TECHNIQUES FOR THE AUTOMATIC SELECTION
OF DATA STRUCTURES
James Low and Paul Rovner
Computer Science Department

The University of Rochester

TR4

TECHNIQUES FOR THE AUTOMATIC SELECTICH OF DATA STRUCTURES

James Low and Paul 2ovner
Computer Science Dapartment
University of Rochesier
Rochester, New York 14527

He are aﬂ aware of the developmant of in-
creasingly sophisticated, elaboraue, and expansive
computer programs, particularly in tha fields of
artificial intelligence, data base m= nag=~=ng,
and intelligent systems. The nesd for techniques
to deal with such complexity has renswzd interest
in programming language research. Recent viork on
structured programming, intelligent compilers,
automatic program generation and veritication, and
h1gh~1eve] opt1m12at1on has resu]ted.

A pattern of approach similar to that of ear>
lier research on programming languagas is emarging.
The viork divides naturally into two parts: the
‘search for good linguistic tools for expressing
algorithms and data, and the developmant of prac- .
tical methods for translating these to working
computer programs. Our emphasis in this paper -
is in the latter. -

For programs that are inherently complex and
expensive, the intelligent choice of implemanta-
tion-level representations for hign~1eva] data 1is
a central problem. This paper contains 2 dis-
cussion of several powerful techn1quas for
automating such intelligent choices for 2 given
program. Flow analysis, execution monitoring,
and interactive sessions about the characteristics
of the problem are considered. Built-in knowl-
edge for a collection of data structures is
assumed. For each data structura, this includes
rules about its applicability and formulas for
its memory space and execution time regquirements
as functions of the properties of the datz and
the operations of the program.

The context for the discussion is an ex- :
perimental system [low74, Rovner?é] which chooses
data structures and algorithms for sets, lists,
and associations in_the ALGOL-60 based progrem- ~ -
ming language SAIL [Vanlehn73]. (A brief des-
cription of SAIL is contained in Appandix I.)
Similar abstract data structures are to be
found in other experimental programming lan- ‘

vages, including QA4 [Derksen72], MICRO-PLAINER
Sussman’0, Baumgart72], SETL [Schwartz75], MADCAP
Horris73], VERS2 [Earley73] and CONMIVER
Sussman72, McDermott7Z].

_ This paper is organized in two parts. The
first comprises an introduction to our mathods and
an overview of the selection system. The secoad

contains a discussion of our recent work on auto-
matic selection of associative data structures. An

appendix contains detailed examples of this work.
System Overview

The selection system is based on tha premise
that there are many different ways of representing
"the sets, 1ists, and triples of a user's program.

A fixed library of such representations is built
into the system. A compiler (with occasional help
from the user) selects representations which will
tend to minimize some cost function (such 2s amount
of cpu time) for the entire program. It doss this
by predicting the costs of using the various ap-
plicable representations for the user's abstract
data structures. Then it chooses those representa-
tions which seem to minimize the toal cost. First
it selects representations by acting as i{ the
choices for the various abstract structures veare
independent. Llater it considers how thesz repre-
sentations interact. For example, one cost
function is the space tima product. If the program
has two abstract data structures, the compiler has
to consider the cost component of the space oc- .
cupied by each data structure multiplied by thz time
of execution of operations on the other. The
compiler may change its choice if these inter-
actions so dictate.

The amount of storage needed for the repre-
sentation will influence the total cost of a
representation. The storage cost for a repre-
sentation is usually quite easy to estimate. Con-
sider the representation of 2 set by a binary tree.
We estimate the number of storags cells needed by
a set of N elements by simply adding the amount of
storage needed by a header node to N times the
number of storage cells needed for each node of
the binary tree. A header might consist of two
cells, a count of the number of elements in the
set and a pointer to the root node of the tree.
Each node of the tree contains three memory cells:
one for the element of the set, and one each for
the right and left links. The storage occupied by
a set of four elemznts vould be 14 memory cells:
two for the header and threa each for the nodas
containing the elements of the set. . -

Note that this notion of storage cost is an
approximation. A more precise system would have
to include such factors as the storage allocation
algorithm (in a buddy system we might be able to

only allocate blocks which are powers of two and
thus each node in the tree above would require four

cells instead of three), whether some form of
virtual memory such as paging or segmentaiion was
being used, and whether there are more than on2
kind of local storage such as a fast semiconductor
memory and a slower extended core storage.

The time cost of a representation is somewhat
harder to estimate. The time cost of a repra-
sentation is the sum of the costs of the individual
primitive operations used in a given program. The
time cost of a primitive operation may be estimatasd
by looking at the routine which implements it. le
count the number of machine instructions (weighted

by their individual execution times) which will be
executed. This will be a function of a nuwber of
relevant paramsters of the abstract structure.
Consider the following routine for determining

if an item is an element of a set which is repre-.
sented by an unsorted Yinked list.terminated by 2
NIL pointer.

(a) LOAD the "item" being sought.

