
TECHNIQUES FOR THE AUTOMATIC SELECTION

OF DATA STRUCTURES

James Low and Paul Rovner

Computer Science Department

The University of Rochester

TR4

TECHNIQUES FOR THE AUTOHATIC SELECTIO\ OF O;:.TA STRUCTURES

James Lm·, and Paul R:)';::er

Computer Science Depart~!nt

University of Rochester

Rochester" Ne\'1 York. lC;527

We are all aware of the development of in­
creasingly sophisticated, elaborate, and expensive
computer programs, particularly in the fields of
artificial intelligence, data base w~nagem=nt,
and intelligent systems. The need for techniques
to deal \'lith such complexity has rem:\i=a interest
in programming language research. Recent \'iork on
structured programrnnng, intelligent co=pilers,
automatic program generation and verification, and
high~level optimization has resulted.

: Apattern of approach similar to that of e~r~
lier research on programming languages is efuerging.
The work divides naturally into blo parts: the
'search for good linguistic ,tools for expressing
algorithms and data, and the development of prac- .
tical methods for 'translating these to rlOrking
computer programs. Our emphasis in this paper·
is in the latter.

For programs that are inherently complex and
expensive, the intell igent choice of implementa­
tion-level representations for high-level data is
a central problem. This paper contains a dis­
cussion pf several 'powerful techniques for
automating such intelligent choices for a given
program. Flow analysis, execution reonitoring, .
and interactive sessions about the characteristics
of the problem are' considered. Built-in knm'll­
edge for a collection of data structures is
assumed., For each data structure, this includes
rules about its applicability and fOrhlulas for
its memory space and execution tim; require~;nts
as functions of the properties of the data and
the operations of the program.

-2­

The context for the discussion is an ex­

perimental system [lm-174, Rovner7b] whi ch chooses

data structures and algorithms for sets, lists,

a~d associations in the AlGO~60 based program- ­
mlng language SAIL [Vanlehn73j. (A brief des­

cription of SAIL is contained in Appendix I.)

Similar abstract data structures are to be

found in other experimental programming lan- .

uages, incl uding QA4 IOerksen72], HICRO-l'lAm~ER
Sussman70, Baumgart72T, SETL [SCh\'lartz75I ~ R~DCA?
Norri s73], VERS2 [Earley73] and CONNIVER'"
Sussman72, NcDermott7~. .t

This paper is organized in two parts. The
first comprises an introduction to our ~ethods and
an overvie\i of the selection system. The second
contatn.s a..9i scUssiPJt of.pur recent work on auto­
matic selection of assoclatlve data structures. An
appendix contains detailed examples of this work •

• System Overvie\'1

The selection system is based on the premise
that there are many different \·:ays of representing
-the sets; lists, and triples of a user·s program.
A fixed library of such representations is built
into the system. A compil er h,,; th occas i ona1 help
from the user) selects representations \-lhi ch \.,; 11
tend to minimize some cost function (such as au.~unt
of cpu time) for the entire program. It does this
by predicting the costs of using the various ap­
plicable representations for the user1s abstract
data .structures. Then it chooses those representa­
tions "/hich seem to minimize· the toal cost. Fi rst
it selects representations by acting as if the
choices for the various abstract structures were
independent. Later it considers how these repre­
sentations interact. For example, one cost
function is the space time product. If the program
has 0/0 ahstract data structures, the compiler has
to consider the cost component of the space oc­
cupied by each data structure multiplied by the ti~~
of execution of operations on the other. The
compiler may change its choice if these inter­
actions so dictate.

-3­

The amount of storage needed for the repre­
sentation will influence the total cost of a
.representation. The storage cost for a repre­
sentation is usually quite easy to estimate. Con­
sider the representation of a set by a binary tree.
We estimate the number of storage cells needed by
a set of N elements by simply adding the amount of
storage needed by a header node to N times the
number of storage cells needed for eacp node of
the binary tree. A header mi ght consist of blo
cells, a count of the number of elements in the
set and a pointer to the root node of the tree.
Each node of the tree contains three memory cells:
one for the element of the set, and one each for
the right and left links. The storage occupied by
a set of four elements would be 14 memory cells:
two for the header and three each for the nodes
containing the elements of the set.

Note that this notion of storage cost is an
approximation. A more precise. system \'/oul d have
to include such factors as the storage allocation
algorithm (in a buddy system \',e might be able to
only allocate blocks which are powers of twp and
thus each node in the tree above \-/Oul d requl re faur
cell s instead of three), \'lhether some form of
virtual memory such as paging or segmentation was
being used, and \'lhether there are more than one
kind of local storage such as a fast semiconductor
memory and a slm'ler extended core storage .

.
The time cost of a representation is some'.·:hat

harder to estimate. The time cost of a repre­
sentation is the sum. of the costs of the individual
primitive operations used in a given program. The
time cost of a primitive operation may be estimated
by looking at the routine \'/hich implements it. \':e
count the number af machine instructions (\':eighted

. by their individual execution times) \'/hich \·:i11 be
executed. This \·';11 be a function of a number of
relevant parameters of the abstract structure.
Consider the follo\"ing routine for determining
if an item is an element af a set \'/hich is repre- .
sented by an unsorted linked list. terminated by a
NIL painter. .

