logic designer and shows the common collector
sequence replaced by its associated signal X.nnnn.

The reason for the use of syntax was the flexibility it allows in the
achievement of task one. However, task two is described because the
existence of task two complicates the achievement of task one as
equations written in relatively free format must be handled correctly
and large amounts of extraneous data must be ignored. Essentially,
an awareness of task two is an awareness of the environment in which
task one must be performed. '

The explicit role of the syntax in building the LOGCOM tables is to
construct simple equations from the equations as they are written by
the logic designer. A simple equation is a succession of six character
words consisting of a counter, an equation name and the terms which
appear on the right side of the equation with that name. (See Figure 2).
The counter specifies how many right side terms appear in the string.
A FORTRAN program then actually builds the LOGCOM tables from the
complete set of simple equations which are input to it. If any common
collectors were used by the logic designers, simple equations for the
generated common collector equations will be included in the complete
set of simple equations. The portion of the program which scans

cards and produces simple equations is called the scanner-processor,
and it along with the CONTROLS-processor are the portions of LOGCOM
which are syntax directed. The CONTROLS-processor reads a variety
of control cards, performs updates to the input tape (when selected)
and checks to see what options have been selected by the logic designer.
This CONTROLS section will be discussed later.

21-2

SAMPLE FEQUATLIONS FNR B A WNRKSHOP _06/12/68 PAGE

FASHIMGTOM, N0, - JHLY 1968

‘DATA AND CLOCK MATRIYX 98
BTRANL = SIDNNRO - NOT RESET AND HOLD DN MATRIX (EXTERNAL) 99
ND0OY1T = T.R001 % BROF/C - DATA RIT 01 ENAALED AT DAL 100
B3t T = HN212R & pn{34x &« NnDOLA # NPNOLC 101

2 NDNOLF = (MNCSN2A,MNC303A,NC304A,NC3027) 102
NDAGLF = X.0011 0
3.0902 = NDOOLF s SINURR 103

CONTROL LOSIC 104
JHOL/T = Cuhl,. JUn1/P = RED1/3 1065
JHOL1/KR = WWOL1/A s« NLO23P 106
NLONDT. '= BDA6LT = JW01/T7 = NI ODJA » NCOOLA CLEAR SELECT 107

108

FIGURE . 1 109

PARTIAL PAGE OF (.NGIrc FGQUATIONS AS WRITTEM 3Y A LOGIC NESIGNER 110
AND AS THEY APPFAP UN A 1O0pIC RELEASE 111
112

18TRANLISINORG 113
24031 TT 4001800 F /¢ 114
A3NEH1TAN212030134KNPNGLASDNRICNDONTIFX . 0011 115
23,0024 01FSINORR ' 116
tJubr/ccunt, ., 117
It L /PRNI1/3 ‘118
2JUE 1/ AMAN L/ ANLA23P 119
4NLOT1L.B0I6LTJIADI/THLOAULANCONTA 120
. 121

. 122

. 123
4XLONLLNCIU2ANCINIANCIYAANLROPT 124
T 125
- FIGUFE 2 - 126

SIHMPLE EOQUATIOCNS RUTLT FROM LORIN EOUATIONS TN FIGURE 1 127

21 -3

SECTION 2

SIMPLE EXAMPLE OF A SYNTAX-DIRECTED LOGIC EQUATION
SCANNER -PROCESSOR '

The first four lines of syntax in Figure 3 will scan and process logic
equations satisfying the following restrictions.

1) An equation consists of a three character equation name, followed
by an equals sign which is then followed by a string of three
character signal names which are separated by asterisks.

2) Each equation is terminated by the character @ which is reserved
for this purpose.

3) Blanks may not be imbedded in the signal names or equation name
but may occur anywhere else,

4) Comments are not permitted.
For sample equations obeying these rules see Figure 3.