(b) LOAD the "ptr" to the first noda of
the linked list.

(c) COMPARE “ptr" to NIL and

(d) 1if equal RESULTIS false

(e) COMPARE "item" to the data part of
the node pointed to by "ptr"

(f) 1if equal RESULTIS trus

(g) LOAD the "ptr" from the link field

.of the current node
(h) JUMP to (c)

The execution times of the instructions are:
LOADs take two time units (microseconds); COMPAREs
take three time units; RESULTIS takes (for a LOAD
and a JUMP) three time units; and JUMPs take one
time unit. Ue analyze the routine to see how
many times each 6f:its statements will be)
executed. Parts (a) and (b) will be executad -
once independent of the size of the set. If the
item is in the set then part (¢) will be exascuted
from 1 to N times. It will be exscuted N+1 times
if the item is not in the set. Part (d) will be
executed no times if the item is in the set and
once if the item is not in the set. Part (e)
will be executed from 1 to N times if the item
is in the set and N times if the item is not'in
the set. Part (f) will be executed once if the
item is in the set and no times if the item is
not in the set. Parts (g) and (h) will be
executed from zera to N-1 times iT the item 1is

in the set and N times if the item is not in the
set. UWe assume that if an item is in the set, it
is equally likely to be in any node of the 1list.
We thus estimate the average frequancy of state-
ments (c¢) and (e) when the item is an element of
the set as (N+1)/2. The frequency of (g) and (h)
is similarly estimated as (N-1)/2. Thus, there-
are only two important parameters which affect the
execution time of this routine: N the size of the
set and P the probability that the desirsd item is
actually in the set.)

The total time cost of the routine is derived
by summing the weighted instruction times:
C(H,P) = 9N+10-P*(9H+3)/2 .
We repeated this type of analysis for each of ths
primitive operations implemented for reprasentation
in our library. See Table I for an example set of
time cost functions.

TABLE 1

PUT SET - qnsert item in set

I = proportion of time item 2lready in th2 set
X = average size of set
M = maximum size of set
'REPRESENTATION Set Empty Sat Non-Empty
Linked 1ist | 100 64 - £2*T + 6%\
AVL tree 56 180-1667+15.8*L0G (1)
Bit - Array | 146 + 3*[W/32] 43
Hash table 521 82-401 + 32/16
 Bit-string . -
with unsorted | 265 + 3*[W/37] 104-53n
Tinked list
- Attribute bit | . 27
Sorted variabls " 140 96-805+5.05%) +
length array ZG.S*LOGZ(A) -.3n%x

Our system has a library of representations for
sets, sequences and triples and a library of cor-
responding space and time cost functions. Before
the compiler attempts to choose representations for
a given program it must obtain information about
the use of the abstract data structures within the
program. This information is obtainad in three
ways: static analysis, monitoring, and user
interrogation.

The static analysis phase constructs a flow
graph of the program and does a symbolic evaluation
of the graph. This gives a model of the potential
contents of all the set and list varizbles and the
store of triples in terms of both pre-daclared items
and dynamically created items. By flow analysis,
vie can usually prove that variables will never con-
tain certain items and that the associative store
will never contain certain triples of items. Static
analysis is also used to obtain a partition of
variables into classes which should be considered
as units when choices of representation are made.
There is usually no inherent reason why any two
sets of a program need to be represented in the
same way. - However, translation of representation
is usually quite expensive and in general should be
avoided. OQur static analysis determines which
variables are used in the same expressions (e.g.
union and intersection) or are involved in the
same assignment statements. Such variables will"
be represented in the same way. The partitioning
also finds which operations are performed on mem-
bers of each representation class. This informa-
tion 1s used to eliminate certain representations -
as candidates for a class because they don't provide
- all the required primitives.

Monitoring sample executions of the program
with user supplied data sets and direct inter-
rogation of the user provide the frequency of
each orimitive operation as well as the paramesters
to the time and space functions. In the current
implementation, monitoring is used to determine
the frequency of the various statements of tha
program. The compiler asks the user the values
of such things as the average size of 2 set at a
given voint in a program, amount of ovarlao
betwieen sets involved in a union or intersection
and so forth. Thus the system can mzke reasonable
guesses of the values of the cost functions.

The final selection is done by choosing those
representations which minimize the total expected
cost of a program (space-time product) bzsed on
the information drived above. Interactions bstween
choices are considered in the analysis of the
tradeoffs of space and time for representations of
individual abstract data structures.

Selection of Associative Data Structurss

The selection systen provides a gensra2l frema-
‘work in which to study data structure design. A
large part of our recent effort has bean directed
towards the extension of the system to thz selsc-
tion of associative data structures. 1In particular,
we are looking at several alternate data struc-
tures for the store o7 triples in SAIL (s=2 Appen-

. dix II). These structures consist of variations and
combinations of four basic types: records, hash
tables, property lists, and inverted files.