-4­

(a) LOAD the liitem" being sought.
(b) 	 LOAD the "ptrll to the first nod~ of

the linked list.
(c) CONPARE Ilptr lJ to NIL and
(d) if 	equal RESULTIS false
(e) 	 COMPARE lIitem" to the data part of

the node 'pointed to by "ptr"
(f) if 	equal· RESULTIS true
(9) 	 LOAD the "ptr" from the link field'

,of the current node
(h) 	 JUMP to (c)

. "

The execution times of the instructions are:

LOADs take b/o time uni ts (mi era seconds); Cm·tPAREs

take three time units; RESULTIS takes (for a .LOAD

and a JUMP) three time units; and Jm·tps take one

time ·unit. ~le analyze the routine to see hO\'1

many times each 6f:its statements 't,ill be

executed. Parts (a) and (b) \,/111 be executed '

once independent of the size of the set. If the

item is in the set then part (c) 't,ill be executed

from 1 to N times.· It will be executed N+l times

if the item is riot in the set. Part (d) \'1i11 be

executed no times if the item is in the set and

once if the item is not in the set. Part (e)

will be executed from 1 to N times if the item

is in the set and N times if the item is not"in

the set. Part (f) will be executed once if the

item is in the set and no times if the item is

. not in the set. Parts (g) and (h) will be
executed from zero to N-l times if the item is
in the set and Ntimes if the item is not in the
set. .le assume that if an item is in the sets it
is equally likely to be in any node of the list .
•/e thus estimate the average frequency of state­
ments (c) and (e) 't,hen the item is an el e;;:ent of
the set as (N+l)/2. The frequency of (g) and (h)
is similtrly estimated as (N-l)/2. Thus» there'
are only b/O important parameters \'lhich affect the
execution time of this routine: N the size of the
set and P the probability that the desired item is
actually in the set.

The total time cost of the routine is derived
by summing the \'/eighted instruction tir.:es:

C(",P) = 9N+I0-P*(9N+3)/2 .
We repeated this type of analysis for each of the
primitive operations implemented for representation
in our library. See Table I for an exa~?le set of
time cost functions.

-5­

TABLE I

PUT 	 SET - insert item in set
n =proportion of time item already in the set
l = average size of set
f4 = maximum size of set

Set r:on-EmptyREPRESENTATION Set Empty

64 - 42*:r + 6*1.linked list 100

56 180-166IT+16.8*LOG2(l}AVL tree

Bit!"" Array 48146 + 3*rH/321

.
Hash table 82-4011 + 3>./16521

.~,,
Bit-string
with unsorted 104-53n

linked list

265 + 3-J.fi'1/321
.

' ..
. '.

.
Attribute bit 27

.
Sor~ed variablE 96-80rr+S.05*l +1401 ength array 2C.5*LOG2(l) -.3n*1.

•

Our system has a library of representations for
sets, sequences and triples and a library of cor­
responding sp~ce and time cost functions. Before.
the compiler attempts to enoose representations for
a given program it must .obtain information about
the use of the abstract data structures \'1ithin the
program. This information is obtained in three
ways: static analysis, monitoring, and user
interrogation.

-6­

The static analysis phase constructs a flow
graph of the program and does a symbolic evaluation
of the graph. Thi~ gives a model of the potential
contents of all the set and list variables and the
store of triples in terms of both pre-declared items
and dynami ca l1y crea ted items. By fl m-I an a 1 ys is,
\-/e can usually prove that variables \-/111 never con­
tain certain items and that the associative store
will never conta{n certain triples of items. Static
analysis is also used to obtain a partition of
variables into classes which should be considered
as units when 'choices of representation are made.
There is usually no inherent reason \·:hy any blo
.sets of a program need to be represented in the·
same way_ . However, translation of representation
is usually quite expensive and in general should be
avoided. Our static analysis determines \·:hich
variables are used in the same expressions (e.g.
union and intersection) or are involved in the
same assignment statements. Such variables will
be represented in the same \-/ay. The partitioning
also finds \-Ihich operations are performed on mem­
bers of each representation class. This informa­
tion is used to eliminate certain representations
as candidates for a class because they don't provide
all the required primitives.

Honitoring sample executions of the program

with user supplied data 'sets and direct inter­

rogation of the user provide the frequency of

each primitive operation as \·:ell as the parar.:eters

to the time and soace functions. In the current

implementation, monitoring is used to determine

the frequency of the various statements or the

program. The compiler asks the user the values

of such things as the average size of a set at a

given point in a program, amount of overla9

ben-/een sets involved in a union or intersection

and so forth. Thus the system can make reasonable

guesses of the values of the cost functions.

The final selection is done by choosing those
representations which minimize the total expected
cost of a program (space-time product) based on
the information drived above. Interactions betv:een
choices are considered in the analysis of the
tradeoffs of space and time for representations of
individual abstract data structures.

-1­

Selection of Associative Data Structures

The selection system provides a general frame­
",ark in \-/hich to study data structure de5ign. A
large part of our recent effort has been directed
towards the extension of the system to the selec­
tion of associative data structures. In particula~
we are looking at several alternate data struc- .
tures for the store of triples in SAIL (see Appen­
dix Ill. These structures'consist of variations and
combinations of four basic types: records, hash
tables, property lists, and inverted files.