The semantic routines used by these first four lines perform the
following tasks:

(INITIL) - performs initialization.
(WRAPUP) - terminates the scanner-processor and calls the table
building subroutine.
(SIGNAL) - builds a three character signal or equation name and
places it in the simple equation string.
(BLANK) - skips to next non-blank character continuing over more
than one card if necessary.
(OLDNEW) - writes simple equation out on disc or tape and resets
counters for next equation,

This syntax applied to the equations in Figure 3 will first call the
Semantic routine INITIL and then calls the line of syntax EQN. The
first term of EQN will then skip the blanks before ABC. SIGNAL will
read ABC and store it in the simple equation string, blanks will be
skipped and the equals sign will be recognized. Again blanks will be
skipped, NOW will be processed, blanks will be skipped and RSIDE
will be calleqd the character pointer at the first asterisk. RSIDE refers
to OP which will recognize the asterisk and then DOG will be read and
processed followed by recursion on RSIDE. Recursion will continue

21-4

LINES OF SYNTAX

) LINE = (INITIL), EQN, RPT, (WRAPUP)

(2) EQN = (BLANK), (SIGNAL), (BLANK), '=', (BLANK),
(SIGNAL), (BLANK), RSIDE, (OLDNEW), ENDFNC

(3) RSIDE = OP, (BLANK), (SIGNAL), (BLANK), RSIDE, OR,
'@', ENDFNC : :

(4) OP = %', ENDFNC

(3A) RSIDE = OP, (BLANK), (SIGNAL), (BLANK), RSIDE, OR, '@’,
OR, OP, (BLANK), OP, (TWOOP),
OR, (SIGNAL), (TWOSIG),
OR, OP, (BLANK), '@', (XTRAOP), ENDFNC

(4A) OP = %', OR, '+',0OR, ', ', ENDFNC

(4B) OP = %', OR, '+', (STUCLA),OR, ', ', ENDFNC

LOGIC EQUATIONS

ABC = NOW * DOG * NL3 * NL6 * NBA

* NFL. @ NL3= CAT*DXE@

ee

- FIGURE 3 -

21 -5

through the time NFL is read. The first term (OP) of RSIDE will

now compare @ with * and go FALSE, The second alternative of

RSIDE will recognize the @ and RSIDE will be TRUE., The syntax
pointer will return to the term RSIDE in EQN and be incremented

by one. OLDNEW will do its job and EQN will go TRUE., The

syntax pointer will return to the second term of LINE, be incremented
by one, and encounter the RPT. The pointer will be decremented one
and EQN will process the next equation. After the last equation has been
processed and EQN tries to process @@ it will be unable to do so and
will go FALSE. The RPT will now be skipped and WRAPUP will be
called terminating the scan. The @@ here served as an end of equations
mark. Future reference will be made to this example,

SECTION 3

IMPLEMENTATION OF SYNTAX DIRECTED SCANNER-PROCESSOR

Number and Extent of Semantic Routines - One decision that has to be
made by a programmer writing syntax is what extent should he break
down tasks - how extensive should any one semantic routine be. At
one extreme if we have a program DOIT, no matter how complicated,
it can be trivially implemented in syntax via the syntax line:

LINE = (DOIT). On the other hand hundreds or thousands of very
special semantic routines could be utilized. We decided to let syntax
do the job wherever possible, writing as many routines as need be.
Then for tasks where the character scanning power of syntax would not
be of value we decided to write semantic routines as large as necessary
to do the job. Hybrid semantic routines were then written

where two or more performed similar functions. The syntax was then
rewritten to use these hybrids thus reducing the number of semantic
routines.

This approach has worked well with the syntax currently calling about
seventy semantic routines. (This includes routines for the CONTROLS
processor not yet discussed.) The modularity implied by so many
routines has frequently proved valuable when changes have been made.
Negatively the effect on communication between routines in a related
set is sometimes overlooked when changes are made to one routine

in that set. This problem, however, has not proven to be serious.