. There are many different associative data struc~
tures. We have chosen a representative collection
of structures to analyze (see Appendix II}. We
purposely chose enough structures to requiras the
development of methods for managing combinatoric.
explosion in the selection process. A rezl
selection system would ba impossible without such
methods. In addition, the collection of structures
is rich enough to allow the system to consider the
issue of sharing vs. redundancy as it selects z
data structure. :

An analysis of these structures to yisld rules
for their applicability and formulas for thair
space and time costs is complete. A detailed
gxamp1e of these formulas is contained in Appen-

ix II. -

As in the case of sets and lists, selection of
‘a8 data structure for triples is based on the 2p-
plicability of the structure to the operations of
the program, and on estimates of program exscution
time and storage requirements. These estimates
are derived from a static analysis of the program,
from monitoring example executions, and from ques-
tions asked of the programmer. Appendix II
contains examples of such quastions.

The Associative Model
As the system analyzes a program, it builds a

model of the store of triples and the cpzrations
that are performed on it.

The model of the store of triples reflects the
use of these operations by the program. The set of
"make" operations is divided into classes. Two
make operations are put into the same class if
there is an "erase" or "search” operation that
could match triples created by both. For each
class,. the associated erase and search opsrations
are listed. This partitioning reduces tne problem
of analyzing the entire store of triples for data
structure selection to several smaller problems.
No operation effects more than one class.

Within a class, the search and erase opsrations
are categorized by their "form". This is dater-
mined by the arquments to the operation: whether
they are given items, "bound variables", or "any".
There are 27 (3x3x3) forms.

Proposing Candidate Data Strucfhres

The system uses the structure inherent in a

© set of associative operations to identify candidate
data structures for the class of triples. For
example, assume that the form of all search and -
erase operations is such that the Attribute and
Object positions are always specified and there
are a fixed number of items (known at compile time)
- that could appear in the Attribute position. Each
such item could be used to select a fixed field of
. the given Object in which to find a Value. MNore-

. over, if there will be only one Value for a given
Attribute-Object pair, then there is no need to
allow for a set of Values. This data structure is
termed a "field selection record". A similar col-
lection of such rules-is associated with each data
structure that the system knows about.

One of the problems arising from our decision
to deal with a large library of data structures.is
combinatoric explosion in the selection process.
Much of our effort was spent in devising methods to
manage this. In addition to the early use of ap-
plicability rules, the system computes and stores
useful information about each operation to avoid
re-computing it as each data structure candidate
is considered. Also, sets of candidates which
differ in minor ways are treated as units whenever

-9-

possible. For instance, in the previous example,

if there is more than one chojce for which component
of the triple form to consider the Attribute, the,
candidate structure is not split into separate
candidates for each choice unless a preliminary -
cost analysis indicates that different costs are
associated with the different choices. IT one
choice is worse than somz other in both space and
time, it is eliminated. '

The proposal of candidate structures proceeds

in three phases. First, each search and each erase
operation is analyzed to determine the set of ap-
plicable associative retrieval techniques. These
include the selection of a field of an object -
record, hash table lookup, property list search,
and searching various types of lists of triples.
Next, each data structure is considered in a process
of "matching®: if the associative retrieval tech-
niques provided by the structure realize the needs
of the set of operations, and the applicability
rules of the structure are satisfied, then the
structure is proposed as a candidate for thne set of
operations. It should be noted that each such '
candidate might represent several instances of a
. more general structure. For each candidate, the
- process of matching identifies the assaciative

retrieval technique to be used for each operation,
and the set of choices for realizing each operation.

The third phase is the proposal of candidate.
structures that exhibit redundancy. The set of
associative operations might be mora efficiently -
realized as two (or more) subsets, each cdealing
with a data structure that is well-suited to its
operations. The savings in time may outw2igh the
cost of storing more than one copy of the set of
triples. One problem in this phase is combina-
toric explosion of the number of candidates.
Heuristics are required for selecting only plausible
partitions of the set of associative operations.

The present system is working through nhase two
of candidate structure proposal. A detailed ex-
ample of its output is contained in Appendix II.
The immediate next steps in the research are to
experiment with methods for phase thres, and push
through more examples. The task of finishing the
.code which implements the cost formulas and does
final selection is straightforward, and will pro-
- ceed in parallel.

-10-

" Summary

Our system demonstrates the feasibility of the
automatic selection of high-level data structures
such as the sets, 1lists, and triples of SAIL. In
combination, . the techniques of analysis and in-
formation-gathering have been successfully zpplied
[L0w74]to programs that use sets and lists. Our
preliminary analysis of the problem of selnct1ng
representations for triples shows that there is
much structure in a store of triples and in the
associative operations of a program. Our current
research is an attempt to understand how this
stricture should be used with the other tecnnlques
to select assoc1at1ve data structures. .

APPENDIX I

Brief Description of SAIL

SAIL is an ALGOL-60 based artificial intel-
Tigence language. The abstract data structures of
.SAIL [Feldman&9, VanlLehn73] include ITEMS, SETS of
items, LISTS (sequences) of items, and TRIPLES
(associations) of items.