There are many different associative data struc­
tures. We'have chosen a representative collection
of structures to analyze (see Appendix II). We
purposely chose enough structures to require the
development of methods for managing combinatoric,
explosion in the selection process. A real .
selection system \'Ioul d be impossible without such
methods. In addition, the collection of structures
is ri ch enough to allo','1 the system to consider the
i~sue of sharing vs •. redundancy as it selects a
data structure.

An analysis of these structures to yield rules
for their applicability and formulas for their
space and time costs is complete. A detailed
example of these formulas is contained in Appen­
dix II. '

As in the case of sets and'lists, selection of
a data structure for triples is based on the ap­
plicability of the structure to the operations of
the program, and on estimates of program execution
time and storage require~ents. These estiwates
~re derived from a ~tatic analysis of the progra~,
from monitoring example executions, and fro~ ques­
tions asked of the progra~mer. Appendix II
contains examples of such questions.

The Associative Model

As the system analyzes a program, it builds a
model of the store of triples and the operations
that are performed on it.

-8­

The model of the store of triples reflects the
use of these operations by the program. The set of
IImake" operations is divided into claSSeS. T~·IO
make operations are put into the same class if
there is an "erase ll or "search" operation that
could match t11iples cl1eated by both. For each
class~. the associated erase and search operations
are listed. This partitioning reduces the problem
of analyzing the entire store of triples for data
structure selection to several smaller problems.
No operation effects more than one class.

Within a class~ the search and erase operations
are categorized by their "form". This is deter­
mined by the arguments to the operatlon: \'lhether
they are given items, "bound variables", or "any".
There are 27 (3x3x3) forms.

Proposing Candidate Data Structures
.

The system uses the structure inherent in a
set of associative operations to identlfy candidate
data structures for the class of triples. For
example, assume that the form 'of all search arid'
erase operations is such that the Attribute and
Object positions are always specified and there
are a fixed number of items (known at'compile time)
that could appear in the Attribute position. Each
such item could be used to select a fixed field of
the given Object in \'/hich to find a Value. Nore­
over, if there will be only one Value for a given
Attribute-Object pair, then there is no need to
allow for a set of Values. This data structure is
termed a "field selection record ll A similar col­•

lection of such rules 'is associated \'/ith each data
structure that the system kno\'1s about.

One of the problems arising from our decision
to deal \-/ith a large 1i brary of data structures. is
combinatoric explosion in the selection process.
Much of our effort was spent in devising methods to
manage this. In addition to the early use of ap­
plicability rules, the system computes and stores
useful information about each operation to avoid
re-computing it as each data structure candidate
is. considered. Also, sets of candidates \·;hich
diff~:_ in minor ways are treated as units \·,henever

-9­

possible. For instance, in the previous example,
if there is more than one choice for \-:hich component
of the triple form to consider the Attribute, the.
candidate structure is not split into separate
candidates for each choice unless a preliminary
cost analysis in~icates that different costs are
associated with the different choices. If one
choice is worse than some other in both space and
time» it is eliminated.

The proposal of candidate structures proceeds
in three phases. First, each search and each erase
operation is analyzed to determine the set of ap­
plicable associative retrieval techniques. These
include the selection of a field of an object·
record, hash table lookup, property list search, ­
and searching various types of lists of triples.
Next, each data structure is considered in a process
of "matching:': if the associative retrieval tech­
niques provided by the structure realize the needs
of the set of operations, and the applicability
rules of the structure are satisfied, then the
structure is proposed as a candidate for the set of
operations. It should be noted that each such
candidate might represent several instances of·a
more general structure. For each candidate, the
process of matching identifies the associative
retrieval technique to be used for each 0geration,
and the set of choices for realizing each operation.

The third phase is the proposal of candidate
structures that exhibit redundancy. The set of
associative operations might be more efficiently
real ized as t\'iO (or more) subsets, each dealing
with a data structure that is well-suited to its
operations. The savings in time may oub/2igh the
cost of storing more than one copy of the set of,
triples. One problem in this phase is combina­
toric explosion of the number of candidates.
Heuristics are required for selecting only plausible
partitions of the set of associative operations.

The present system is \'/orking through !lhase -0.10

of candidate structure propos·al. A detailed ex­

ample of its output is contained in Appendix II.

The immediate next steps in the research are to

experiment with methods for phase three, and push

through more examples. The task of finishing the

coqe \-/hich implements the cost formulas and does

final selection is strai ghtfon-/ard, and \-1111 pro­
ceed in parallel.

-10­

Summary

Our system demonstrates the feasibility of the
automatic selection of high-level data structures
such as the sets, lists~ and triples of SAIL. In
combination,.the techniques of analysis and in­
formation-gathering have been successfully applied
[Lm'l74J to programs that use sets and 1is ts. Our
preliminary analysis of the problem of selecting
representations for triples shows that there is
much structure in a store of triples and in the
associative operations of a program. Our current
research is an attempt"to understand ho\-/ this
structure shaul d be used \'/ith the other techniques
to select associative data structures.

APPENDIX I

Brief Description of SAIL

SAIL is an ALGOL-GO based artificial intel­
"ligence language. The abstract data structures of
.SAIL [Feldman69, VanLehn73] include ITENS, SETS of
items, LISTS (sequences) of items, and TRIPLES
(associations) 9f items.