21-6

PROBLEMS ENCOUNTERED

Two major problems were encountered while implementing our
scanner-processor. The first of these was related to a particular
convenience we allowed the logic designer. Normally some
convention is employed when scanning statements for compilation

or assembly to tell the scanner when the end of a statement has been
reached. For instance a special character such as @ or $ may be
required at the end of each statement. In FORTRAN column seventy
three acts as an end-of-statement mark unless column six of the

next card is non-blank. The first convention has the disadvantage

that it is very easy to omit the special character at the end of each
statement. The continuation character used by FORTRAN on
successive cards of a long statement can also be forgotton but the

fact that continuation cards are special makes such an omission less
likely. However, the FORTRAN convention precludes placing more
than one statement on a card. When the statements all begin in a
distinctive and uniform manner, however, the end of one statement
can be recognized by recognizing the beginning of the next. Since

logic equations at Hughes all begin with a six character name

followed possibly by blanks, and then an equals sign which is illegal

in any other context it is quite straight forward to recognize a new
statement. Thus, we are able to allow statements to extend over
several cards or to allow mare than one equation per card all without
the use of continuation characters or end of statement marks.
Unfortunately our first big problem arose when we tried to write syntax
to process logic equations in this manner. Each of our approaches
resulted in a recursion loop that required extensive stack sizes - on
the order of several thousand locations each. Moreover, our attempts
to combat this difficulty always seemed to hinge on forcing some end of
statement convention on the logic designers. In essence we were
recursing on each equation and for five thousand equations stack sizes
were unrealistic. Eventually we resolved our difficulty by short-
circuiting the stacks when recursion takes place on one line of syntax.
If a term is the name of the line of syntax in which it occurs, then
when the syntax pointer gets to this term the syntax pointer is set to
point to the first term in the line of syntax as always but if the last
entry in the stacks was also for recursion at this point this last entry
will be replaced by the current pointers. Hence the number-of entries
in the stacks will not increase and no information is lost in the syntax
pointer stack. This is because the last entry in the stack is identical
with the current syntax pointer. For some applications the information

21-7

lost in the character pointer stack would create errors but for our
application no error was introduced. As a result we now live
harmoniously with pointer stacks accomodating only sixteen entries.

The second major problem we encountered was that of effective

error flagging. Once we had solved our first problem, writing syntax to
process error-free logic equations was relatively easy. In this context
error-free means free from grammatical errors rather than free from
logical errors. To be of maximum use to the logic designer the

scanner -processor should do two things when it encounters an error.

It should write a dianostic indicating the error and then it should skip

the bad data continuing to look for errors in the remainder of the
equations. Unfortunately it is a feature of syntax that unless the syntax
has been written in such a manner as to anticipate the error, catastrophe
results. Generally the syntax pointer will get lost and depending on the
number and nature of checks in the syntax for other errors it may or may
not ever find its way to a familiar spot. If it does the location and the
nature of the error will likely be unclear. If it does not the attention of
someone familiar with the syntax is then required and he may require
several subsequent debug runs to find the error. Events of this type

are received by a logic designer in a decidedly poor manner - especially
if they occur more often than very infrequently. Consequently when
writing syntax‘we try to anticipate errors a logic designer might make
and then write the syntax so that these common errors will be recognized.
Then the scanner-processor is able to issue a very explicit diagnostic
and to set flags which the syntax can use to skip the error-containing
equation. To illustrate consider again the example of Figure 3. Should
an equation be written

NBA = NFL*CAB**BL3 @

when it is scanned RSIDE will go FALSE when it hits the two successive
asterisks and hence EQN would be FALSE, Therefore the WRAPUP
routine will be called terminating the scan. If on the other hand line of
syntax (3) is replaced by line of syntax (3A) the error will be caught by
alternative three of RSIDE and the semantic routine TWOOP can write
a diagnostic pinpointing the error. Also TWOOP can put the character
counter one past the next @ and return TRUE allowing the scan to
continue with the next equation. Similarly, alternative four will
recognize the error condition two signals in a row without a separating
delimiter

NBA =NFL CAB @

21-8

and alternative five will recognize the condition that an extraneous
delimeter appears after the last term

NBA=NFL * CAB * @

This alteration will of course not allow all errors to be recognized -
the following would still abort the scan

NBA =NFL *CAB @ @

Still a significant improvement has been made and further modification
could be made to handle this error as well, Clearly, however, as more
complicated logic equations are allowed it becomes less possible and less
desirable to handle all errors so cleanly. Therefore, in addition to
explicit error traps set to catch particular errors our syntax is
sprinkled with general error traps so that at least when an error is
encountered, for which there is no explicit test, positive action can

be taken. The scan can be prevented from aborting and a diagnostic
telling approximately where the error occured can be written, The
nature of the error will then have to be determined by logic designer
inspection,