An ITEM is essentially a reference to a
-variable allocated from 2 heap. Items are
normally used to. represent abstract objects and
the names of binary relations. ‘

A SET is an unorderad collection of distinct
items. A set variable is declared in the same way
as any arithmetic variable. Set expressions in-
clude the union of sets, intersection of sets and
explicit sets (e.g. {a, b, c} where "a", "b", and
"c" are jtems).

A LIST is an ordered collection of items. An
item may appear in a list rore than once. List
operations include concatenation, sublist extrac-
tion, and subscripting. : :

The TRIPLE is used for general mappings between
items. Triples consist of three items, termed (in
order) “Attribute”, "Object" and “"Value". The
first item, the Attribute, is often used as the
name of a binary relation between an Object and a
set of Values. The store of triples and the opera-
tions on it are fully symmetrical, however. The
language imposes no constraints on the interpre-~
tation of the position of an item in a triple. The
syntax for triple forms is {(<item>-<item>=item).
There are three kinds of opesrations on triples in
SAIL:

1. MAKE, which adds a given triple to the
store of triples.

2. ERASE, which removes specified triples from

: the store of triplas. Each of the three
arguments to the erase oparator is either
an item, or the key-word "ANY". The
arguments to erase are treated as a pattern
which is matched 2gainst the store of
triples. Uhere "ANY" is used, any item
will match. Triples which match are re-
moved from the store of triples..

3. SEARCH, which locates spacifiad triples in
the store of triples. As for erase, the
three arguments to search are treated as

- a pattern which is matchad against the
store of triples. In addition to items
and the key-word "ANY", an argument to
search can be a "bound variable". I the
arguments are all items or "ANY", then
search behaves 1ike a Boolean-valuad
function, returning true if the pattern
matches, false otherwisz2. If there are .
any arguments which are "bound variables”,,
then search behaves 1ikz a “generator”,
enumerating the triples that are found to
match the pattern. As each triple is
found, the "bound variables" in the pattern
will be assigned the caorresponding items
of the matching triple.

APPENDLIA 11}

Selection of Associative Data Structures: Examples

This appendix contains several glimpses of .
detail from the experimental selection system. It
has five parts:)

A. A description of the data structures which
are considered by the system.

B. Time and space formulas for one of them.

€. Examples of questions which the system
asks the programmar.

D. Partial results of the system's analys1s
of an example SAIL program.

E. The example SAIL program listing.

A. The Associative Data Structures Known to
the System

The candidate associative data structures con-
sist of variations and combinations of four basic
tyoes: records, property lists, inverted files,
and hash tables. From the many poss1b111t1es vie
have chosen a representative collection of struc-
tures to analyze. These are listed and described
below. In the discussion, the three positions of

the triple form are identified with particular
- roles in the various data structures. This is done
for expository reasons. The system recognizes
symmetries and permutes positions of. the triple
form when appropriate.

1. Field Selection Records (FSR)

A field selection record is a block of con-
txguous storage cells. The address of the
block is obtainable from one of the three items
of the triple (the Object). Another of the
items (the Attribute) determines a storags cell
within the record and a field of this cell.

The third item of the triple (the Value) is
stored in the specified field. FSR's are con-
venient for associative searches in which two
of the three items are given, and the Attribute
is from a fixed set of items. FSR's are usual-
1y wasteful of memory space (compared to hash
tables or inverted files) unless there is at
least one Value for most Attributes of most
Objects most of the time.

There are three types of FSR's:

a. FSRBIT: One bit is sufficient to
represent the value.

b. FSR1VAL: The binary relation is
- single-valued. :

c. FSRSET: There cén be more than on2
value.

2. Property List

This data structure associates a set of
(Attribute-Value) pairs with each Object. The
address of a 1ist of elements is obtained
from the Object's record. Each element con-
tains an Attribute and anordered 1ist of Values.
The 1ist of elements is ordered by Attribute.

Property lists are superior to hash tables
where space is at a premium and the number of -
triples varies widely with time. They are
superior to FSR's when space is at 2 premium
and most Attributes do not have values most of
the time.

3. Inverted Files -

An inverted file is a list of triples.
Each triple.is represented as a block of
storage cells which contains the three jtems
of the triple. The list threads all blocks
that have a particular item in a given
position. There are two types of inverted
files: :

a. Simple: A one-way list of triples for--
one position, perhaps ordered by the
items in another position.

b. Complex: multiply-threaded triples.

- Each triple block is an element in
several lists. Eacn list cen be
ordered, and either one-way or two-way.

http:triple.is
http:Attribute-Val.ue

Inverted files are convenient for associa-
tive searches in which anly ons item is given.
They are also useful ror storas o7 triples that
vary widely in size and in place of FSR’'s for
cases where the set of Attributes is not fixed
before program execution. Thay are wasteful
of processing time for associative searches in
which more than one item is given.