An' ITEM is essentially a reference to a
. variable allocated from a heap. Items are
nonmally used to· represent abstract objects and
the names of binary rel ations. .

.
A SET is an unordered collection of distinct

items. A set variable is declared in the same way
as any arithmetic variable. Set expressions in­
clude the union of sets, intersection of sets and
explicit sets (e.g. {a, b, c} where "a", lib", and
..e" 	are items). "

A LIST is an ordered collection of items. An

item may appear in a list n.~re than once. List

operations include concatenation, sublist extrac­

tion, and subscripting.

The TRIPLE is used for general mappings ben-/een
items. Triples consist of three items, termed (in
order) "Attribute", "Object ll and "Valuelt~ The
first item, the Attribute, is often used as the
name of a binary relation beb/een an Object and a
set of Values. The store of triples and the opera­
tions on it are fully sY~i.etrical, however. The
language imposes no constraints on the interpre­
tation of the position of an item in a triple. The
syntax for triple forms is «item>-<item>=item).
There are three kinds of operations on triples in
SAIL:

1. 	 fIJAKE# \'lhich adds a given triple to the_
store of triples.

2. 	 ERASE, \·/hich. rer::oves specified triples from
the store of trip1es. Each of the three
arguments to the erase operator is either
an item, or the key-\·/ord "ArlY". The
arguments to erase are treated as a patter~
which is matched against the store of
tri p 1 es. '·Ihere II Ai{Y" is used!t any i tern
will match. Triples which match are re­
moved from the store of triples ..

-2­

3. 	 SEARCH~ which locates specified triples in
the store of triples. As for erase~ the
three arguments to search are treated as
a pattern ~'/hich is matched against the
store of triples. In addition to items
and the keY-~'/ord "ANyll, an argument to
search can be a IIbound variable". If the
arguments are all iterns or IIANyll, then
search behaves like a Boolean-valued
function, returning true if the pattern
matches, .false othen/ise. If there are
any arguments \>,hich are "bound variables""
then search behaves like a Ugenerator",
enumerating the triples that are found to
match the pattern. As each triple is .
found, the "bound variables" in the pattern
will be assigned the corresponding items
of the matching triple.

.­

APPtNUIA 11

Selection of Associative Data Structures: Examples

This appendix contains several gli~pses of .
detail from the experimental selection system. It
has five parts:

A. 	 A description of the data structures which
are considered by the system.

B. 	 Time and space formulas for one of them.

c. 	 Examples of questions \'/hich the system
asks the programmer.

D. 	 Partial results of the system's analysis
of an example SAIL program.

E. 	 The example SAIL program listing.

A. 	 The Associative Data Structures Knm·m to
the System

The candidate associative data structures con­

sist of variations and combinations of four basic

types: records~ property lists, inverted files,
and hash tables. From the many possibilities, we
have chosen a representative collection of struc­
tures to analyze. These are listed and described
below. In the discussion, the three positions of
the tripl e form are identi fied \'11 th pal"ti cul ar .
roles in the various data structures. This;s done
for expository reasons. The system recognizes
symmetries and permutes positions of. the triple
form \'/hen appropriate.

1. 	 Field Selection Records (FSR)

A field selection record is a block of con­
tiguous storage cells. The address of the
block is obtainable from one of the three items
of the triple (the Object). Another of the
items (the Attribute) determines a storage cell
within the record and a field of this cell.
The third item of the triple (the Value) is
stored in the specified field. FSR's are con­
venient for associative searches in vlhich t\,/o
of the three items are given, and the Attribute
is from a fixed set of items. FSR's are usual­
ly \'/asteful of memory space (compared to hash
tables or inverted files) unless there is at
least one Value for most Attributes of most
Objects most of the time-.

-2­

There are three types of FSR's:

a. FSRBIT:
represen

On~ bit is s
t the value.

ufficient to

b. FSRIVAL: The binary
si~gl~-valued.

relation is

c. FSRSET:
value.

There can be more than one

2. 	 Prop~rty list

This data structure associates a set of
(Attribute-Val.ue) pairs \-lith each Object. The
address of a list of elements is obtained
from the 'Object's record. Each element con­
tains an Attri bute and an ordered 1ist of Values.
The list of elements is ordered by Attribute.

Property lists are superior to hash tables
where space is at a premiu'm and the number of '
triples varies \'iidely with time. They are
superi or to FSRIS \'/hen space is at a premi um
and most Attributes do not have values most of
the time.

3. 	 Inverted Files '

An inverted file is a list of triples.
Each triple.is represented as a block of
storage cells which contains the three items
of the triple. The list threads all blocks
that have a particular item in a given
position. There are two types of inverted
fil es:

a. 	 Simple: A one-\'/ay list of triples for"
one position, perhaps ordered by the
items in another position.

b. 	 Complex: multiply-threaded triples.
Each ttiple block is an element in
several lists. tach list cC!n be
ordered, and ei ther one-~,;ay or t·..:o-','iay.

http:triple.is
http:Attribute-Val.ue

Inverted files are convenient for associa~
tive searches in which only one it!~ is given.
They al~e also useful for ston:$ of triples that
val'y \·lidely in size and in place of FSR's for
cases \·;here the set of Attributes is not fixed
before program execution. They ar-e v:2.sterul
of processing time for associative searches in
,.,hich more than one iter.: is given.