Changes to Syntax

Once our two major problems had been disposed of we found the use
of syntax valuable. For instance a change in our approach to handling
operators was very easily implemented by a simple change in the
syntax and the addition of one short semantic subroutine. We had
decided initially that we would not distinguish between the various
operators (asterisk, plus, comma) when compiling the tables output
by LOGCOM and hence had written the line of syntax

OP ='#', OR, '+', OR, ',', ENDFNC (line 4A Figure 3)

whose purpose was merely to see whether a legal operator appeared
where one was expected. We felt that the logic designer could attach
significance to those as his fancy dictated and we would treat them all
the same - merely as delimeters. When it became necessary to
actually distinguish plus (4) from the others the line of syntax above
was rewritten as

OP = '#', OR, '+', (STUCLA), OR, ',', ENDFNC (line 4B
Figure 3)

21-9

where the routine, STUCLA, inserts in the simple equation string the
distinctive character string +UCLA+. This insertion is between the
two terms separated by plus in the original equation. The equation

NFO01/J = NFOl/A * BF0z/A + NF01/B
originally translated as
3 NFbl/JNFOl/A BF02/ANFO01/B
is now translated as
3NFO01/INFO0l/ABF02/A+UCLA+NFO0l/B
This change was therefore, very easy to implement by making a simple
change in the syntax. It should be mentioned that the insertion of

+UCLA+ in the simple equation was a solution very readily handled by
the table building subroutine.

SECTION 4

CONTROLS PROCESSOR

In addition to logic equations LOGCOM has numerous other inputs. All

of those are read and processed by lines of syntax. These inputs fall

into five categories known to LOGCOM as ALTERS (update), NAMECHANGE,
TYPE, DEBUG and OPTIONS, A card is recognized as to category by
which of the characters A, N, T, D or Oit has in column 1. For
instance, A indicates ALTERS, N indicates NAMECHANGE, etc. These
control cards can be mixed together in any order except for the one
restriction that all of the ALTER cards must be together. This
restriction is necessary because it is desirable to process all of the
ALTER's at one time.. For the other categories, however, the cards

are scanned and tables are built directed by syntax. Of these four,

only the OPTIONS card will be discussed, although examples of the others
are shown in Figure 4 to indicate the different formats,

Once the Oin column one, signifying an OPTIONS card, has been
recognized the scanner skips six characters so the full word OPTIONS
may be written if desired. (Similar conventions exist for the other
CONTROLS categories). It then scans the card looking for options

21-10

OPTIONS

NAME

OPTIONS

ALTER

ALTER

BAO5SDC

END ALTER

TYPE-N

TYPE-F

OPTIONS

NAME

—

CONTROL CARDS

NO MASTER , LOGIC RELEASE
JT15/1 = FT15/1
INDEX, NPINS=16
77,79
112,112

NB15CC - ENABLE

NO.OUT @ C=1l , D=2 @

F=1 , T=2 @ C=1,D=2,P=3,S=4 @

NO MERGED USED ON

JT14/1=F T14/1

- FIGURE 4 -

21 -11

separated by commas. These options are written either in the
form INDEX (NO INDEX) or NBOXES = 26. To each valid

option corresponds a location in a status table when the status

of each option is kept. For options that are either on or off, one
and zero are used respectively to denote these states. For
NBOXES = 26 the value 26 would actually be placed in the
corresponding position in the table,

Syntax lends itself to this usage very well since the letters which
spell an option such as INDEX can be recognized, in order, using
literals. Then a simple semantic routine can set the correct
core location to one -

'T,'N', 'D', 'E', 'X!, (SETONE)
Similarly
'N', 'O, (BLANK), 'I', 'N', 'D', 'E', 'X', (SETZRO)

can set the correct core location to zero. Finally NBOXES = 26 can be
handled

'N','B', 'O, 'X'", 'E', 'S, (BLANK), '=', (BLANK), (SETINT)
where SETINT reads the 26, converts it to binary, and stores it.