4. Hash Tables

A hash table is a block of contiguous stor-
age cells. A function which maps triples to
cell addresses within this block is used both
to insert new triples and for associative
retrieval. Each cell contains a pointer to

the 1ist of triples which map to tha cell.
Associative retrieval via hash tables requires
a combination of address computation and search-
ing. Care is required to match the design of
the function to the properties of the set of
triples, to avoid largs discrepancies in the
Tength of lists. Hash tables are convenient
for associative searchas in which more than
one item is given, or the set of Attributes is
not fixed and ¢omputation time is at 2 premium.
Hash tables are not convenient vhen space is at
a premium, and the size of the store of triples
varies widely as the program runs.

There are two classes of hash tables:
a. AN threé items are hash operands..

There are four types of data structure
here: .

‘1) SIMPLE: each conflict list elemcnt
(CLE) contains the threes items of
the triple.

2} POINTERS TO TRIPLE BLOCKS: each
CLE contains a pointer to 2 triple
block. This allows sharing with
inverted file structures.

3) SINGLE LINX: each CLE conteins a
pointer to a triple block aad is
threaded in a on2-way inveried
file. This allows mors intirate
sharing. .

MULTIPLE TWO-%AY LINKS: each CLE
contains a pointer to & iriple
block and is thrzeded in on2 oOr
more two-way inverted files.

Two items are hash operands.

There are twelve types of dat2
structure here:

1)

2)

3)

4)

5)

6)

SIMPLE: each CLE contains the two
hash operands (Attribute and Object)
and a pointer to a list of Values.

POINTERS TO TRIPLE BLOCKS: each
CLE contains 2 pointer to a list of
pointers to triple blocks. This
replaces the pointer.to 2 list of
Values. As for 1. above, each

CLE represents a particular
Attribute-Object pair, and each
entry of the list reoresents one
triple having that pair. ‘

SINGLE LINK: each CLE contains the
two hash operands and is threaded
in a2 one-way inverted file. The
key for the inverted file must be
one of the hash operands. Each

CLE contains a p01nter to a 1ist

" of Values.

SINGLE,LINK NITH POINTERS TO
TRIPLE BLOCKS: combination of

2 and 3 aboveﬂ

MULTIPLE THO-WAY LINKS: each CLE

contains the two hash operands and
is threaded in one or more two-way
inverted files. - The key({s) for

- the inverted file{s) must be from

the two hash operands. Each CLE
contains a pointer to a list of
Values.

MULTIPLE LINKS WITH POINTERS TO
TRIPLE BLOCKS:- combination of 2
and 5 above. ,

http:pointer.to

The remaining six types of data structure

{7 through 12) are variations of 1 to 6

above. Each entry on either the list of
Values or the 1ist of pointers to triple
blocks is threaded in a one-way inverted
file. The key for this inverted file is
the Value.

B. Example of Time and’Space Formulas: Field
Selection Records

1.

-where

SPACE (in 36-bit memory cells) =
(NA*NO)*(35+X)

NA = the number of Attributes
NO = the number of Objects
X = the average numbar of Values -

for a given Attribute and-
Object.

TIME
MAKE: Co+CpsqX{CotCu) + gy
ERASE

(3 items given) Co+C1+R*§f£E§f§hl-+ E*C3

(Value = ANY) - Co+Cy+DELCOST(X)

FIND

(3 items given) Co+ c1+z*x*(C%+Cu!
(Value = ANY) Co*Cy

(Value a variable) C,+Cy+V*GENCOST(X)

where

€, = time to compare two pointers

Ci = time to select 2 given field of a
given Object record, and pick up
its contents

C; = time to insert an element at a given
position in a list

C; = time to remove a given element of a
Tist . «

C, = time to pick up fhe pointer to the
next element of a Tist and jump

M = the fraction of MAKE operations
- which create new triples

Q = the fraction of MAKE operations that
find a similar triple (A-O=ANY)

R = the fraction of ERASE operations
that find a similar triple (A-O=ANY) -

E = the fraction of ERASE operatioﬁs

that find a triple to erase

Z = the fraction of fully specified
FIND operations that find a similar
triple

the fraﬁtion of FIND operations for
(A-O=variable) that find answers

DELCOST(X)

s
ft

the time to reclaim a list
of length X

%

i

the time to generate elements

GENCOST(X)
‘ .from a list of length X

C. Example Questions Asked by the System About
- the Store of Triples

1. .For a given Attribute and Object, what is
the average size of the set of Valuas?

2. For a given Object, how many Attributes
(on average) will have at least one Value?

" 3. What fraction of (A-0=V) questions would
find answers if they were (A.0=ANY)
questions? ‘

4. How many triples (on avera§e) will have 2
: given value? -

5. What fraction of (A-0=ARY) quastions have
answers (on average)?

6} What fraction of MAKE operation executions
would create a triple that already exists?