4. 	 Hash Tables

A hash table is a block of contiguous stor­
age cells. A function Hhich maps triples to
cell addresses within this block is used both
to insert new triples and for associative
retrieval. Each cell contains a pointer to
the list of triples \'/hich map to the cell.
Associative retrieval via hash tables requires
a combination of address computation and search­
ing. Care is required to match the design of
the function to the properties of the set of
triples~ to avoid large discrepancies in the
length of lists. Hash tables are convenient
for associative searches in \ihich more than
one item is given 2 or the set of Attributes is
not fixed and computation time is at a premium.
Hash tables are not convenient when space is at
a premium 2 and the size of the store'of triples
varies widely as the program runs.

There are two classes of hash tables:

a. 	 All three items are hash operands •.

There are four types of data structure
here:

'1) 	 SIMPLE: each conflict list element
(ClE) contains the three items of
the triple.

2) 	 POINTERS TO TRIPLE BLOCKS: each
ClE contains a pointer to a'triple
block. This allows sharing with
inverted fil e structures_

3) 	 SINGLE LINK: each CLE contains a
pointer to a triple block and is
threaded in a one-way inve~~ed
file. This allows r.a~e inti~~te
sharing.

4} 	 NULTrPLE n:O-t~AY LINKS: ecch CLE
contains a pointer to a triple
block and is threaded in aile or
more b/o-\-/ay inverted files.

b. 	 Two items are hash operands.

There are b/elve types of data

structure here:

1) 	 SIHPLE: each CLE contains the b/o
hash operands (Attribute and Object)
and a pointer to a list of Values.

2) 	 POINTERS TO TRIPLE BLOCKS: each
eLE contafns a pointer to a list of
pointers to triple blocks. This ­
replaces the pointer.to a list of
Values. As for 1 .. above, each
CLE represents a particular
Attribute-Object pair, and each
entry of the list reoresents one
triple having that pair.

3) 	 SINGLE LINK: each eLE contains the
two hash operands and is threaded
in a one-way inverted file. The
key for the inverted file must be
one of the hash operands. Each
CLE contains a pointer to a list

, of 	Values. '

4) 	 SINGLE LINK \olITH POINTERS TO
TRIPLE BLOCKS: combination of
2 and 3 above •.

5) 	 NULTIPLE TIlO-\·IAY LINKS: each CLf
contains the· blo hash operands and
is threaded in one' or more bra-I,,:ay
inverted files •. The keyes) for
the inverted file(s) must be from
the blo hash operands. Each CLE
contains a pointer to a list of
Values.

6) 	 f.1ULTIPLE LINKS ~IITH POINTERS TO
TRIPLE BLOCKS;· combination of 2
and 5 above.

http:pointer.to

- 5­

The 	 remaining six types of data structure
,(7 through 12) are variations of 1 to 6
above. Each' ent~ on either the list of
Values or the list of pointers to triple
blocks is threaded in a One-\'lay inverted
file. The key for this inverted file is
the .Value.

B. 	 Example of Time and Space Formulas: Field
Selection Records

1. 	 SPACE (in 36-bit memory cells) =

(NA*NO) *(ls+X)

-where
NA =the number of Attributes
NO ::r'o the number of Obj ects
, X = the average number of Values ­

for a given Attribute and'
9bject.

2. 	 TIf4E

f4AKE:

ERASE

(3 items given) Co+Cl+R*X*(Co+C»)
2

+ E*C3

(Value =ANY) Co+C1+DElCOST(X}

FIND

(3 items given) Co+ Cl+Z*X*(C~+C~)

(Value = ANY) Co+C1

-6­

(Value a variable) Co+Cl+V*GEf;COST(X}

\·.rhere

Co = 	 time to compare t\'10 pointers

C1 = 	 time to select a given field of a
given Object record, and pick up
its contents

C2 = 	 time to insert an element at a given
position in a list

= time to remove a given element of aC3
list

Ca. = 	 time to pick up the pointer to the
next element of a list and jump

M 	 the fraction of HAKE operations
\,/hi ch create ne\', tri p 1 es

Q = 	 the fraction of r·iAKE operations that
find a similar triple (A-O=ANY)

R = 	 the fraction of ERASE operations
that find a similar tr:.ple (A-O=ANY)

E = 	 the fraction of ERASE opera~ions
that find a triple to erase

Z = 	the fraction of fully specified
FIND operations that find a similar
triple

V = 	 the fraction of FIND operations for
(A·O=variable) that find answers

DELCOST(X) - the time to reclaim a list
of length X

GENCOST(X) = the time to generate elements
.from a list of length X

-7­

c. 	 Example Questions Asked by the System About
the Store of Triples

1•. For a given Attribute and Object» what is
the average size of the set of Values?

2. 	 For a given Object, how many Attributes
(on average) \-/i11 have at least one Value?

3. 	 What fraction of (A·O;rV) questions \·;ould
fi nd anS\'lers if they \-Jere (A. O=ANY)
questions?

4. 	 Hm'l many tripl es (on average) \-lill have a
given value?

5. 	 \>!hat fraction of (A·O=ANY) questions have
answers (on average)?

6. 	 \>lhat fraction of MAKE operation executions
would create a triple that already exists?