A not immediately obvious advantage of such a method is the ability to
define standard options. Standard values for each option can be internal
data - assembled into the status table - and these values will be used
unless changed by the contents of some OPTIONS card. This is
convenient as usually the user only wishes to specify a few non-standard
options. He can in fact elect all standard options and include no OP TIONS
at all,

Moreover control cards in the other categories need only be present if
information belonging to that category is to be read. Thus the user can
obtain an index and set NPINS to 16 by just including data card three of
Figure 4 anywhere in his data deck. This is considerably more
convenient than placing a one in column twenty of data card two and sixteen
in columns five and six of data card three. The non-standard options
selected and the values set are clear from the data and the user need not
worry about including dummy cards for sections of data he does not need
to input. For instance in LOGCOM if he does not have NAME CHANGE
data he does not have to include dummy data to tell LOGCOM no such data
will be input this run. Also as indicated above the control cards are kept

21-12

together and in order.

As additonal options have been added to LOGCOM changing the

syntax to handle them has been for the most part mechanical. This
feature combined with the other advantages described has made the
OPTIONS card a desirable feature for use by the other programs in

our system. To date only one other program now possesses this
capability but we expect to extend it to other programs as time permits.

SECTION 5

PROPOSED CHANGE TO LOGCOM

Logic designers at Hughes are currently writing equations for many
circuits which are not satisfactorily represented by one AND-OR
(NAND-NOR) equation, Flip-flops and adders are two such examples,
and large scale integrated circuits can certainly be expected to be
another. Our solution is to write several equations for such a circuit,
For instance one equation will be written for each of the inputs of a
flip-flop (clock, set, etc) or for each stage of an adder. In order

to be handled by our partitioning program, however, these equations
must satisfy nomenclature conventions which allow different equations
describing the same circuit to be so recognized. An alternate procedure
suggested by the Hughes logic design area is to write for these circuits
pin-oriented equations. More specifically the right side of such an
equation should consist of special terms separated by commas. A
special term is a signal name enclosed in parentheses which is followed
by a pin name. A sample equation would be:

MD32T. = (AF061T)B, (AF061S)C, (NLO062T)E

If a one to one correspondence is established between pin names and
positions in the simple equation string, the pin information will be
present in the simple equation. The scanner-processor of LOGCOM
reading the special term (AF061S)C would have to recognize the C and
insert AF061S in the proper place in the simple equation. Moreover,
when a pin is not used the corresponding positions on the simple
equation would have to be left blank. The simple equation for the
equation MD32T might then be:

4MD32T.AF061TAF061S NLO062T

21-13

Changing the syntax so that it will also process equations of this
type is not expected to be difficult and much of this work has
already been done. At this point we are mostly waiting for
clearer definition before we write and debug the remainder of the
semantic routines.

SECTION 6

SUMMARY

To date our experiences with syntax have been gratifying. It has

been effective both in the scanner-processor and CONTROLS sections
of LOGCOM. The use of the OPTIONS card has been extended to
another program and in the future its use should be extended to several
more. In addition it has been proposed that syntax be written toread
all or most of the data in other D A programs.

We have also written a syntax-directed program which resequences

the external formula numbers in a FORTRAN deck. This resequencing
is frequently useful for large decks. For us then syntax has been, and
continues to be, a helpful and versatile tool.

21-14

APPENDIX A

BRIEF DESCRIPTION OF SYNTAX

Syntax is essentially a language whose major application is scanning
and operating on character strings. A line of syntax is an

instruction in this language which determines what actions will take
place if specified tests are satisfied. Examples of lines of syntax
appear in Figure 3 in the text. The name of a line of syntax is just the
name appearing to the left of the equals sign. The right side of an
equation consists of alternatives separated by OR's with the entire
line terminated by ENDFNC, Alternatives consist of terms which are
separated by commas. The individual terms fall into four categories:

1) literals which consist of a single character set off by apostrophes

2) names of semantic routines which are enclosed in parentheses;
3) names of other lines of syntax; and
4) the special terms OR, ENDFNC and RPT.