7. What fraction of MAKE 6peration executions
vould find a triple which has the same
Attribute and Object?

8. MWhat fraction of ERASE gperation executions
find something to erase? ‘

D. Example Analysis

This section contains partial results of the
system's analysis of an example SAIL program.
These consist of a collection of candidate renre-
. sentations for subsequent cost analysis and final
selection. After a brief introduction to the
example program, the candidate representations are
described. Each candidate is listed with 2 refer-
ence to the description of its prototyps in
section A of this appendix.

The attached test program constructs tha
minimal spanning tree for a given graph and prints
out information about its "cost". The algorithm
deals with disjoint sets of nodes, and selects
-edges with the smallest cost which connect nodss

from different sets. Each time en edg= is found,
the two sets are merged. The result is a set of
edges which form the minimum cost tree which spans
the graph. A set of nodas is reprassnted by e
{single valued) binary relation of thz following

form:
(SETOF --NODE = SET)

The primitive associative operations of the program
are:)

1. MAKE (three given items);

2. ERASE (given item - ANY= given item);

3. SEARCH (given item -given item = variable);
4. SEARCH (given item °variable.= given item).

The system finds that most of the associative
-retrieval techniques are applicable to each of the
“"erase" and "search" operations, but discovers only
six candidate representations to propase for the
operations taken togéther:

1. Threaded Triple B1ccks‘(A3b)

Each triple is represented as a block of
storage cells having two threads. Each' ‘
thread is associated with a position in the
triple, and is part of a 1ist of triples that
have :the indicated item in the indicated
position. The first thread is in either the
Attribute position or the Object position, and
is used by operation 3. The second thread is
in either the: Attribute or the Value position,
and is shared by operations 2 and 4. The
first thread is two-way to expedite the re-
moval of triples which are to be erased. Both
threads are ordered. In this example, the
first thread represents either a list of all
triples, ordered by nodes, or the one triple
vhich identifies the set containing a given
node. The second thread represents either a

- 1ist of all triples, ordered by sets, or 2
1ist of triples which identify nodes belonging
to a given set. ‘ :

2. Object-Threaded Hash Table Entries (A4b7)

In this case, operations 2 and 4 share a
hash table to find a 1ist of Objects, given
the Attribute and Value. In the example, this
is a 1ist of nodes which are in 2 given set.
Each Object is threaded in a list of hash-table
entries for the Object. Operation 3 uses tnis
list to find the set for a given node.

3. Value-Threaded Hash Table Entries (A4b7)

This is a variation on candidate 2. Opera-
tion 3 uses the hash table to find a list of
Values, given the Attribute and Object. In the
example, this list would have one entry: the
set which contains a given node. Operations 2
and 4 share the thread through Values. The
thread represents a 1ist of nodes for a given
set. . :

4. . Attribute-Threaded Hash Table Entries (A4b3)

) This is similar to candidate 3, except that
operations 2 and 4 share a thread through
Attributes. 1In the example, this thread repre-
sents a 1ist of all triples. For non-single
valued relations, each element of the thread
would represent the collection of triples that
have a particular Attribute and a particular
Object.

5. Hash Table and Threaded Triple Blocks(A4b2)

In this case, operations 2 and 4 share a
hash table to find a list of Objects, given
the Attribute and Value. As for candidate 2,
this is a list of nodes which are in a given
set. The difference is that hash table entries
are pointers to triple blocks, which are
threaded either in the Attribute position or
the Object position. Operation 3 uses this
thread. The thread is two-way, to expedite
erases by operation 2.

6. Attribute Threaded Hash Table and
Threaded Triple Blocks (A4b4) ‘

This candidate provides a hash table for

- operation 3, an Attribute thread for operation
2, and a two-way triple block thread for
operation 4. We would expect the preliminary
cost analysis to reject it in favor of other
candidates.

-10-

~ As the system analyzes its model, it asks
questions of the user when it needs to do so. For
this examnle, it asked two qusstions:

1. For a given Attribute and Obgect, is there
only one Value? .

2. For a given Attribute and.Va]ue, is there
only one Object?

If operation 3 were not present in the example,
the system would have proposed a candidate repre-
sentation when provides a 1ist of nodes for
each set. Each Value would be represented by a
- record having a fixed field for the SETOF Attribuyte.
The field would contain a pointer to a 1ist of
NODE items. Operations 2 and & would use the
given Attribute to select this field of the given
Value. If only operation 3 were present, a similar
candidate representation would associate a given
node with its set. One of the next steps in the
research will be to consider multiple (redundant)
representations as candidates. In our example,
the system will then be able to consider the
combination of the above two representatxons as a
single candidate. One difficulty here is dea]xng
with the erase operation. A general technique is
to convert erase operations to loops with two
operdations: a search with variables in place of
"ANY"s, and an erase with all items specified.