7. 	 What fraction of NAKE operation executions
would find a triple which has the same
Attribute and Object?

8. 	 What fractiQn of ERASE operation executions
find somethlng to erase?

D. 	 Example. Analysis

This section contains partial results of the
system's analysis of an example SAIL program.
These consist of a collection of candidate repre­
sentations for subsequent cost analysis and final
selection. After a brief .introduction to the
example program~ the candidate representations are
described. Each candidate is listed \-lith a refer­
ence to the description of its prototype in
section A of this appendix.

The attached test program constructs the
minimal spanning tree for a given graph and prints
out information about its Itcost". The algorithw
deals with disjoint sets of nodes, and selects

. edges \-lith the smallest cost If/hich connect nodes

-~-

from di ffet'ent sets. Each ti rr:e en ed~~ is found,

the blO sets are merged. The resul tis a set of

edges \'/hich form the minimum cost tree \'ihich spans

the graph. A set of nodes is represented by a

:(single valued) binary relation of the fol,lO'.-ling

form:

(SETOF e. NODE::> SET)

The primitive associative operations of the program
are: .

1. r~KE (three given items);
2. ERASE (given item ·ANY= given item);
3. SEARCH (given item -given item = variable);
4. SEARCH (given item ~variable,= given item).

'The system 'finds that most of the associative
,retrieval techniques are applicable to each of the
, Ilerase" and "search" operations, but discovers only
six candidate representations to propose for the

operations taken,together:

1.. Thre?ded T,rip 1 e Blocks (A3b)

Each triple is represented as a block of
storage cells having two threads. Each'
thread is associated with a position in the
triple, and is part of a list of triples that
have':the indicated'item in the indicated
position. The first thread is in either the
Attribute position or the Object position, and
is used by operation 3. The second thread is
in either the· Attribute or the Value position.,
and is shared by operations 2 and 4. The
first thread is b/O-\'/ay to expedite the re­
moval of triples \'/hich are to be erased. Both
threaqs are ordered. In this example, the
first thread represents either a list of all
triples, ordered by nodes, or the one triple
\,Ihich identifies the set containing a given
node. The second thread represents either a
list of all triples, order'ed by sets., or a
list of triples which identify nodes belonging
to a given set. . ,

2. Object-Threaded Hash Table Entrjes (A4b7)

In this case, operations 2 and 4 share a
hash table to find a list of Objects, given
the Attribute and Value. In the example, this
is a list of nodes which are in a given set.
Each Object is threaded in a list of hash-table
entries for the Object. Operation 3 uses this
list to find the set for a given nade.

-'::)­

3. 	 Value-Threaded Hash Table Entries (A4b7)

This is a variation on. candidate 2. Opera­
tion 3 uses the hash tab1e to find a list of
Values, given the Attribute and Object. In the
example, this list \·/ould have one entry: the
set ~·/hich contains a given node. Operations 2
and 4 share the thread through Va1ues. The
thread represents a list of nodes for a given
set.

4.. 	Attribute-Threaded Hash Table Entries (A4b3)

. This is similar to candidate 3, except t~at
operations 2 and 4 share a thread through
Attributes. In the example, this thread repre­
sents a list of aJl triples. For non-single
valued relations, each element of the thread
",ould represent the collection of triples that
have a p'articular Attribute and a particular
Object.

S. 	 Hash Table a~d Threaded Triple Blocks(A4b2)

In this case, operations 2 and 4 share a
hash table to find a list of Objects, given
the Attribute and Value. As for candidate 2,
this is a list of nodes \·:hich are in a given
set. The difference is that hash table entries
are pointers to triple blocKs, which are
threaded either in the Attribute pOSition or
the Object position. Operation 3 uses this
thread.. The thread is two:"way, to expedite
erases by operation 2.

6. 	 Attribute Threaded Hash Table and

Threaded Triple Blocks (A4b4)

This candidate provides a hash table for
. operati on 3, an Attribute thread for operati on

2, and a ~/o-way triple block thread for
operation 4. We would expect the preliminary
cost analysis to reject it in favor of other
candidates.

-10­

As the system analyzes its model, it asks
questions of the Dser when it needs to do so. For
this example, it asked two questions:

1. 	 For a.given Attribute and Object, 1S there
only one Value?

2. 	 For a given Attribute and Value, is there
only one Object?

If operation 3 \'/ere not present in the example,
the system would have proposed a candidate repre­
sentation when provides a list of nodes for
each set. Each Value would be represented by a
record having a fixed field for the SErOF Attrib~te.
The field would contain a pointer to a list of
NODE items. Operations 2 and 4 \'/Ould use the
given Attribute to select this field of the given
Value. If only operation 3 were present, a similar
candidate representation would associate a given
node with its set. One of the next steps in the
research will be to consider multiple (redundant)
representations as candidates. In our example,
the system will then be able to consider the
combination of the above two representations as a
single candidate. One difficulty here is dealing
with the erase operation. A general technique is
to convert erase operations to loops ,-lith blo
operations: a search with variables in place of
"ANY" s, and an erase \..,i th all i terns speci fi ed.