Associated with and necessary to the understanding of syntax are two
pointers and the concepts of TRUE and FALSE. The syntax pointer
keeps track of where we are in the syntax (which term of which line)
and the character pointer points to that character in our data string
which we are going to consider next. If the syntax pointer is pointing
to a term B and the character pointer is pointing to a character o, the
following will occur:

1) If Bis a literal, @®and B will be compared and the character pointer
will be incremented by one. If @ and B are equal a TRUE condition
results which means that the syntax pointer is incremented by one. If
they are not equal a FALSE condition results and the syntax pointer
skips to the next OR or ENDFNC (whichever occurs first) unless B
is immediately followed by a RPT. In this case the pointer is
incremented by two so that it points to the term immediately after
the RPT.

2l1-15

2)

4)

If B is the name of a semantic routine control will be transferred
to this routine where some action will be performed. A semantic
routine is just a subroutine with a recondite name which returns
and is called in non-standard manners, It may read in characters
(incrementing the character counters), make tests, build tables,
call ordinary subroutines and eventually will terminate its
activities returning either TRUE or FALSE (dependent on the
success it enjoyed in its labors), The TRUE or FALSE condition
that results has the same effect as when B was a literal. A TRUE
condition causes the syntax pointer to be incremented and a FALSE
condition causes the pointer to skip to the next OR or ENDFNC unless
the next term is a RPT.

If B is the name of another line of syntax, the syntax pointer will be
forced to point to the first term of that line of syntax., This is
referred to as calling another line of syntax. Before the call,
however, the current values of the syntax pointer and the character
counter will be added to the syntax pointer stack and character pointer
stack, respectively. These stacks are necessary for the special
terms OR and ENDFNC,

If Bis an OR or an ENDFNC and the last term was TRUE the entire
statement in which P occurs is TRUE. Let us give this line the name
RSIDE. The syntax and character pointers are then reset to the

last values placed in the stacks and these values are deleted from

the stacks. Evidently at some time in the past the syntax pointer was
pointing to an occurrence of the term RSIDE which belongs to category
three. (For instance term eight of EQN in Figure 3). At that time
the syntax pointer was forced to the first term of the line RSIDE and
now that RSIDE has been found TRUE the pointer is returning to that
original term. Moreover since RSIDE is TRUE that term becomes
TRUE and the syntax pointer will be incremented by one (to point to
(OLDNEW) in EQN) and processing will continue.

If the last term tested was FALSE and Pis an OR the syntax pointer is
incremented by one and the next alternative will be processed. Also

the character pointer will be reset to the value it had when processing
begun on the preceding alternative. If Bis an ENDFNC the pointers are
reset from the last values put in the stacks as above but now the line
RSIDE is FALSE, Therefore the term to which the syntax pointer is
reset is FALSE and this FALSE term will have the same effect as
always on the syntax pointer.

21-16

Finally, if Bis a RPT and the preceding term was TRUE the syntax
pointer is decremented by one and the preceding termis repeated.

The effect of a RPT when the preceding term is FALSE has already been
discussed. Essentially a RPT causes the preceding term to be repeated
until it eventually goes FALSE at which time the syntax pointer skips

to the term after the RPT,

Consider a sequence of lines of syntax, L;, L, --- L,, such that

Lj calls Lj4]. Recursion is said to exist where a term in one of the
lines, L;, is the name of another of the lines, Lj, and j £ i. In effect

a loop is defined on the syntax. Recursion exists at term five of the line

of syntax RSIDE in Figure 3.

To summarize a line of syntax consists of alternatives, separated by OR's,
and terminated by an ENDFNC. An alternative is a string of terms
separated by commas and each term is either a literal (category (1) above),
the name of a semantic routine (2), the name of another line of syntax (3),
or the special term RPT (4). Syntax and character pointers exist and
refer to current locations. Stacks for these pointers exist and allow the
syntax pointer to return to terms, which are names of lines of syntax

(3), after the referenced lines have been determined TRUE or FALSE,
Recursion is said to exist when a loop is defined in the syntax.

21- 17