-11-

E. Example SAIL Program Listing: Finim2] Soanning Tree Construction Algoritnm

BEGIN "SPHTRE”

"REQUIRE 100 NEW!ITEMS;

LIST EDGES; COMMENT THE PRIORITY QUEUE OF EDLCZES GF THE GRAPH;

L LIST ITEM A,B,C,D,E,F,G,H; COMMENT NODES OF HOMEMADE G\nPH' ‘

STRING ITEM NAMEA, NAMEB, NAMEC, NAMED, NAMEZE, NAMEF, NAMEG, NAMEH; COMMEHRT MAMES OF HOD

LIST ITEM EDGEAB, EDGEAC, EDGEAH, EDGECE EB"BC EDGESH, EDuEEF EDGEGH EDGEEH, EDGESE
EDGEDF EDSEBG EDGEFG EDGECD EOG”EG -

ITEM SETOF; COMMENT SET MEMBERSHIP RELATION: (SETOF - ELT = SﬁT};

COMMENT EDGE COSTS;

INTEGER ITEM EcAB,EcAC,EcAH,EcCE,EcBC,EcBH;,EcEF,EcGH,EcEH,ECBE, EcDF EcBG,EcFG,EcCD,EcEG;
'SET SETOFVERTICES; COMMENT THE SET OF THE NOD S OF GRnPH

SET TREESET; COMMENT SET OF EDGES MAKING UP MINIMAL SPAUNING TREE;

LIST ITEMVAR EDGETEMP; COMMENT WILL REFER TO AN EDGZ ITEM;

LIST .ITEMVAR V,W, VERTEX COMMENT WILL REFER TO VERTEX ITEMS;

INTEGER ITEHVAR Ec; COMMENT WILL REFER TO COST OF ANl EDGE;

INTEGER COSTS; COMMENT COST SO. FAR OF SPANNING TREE;

INTEGER NVERTEXSETS; COMMENT NUMBER OF DISJOINT SETS OF HODES;

BOOLEAN PROCEDURE DISJOINTUNION(ITEMVAR MEMBER1,MEMBER2);
- BEGIN "DISJOINTUNION" ‘
ITEMVAR SETNAME1, SETNAMEZ, TEMPl‘ '
IF NOT (SETOF - MEMBERL = BIND SETNAMEI} AND (SETOF - MEMBERZ = BIKD SETRANMZZ) THEX
. ERROR; -
- IF SETNAME1 = SETNAME2 THEN RETURN(FALSE);
FOREACH TEMP1 | (SETOF - TEMP1 = SETNAMEl) 00
MAKE (SETOF - TEMP1 = SETNAME2);
ERASE. (SETOF - ANY = SETNAMELl);
DELETE(SETNAME1) 3
RETURN(TRUE);
END "DISJOINTUNION";

COMMENT START EXECUTION HERE;
COSTS := 03 '
TREESET := PHI;

COMMENT HOMEMADE GRAPH;

DATUM(A) := {{ NAMEA }};
DATUM(NAMEA) := "A";

DATUM(B) := {{ NAMEB }};
DATUM(NAMEB) := “B";
DATUM(C) := {{ NAMEC }};
DATUM(NAMEC) := "C";

DATUM(D) := {{ NAMED }};
DATUM(NAMED) := "D";
DATUM(E) := {{ NAMEE }};
DATUM(NAMEE) := “E"; '
DATUM(F) := {{ NAMEF }};
DATUM(NAMEF) := “F";
DATUM({G) := {{ NAMEG }};
DATUM(NAMEG) := “G";
DATUM(H) := {{ NAMEH }};
DATUM(NAMEH) == “H";

SETOFVERTICES == {A,B,C,D,E,F,G,H};

-13-

COMMENT EDGES IS AN ORDERED LIST OF EDGES, ORDERED BY COST;

EDGES := {{ EDGEAB, EDGEAC, EDGEAH, EDGECE, EDGEBC, EDGEBH, EDGEEF, EDGEGH,
EDGEEH, EDGEBE, EDGEDF, EDGEBG, EDGEFG, EDGECD, EDGEEG }};

DATUM(EDGEAB) := {{ A, B, EcAB }}:
DATUM(EDGEAC) := {{ A, C, EcAC }};
DATUM(EDGEAH) := {{ A, H, EcAH }};
DATUM(EDGECE) := {{ C, E, EcCE }};
. DATUM(EDGEBC) := {{ B, C, EcBC }};
DATUM(EDGEBH) := {{ B, H, EcBH 1};
DATUM(EDGEEF) := {{ E, F, ECEF }};
DATUM(EDGEGH) := {{ G, H, EcGH }};
DATUM(EDGEEH) := {{ E, H, EcEH }};
DATUM(EDGEBE) := {{ B, E, EcBE j3
DATUM(EDGEDF) := {{ D, F, EcDOF }};
DATUM(EDGEBG) := {{ B, G, EcBG }};
DATUM(EDGEFG) := {{ F, G, EcFG 1}
DATUM(EDGECD) := {{ C, D, EcCD }};
DATUM(EDGEEG) == {{ E, G, EcEG 113
DATUM(ECAB) := 1;
DATUM(ECAC) := 1;
DATUM(EcAH) := 1;
DATUM(EcCE) := 1;
DATUM(EcBC) := 2;
DATUM(EcBH) := 2;
’DATUM{ECEF) = 23
DATUM(EcGH) := 2;
DATUM(ECEH) := 3;
DATUM(ECBE) := 3;
DATUM{ECDF) := 33
DATUM(EcBG) := 4;
DATUM(ECFG) := 6;
DATUM(EcCD) := 8;
= 93