-11­

E. Example SAIL Program Listing: r·;inir7ial S;)C~r.ning Tree Construction Algorithm

BEGIN "SPNTREIJ

. REQUIRE 100 NB4! ITEHS;

LIST EDGES; Cor·U-tENT THE PRIORITY QUEUE OF EDGES OF TH~ GRAPH;

• LIST 	ITEM A,B,C,D,E,F ,G,H; CONNENT NODES OF HOi-1Ei·iADE GRAPH.;
STRING ITEH NAMEA, NAHEB, NANEC, NAt'IED, MAr·tEE, NAi'~EF, NAHEG, NAHEH; Cm·iNENT liAHES OF Nmf
LIST ITE~ EDGEAB, EDGEAC, EDGEAH, EDGECE, EDGEBC, EOGEBH, EDGEEF, EDGEGH, EDGEEH, EDGEBE

EDGEDF, EDGEBG, EDGEFG, EDGECO, EOGSEG;

ITEH SETOF; COf-h"'lENT SET f1EMBERSHIP RELATION: (SETOF. ELT = SET); .

COr~ENT EDGE COSTS;

INTEGER ITEM EcAB~EcAC,EcAH,EcCE,EcBC,EcBH;EcEF,EcGH,EcEH,EcBE,EcOF,EcBG,EcFG,EcCO,EcEG;

'SET SETOFVERTICES; CO~1EMT THE SET OF THE NODES OF GP~PH; .

SET TREESET; Cor·U-tENT SET OF EDGES MAKING liP HINnt~L S?AmHNG TREE;

LIST ITEMVAR EDGETEMP;. COMMENT WILL REFER TO AN EDGE ITEH;

LIST.ITEMVAR V, \4, VERTEX;· COM.\IENT WI LL REFER TO VERTEX ITEHS;

INTEGER ITEHVAR Ec; C0l4NENT \·IILL REFER TO COST OF AU EDGE;

INTEGER COSTS; Cor-lJi'1ENT COST SO. FAR OF SPANNWG TREE;

INTEGER· NVERTEXSETS; COf1MENT NUMBER OF DISJOHtT' SETS OF riDDES;

BOOLEAN PROCEDURE DISJOINTUNION(ITEt1VAR MEMBERl~i-iE:'i8ER2);
. BEGIN JlDISJOINTUNIONII

. .

ITEt4VAR SETNAf'1El, SETNAME2, TEMPI; ...
IF NOT (SETOF • r4E~tBERl ~ BIND SETNANEl) AND (SEIOF • HEN8ER2 = BIND SETr{Ar·:::Z) THEft

ERROR; . .

. IF SETNAMEI = SETNA~1E2 THEN RETURN(FALS'E);

FOREACH" TEHPI I (SETOF • TEr4P1 = SETNAr1E 1) DO

MAKE (SETOF • TEr·1Pl == SETNANE2);

, 	 ERASE. (SETOF • ANY = SETNAr4El);

DELETE(SETNAMEl);

RETliRN(TRUE);

END uDISJOINTUNION";

-12­

COr~ENT START EXECUTION HERE;
COSTS := 0;.
TREESET := PHI;

CONHENT HONEr1ADE GRAPH;

DATUM(A} := {{ NAMEA }};
DATUr.1(NPJ.1EA)· := "A";

DATm,t(B) := {{ NA~1E8 H;

DATUt4(NAMEB) := "8";

DATUM(C) := {{ NN4EC }};

DATUM(NN-4EC) := "C";

DATUf1(D) := {{ NA~lED }};

DATU~1(NAHED} := "Du

;

DATur1(E) := {{ NA~1EE H;

DATW-l(NAr.iEE) := II Ell;

DATUM(F) :=. {{ NAMEF }};

DATUH(NAr1EF} := II F";

DATUM(G) := {{ NAMEG }};

DATUH(NAf1EG) := IIG";

DATUf.1(H} := {{ NAf/tEH }};

DATUM(NAf1EH) := "H";

SETOFVERTICES := {A,B,C,D,E,F,G,H};

-13­

Cor·V·lENT EDGES IS AN ORDERED LIST OF EDGES, ORDERED BY COST;

EDGES := {{ EDGEAB, EDGEAC, EDGEAH, EDGECE, EDGEBC, EDGEBH, EDGEEF, EDGEGH,
EOGEEH, EOGEBE, EDGEDF, EDGEBG, EOGEFG, EDGECD, EDGEEG }};

OATUH(EDGEAB) := {{ A, B, EeAB H;

DATUM(EDGEAC} := {{ A, C, EeAC }};

OATUH(EDGEAH} := {{ A, H, EeAH }};

DATUM(EDGECE} := {{ C, E, EcCE }};

.DATUM(EOGEBC} := {{ B, C, EeSC }};

DATUN(EOGEBH) := {{ B, H, EeBH H;

DATUH(EDGEEF} := {{ E, F, EeEF }};

DATUH(EDGEGH} := {{ G, H, EeGH }};

DATUM(EOGEEH) := {{ E, H, EeEH }};

DATUr~(EOGEBE} := {{ B, E, EeBE }};

DATUr.I(EDGEOF} := {{ 0, F, EeOF }};

DATUM(EOGEBG} := {{ B, G, EeBG }};

DATUM(EOGEFG) := {{ F, G, EeFG }};

DATUM(EDGECO} := {{ C, 0, EeCO }};

OATut1(EOGEEG} := {{ E, G, EeEG }};

DATUM(EeAB) := 1;

OATUr~{EcAC) := 1;

OATUM(EcAH) := 1;

OATUM{EcCE) := 1;

OATUM(EcBC) := 2;

OATUM(EcBH) := 2;

'OATUM(EcEF) := 2;

DATUr1(EcGH) := 2;

OATUM(EeEH) := 3,;

DATUl4(EcBE) := 3;

DATUr4{EcDF) := 3;.