DATUM(ECEG)

-14-

COMMENT INITIALIZE SET OF DISJOINT SETS AND THE MAPPING BETWEEM A HODE AND THE

DISJOINT SET IN WHICH IT APPEARS:

FOREACH VERTEX | VERTEX IN SETOFVERTICES DO
MAKE (SETOF - VERTEX = NEW);-
NVERTEXSETS:=LENGTH(SETOFVERTICES);

COMMENT -NOW CONSTRUCT THE SPANNING TREE:

WHILE NVERTEXSETS.> 1 DO
BEGIN :
EDGETEMP := LOP(EDGES);
V := DATUM(EDGETEMP) [11;
W := DATUM(EDGETEMP) [2];
Ec := DATUM(EDGETEMP) [3]:
IF DISJOINTUNION({V,W) THEN
- BEGIN
~ COSTS == COSTS + DATUM(Ec);
PUT EDGETEMP IN TREESET; A
NVERTEXSETS :=NVERTEXSETS-1;
END; -
END; ’

COMMENT PRINT OUT THE SET OF EDGES OF THE MINIMAL SPANNING TREE;
OUTSTR(CRLF& "EDGES AND COSTS OF EDGES"});
FOREACH EDGETEMP SUCH THAT EDGETEMP IN TREESET DO

BEGIN | -
STRING ITEMVAR NODENAME1, NODENAMEZ;

V== DATUM(EDGETEMP) [11; W := DATUM(EDGETEMP) [2]; Ec
NODENAME1 := DATUM(V) [1]; NODEMAMEZ := DATUM(W) [11;

:= DATUM(EDGETEHMP)

OUTSTR(CRLF&,DATUN(NODENAMEl)&DATUH(NODENAHE?) & TRB & CVS(DATUM(Ec))):

- END;
OUTSTR(&RLF& "TOTAL COST OF SPANNING TREE =" & CVS(COSTS));
EMD "SPNTRE"

31

REFERENCES

[BAUMGART72] B. Baumgart. Micro Planner Alternate Reference Manual. Stanford
Artificial Intelligence Laboratory. Operating Note 67, Apr. 1972.

(EARLEY71a] J. Earley. Comments on SETL (Symmetric Use of Relations). SETL
Newsletter 52. Courant Institute NYU. September 1971.

J. Earley. Toward an Understanding of Data Structures. CACM, Vol.
[EARLEY710] 14, 10, October 1971.

[EAﬁLEY?33 J. Earley. An Overview of the VERS2 Project. Electronic Research
Laboratory, College of Engineering memorandum ERL-M416, December
1973, University of California at Berkeley.

(EARLEY74] J. Earley. High Level Iterators and a Method of Automatically Design-
ing Data Structure Representation. Electronic Research Laboratory,
College of Engineering memorandum ERL-M425, February 1974, Univer-
sity of California at Berkeley.

[FELDMAN6I] J. Feldman and P. Rovner. An Algol-Based Associative Language.
' : ACACM, Vol. 12, 8, August 1969. ;

(LOW74] J. Low. Automatic Coding: Choice of Data Structures. Technical
Report #1, Computer Science Dept., University of Rochester.

[MCDERMOTT72] D. McDermott and G. Sussman. The Conniver Reference Manual. Al
o Memo No. 259, M.I.T., May 1972.

[MORRIS73]‘ J. Morris. A Comparison of MADCAP and SETL. University of Cé]i-
\ fornia, Los Alamos Scientific Laboratory, 1973.

[ROVNER761 ! P. Rovner. Automatic Selection of Associative Data Structures.
o Ph.D. thesis, Dept. of Mathematics, Harvard University (in preparation).

[SCHWARTZ75a) J. Schwartz. Automatic Data Structure Choice in a Language of Very
@ High Level. Second Symposium on Principles of Programming Languages.
‘ Palo Alto, California, January 1975.

[SCHWARTZ75b] J. Schwartz. Optimization of Very High Le§e1 Languages--I. Value
Transmission and its Corollaries. In Computer Languages, Vol. 1,
pp. 161-194, Pergamon Press, 1975. .

- [SUSSMANT7O G. Sussman, T. Winograd, and E. Charniak. MICRO-PLANNER Reference
Manual. AI Memo 203. Project MAC, M.I.T., July 1970.

[SUSSHMANT2) G. Sussman. Why Conniving is Better than Planning. AI Memo 255.
M.I.T. Artificial Intelligence Laboratory, February 1972.

VANLEHN73] K. VanLehn. SAIL User Manual. Stanford Computer Science Technica
! Report STAN-CS73-373, July 1973. :