DATUM{EcBG) := 4;

DATUM(EeFG) := 6;

DATUt1(EcCO) := 8;

DATUM(EcEG) := 9; ,

-14­

COi-1~'iENT INITiALIZE SET OF DISJOINT SETS AND THE r'!A.PPING BETUEEN A NODE AND THE
DISJOINT SET IN L'IHICH IT APPEARS:

FOREACH VERTEX I VERTEX IN SETOFVERTICES DO
f"IAKE (SEIOF • VERTEX = NEvl);·

NVERTEXSETS:=LENGTH(SETOFVERTICES);

Cm·iNENT .NOLi CONSTRUCT THE SPANNING TREE:

WHILE NVERTEXSETS > 1 DO
BEGIN· .

EDGETEMP := LOP(EDGES);

V := DATUM(EDGETEMP) [1];

W:= DATUM(EDGETEMP) [2];

Ec := DATUM(EDGETEMP) [3];

IF DISJOINTUNION(V :t~1) THEN

BEGIN

COSTS := COSTS + DATUM(Ec);

PUT EDGETEMP IN TREESET;

NVERTEXSETS:=NVERTEXSETS-l;

END;
END;

COHi·1ENT PRINT OUT THE SET OF EDGES OF THE MINIt1AL SPANNHtG. TREE;

OUTSTR(CRlF& "EDGES AND COSTS OF EDGES");

FOREACH EOGETEM? SUCH THAT EOGETEMP IN TREESET DO

BEGI~ . .

STRING ITEMVAR NODENAME1, NOOENAHE2;

. V := DATUH(EOGETEMP) [11; \01 := OATUH(EDGETEr·~p} [2]; Ec := DATUr·1(EDGETEH?) [31
NODENAME1 := DATUM(V) [1]; NODENAr'lE2:= DATur'1(H) [11;
OUTSTR(CRlF& DATUM(NOOENAMEl)&OATUH(NOOErlANE2) &TAB & CVS(DATUN(Ec}});

.. END;·

OUTSTR(CRLF& IITOTAl COST OF S?AtiNING TREE & CVS(COSTS»);
=11

END "SPNTRE u

[BAUMGART72]

[EARLEY7la]

[EARLEY71b]

(EARLEY73]

[EARLEY74]

[FELDMAN69J

[Lm04]

,
[MCDERMOTT721

[ivtORRIS73] I

[ROVNER76] :
. I

[SCHWARTZ75a]

• [SCHWARTZ75b J

. rSUSSMAN70 I

{VANlEHN73]

REFERENCES

B. 	 Baumgart. Micro Planner Alternate Reference Manual. Stanford
Artificial Intelligence laboratory. Operating Note 67, Apr. 1972.

J. 	Earley. Comments on SETL (Symmetric Use of Relations). SETL
Newsletter 52. Courant Institute NYU. September 1971.

J. 	Earley. Toward an Understanding of Data Structures. CACM, Vol.
14, 10, October 1971.

J. 	Earley. An Overview of the VERS2 Project. Electronic Research
laboratory, College of Engineering memorandum ERl-M416, December
1973, University of California at Berkeley.

J. 	Earley. High Level Iterators and a Method of Automatically Design­
ing Data Structure Representation. Electronic Research Laboratory,
College of Engineering memorandum ERL-M425, February 1974, Univer­
sity of California at Berkeley.

J. 	Feldman and P. Rovner. An Algol-Based Associative language.
CACM, Vol. 12, 8, August 1969.

J. 	Low. Automatic Coding: Choice of Data Structures. Technical
Report #1, Computer Science Dept., University of Rochester.

D. 	 McDermott and G. Sussman. The Conniver Reference Manual. AI
Memo No. 259, M.I.T., May 1972.

J. 	Morris. A Comparison of MADCAP and SETl. University of Cali­
fornia, Los Alamos Scientific laboratory, 1973.

P. 	 Rovner. Automatic Selection of Associative Data Structures.
Ph.D. thesis, Dept. of Mathematics, Harvard University (in preparation) .

.J. Schwartz. Automatic Data Structure Choice in a Language of Very
High Level. Second Symposium on Principles of Programming Languages.
Palo Alto, California, January 1975.

J. 	Schwartz. Optimization of Very High level Languages--I. Value
Transmission and its Corollaries. In Computer Languages, Vol. 1,
pp. 161-194, Pergamon Press, 1975 .

G. 	 Sussman, T. Winograd, and E. Charniak. MICRO-PLANNER Reference
Manual. AI Memo 203. Project MAC, M.I.T., July 1970.

G. Sussman. Why Conniving is Better than Planning. AI Memo 255.
M.I.T. Artificial Intelligence Laboratory, February 1972.

K. 	 VanLehn. SAIL User Manual. Stanford Computer Science Technical
Report STAN-CS73-373, July 1973.

