
INDUCTION VARIABLES IN VERY HIGH LEVEL LANGUAGES*

Amelia C. Fong and Jeffrey D. Ullma~
Princeton University

Princeton, N. J. 08540

Abstract

We explore the notion of an induction variable in the context of ~ set-
theoretic programming languge. An aoorooriate definition, we believe, in-
volves both the necessity that changes in the variable around a loop be
easily computable and that they be small. We attempt to justify these re-
quirements and show why they are independent assumotions. Next the oues-
tion of what operators on sets play the role of +, ~ and * for arithmetic
languages is explored, and several theorems allowing us recursivelv to
detect induction variables in a loop are given. It is shown that most of
the usual set operations do fit nicely into the theory and help form induc-
tion variables. The reason most variables fail to be induction variables
concerns the structure of control flow, more than it does the operators ap-
plied.

i. Background

"Reduction in strength," that is, the
replacement of multiplication by addition
in a iooo, and its attendant detection and
elimination of induction variables (those
whose va'lue assumes-an-ari~m~r~--~rogre s-
sion at a ooint) forms a key optimization
for arithmetic languages like FORTRAN
[1-4]. Recently, there has been consider-
able interest in algorithms for performing
this kind of optimization [5-7]. However,
in the FORTRAN environment, there is never
more than a constant factor speedup avail'-
able by these methods.

On the other hand, recent proposals
such as [8-9] have dealt with reduction in
strength applied to set-theoretic
languages. In this context, reduction in
strength becomes a method for altering al-
gorithms to improve their asymptotic run-
ning time, and order of magnitude improve-
ment is possible. Earley [8] proposes
"iterator inversion." which is a powerful
techniaue for improving alqorithms au-
tomatically. Unfortunately, as [8] ad-
mits, it is not clear how to tell in ad-
vance whether a transformation is helping
or hurting the running time.

Our answer to that problem is that a
set of permissible transformations must be
built up "from the bottom," starting with
a few obviously safe transformations and
developing additional safe transformations
recursively. Schwartz [9] has a similar
idea, based on the notion of "continuous"
functions, where an expression
e(xl, x~,..., x) is said to be continuous
in x~ zif sma~l changes in (~-esumably
set-vAlued) variable x~ produces a change
in e which can be easily calculated from
the old value of e and the old and new
values of x.. We propose a related idea,
but one which we beiieve is more aeneral
in its treatment of Boolean valued opera-
tors on sets, such as the relation of set
inclusion, and in its extension from ex-
pressions to proarams.

2. The Model

We assume a set-oriented language
such as SETL [10]. The operations which
we assume can be done in unit time are:

(i) arithmetic on integers

(2) insertion of an element into a
set

* Work partially supported by NSF grant DCR-74-15255.

I04

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800168.811544&domain=pdf&date_stamp=1976-01-01

(3) deletion of an element from a set

(4) selection of some member from a
set

(5) testing whether an atom is in a
set

These assumptions are valid, at least
in an expected time sense, if one uses a
hash table representation for sets, such
as in [10] , with elements which are sets
represented by pointers to their values.
We take it as a corollary to (4) that a
set may be tested for emotiness in unit
time.

It is assumed further that we are
presented a program as a flow graph, with
basic blocks consisting of three-address
statements, e. g., A = B U C, but not A =
B U C ~ D, which would appear as:

T = C ~ D
A = B U T

3. Goals

We are interested primarily in
developing a theory of induction variables
and reductions in strength for set-
theoretic languages that is analogous to
the one for FORTRAN-like ones. However,
in the environment of a set-theoretic
language, where large amounts of time are
already given up to system overhead, it
does not make sense to concern ourselves
solely with constant factor speedups, as
one does for FORTRAN. We orient our de-
finitions so that induction variables are
those for which an order of magnitude im-
provement in the running time of the pro-
gram is possible by properly evaluating
its induction variables.

4. Induction Variables
.

The canonical situation for a FORTRAN
level induction variable is a loop in
which statements like:

I = I + l
J = 2 * I

appear. If I is not changed elsewhere in
the loon, it is clearly an induction vari-
able. Moreover, J is an induction vari-
able, at least at the point immediately
after J = 2 * I. We can arrange to. main-
tain the value of J by additions and sub-
tractions only, if we create a temporary T
whose value is always twice that of I.
Then follow I = I + 1 by T = T + 2, and
where I is initialized outside the loop,
initialize T to twice I. Replace J = 2 *
I by .~ = T, yielding the sequence:

I = I + l
T = T + 2
J=T

In many cases we can dispense with I
and/or identify J with T, adding to our
savings. In any event, we have eliminated
the "expensive" multiplication at the cost
of several copies and additions- perhaps a
worthwhile change.

Now let's repeat the above in the
set-theoretic context. It is generally
recognized that the basic role played by
statements of the form I = I + 1 and I = I
- 1 in the arithmetic world belongs to S =
S U {x} and S = S - {x} in the set world
(see [8,9]). These statements are just
insertions and deletions of elements,
operations which we have taken as primi-
tive. We might see in a loop the pair of
statements:

A = A U {x}
C = A U B

where B is presumed constant within the
loop for simplicity in our present infor-
mal discussion. It is natural to suppose
that we could create set T, whose value
will always be that of A U B. Then we
could follow A = A U {x} bv T = T U {x}
and initialize T to A U B outside the
loop. If we replace C = A U B by C = T we
have:

A = A U {x}

T = T U {x}
C = T

Have we saved significantly here? The
answer is that probably we haven't, since
the operation o~ copying T and assigning
the value to C takes the same order of
time as computing A U B.

Of course it is possible that on ex-
amination of the entire loop we would find
that C and T could be identified, thus re-
placing the union of arbitrary sets A and
B by the adjoining of one element x. This
would definitely be an order of magnitude
savings. However, it is possible that the
value of C is used in the loop in a way
that makes its identification with T im-
possible. In that case, we propose the
following.

Definition: A loop is a set of blocks with
a heater which dominates all other blocks
in the loop, i. e., access to the loop is
via the header only.

Definition: Define ~(A, p) , for identifier
~+ and point p to be the pair of sets

(A, D) and ~-(A, p) , where 21+(A, p) is

105

the set of elements added to A and not re-
moved from A since the last time control
passed point p, and Z~-(A, p) is the set of
elements removed from A and not added.
That is, Z~+(A, D) and ZI-(A, D) are new set
valued identifiers whose value it is Dos-
sible to maintain. Every time control
passes point p, we set z~(A, n) to (~, ~)
and alter ~(A, D) as the "current" value
of A changes and as long as control does
not again reach p.

Definition: Call A an induction variable
of loop L at point p if there is a con-
stant upper bound on the work necessary to
maintain the value of ~k(A, p) between any
two consecutive times that control passes
point p, staying within loop L.

Returning to our informal example of
the statements:

A = A U { x }
C = A U B

we may let D be the point immediately fol-
lowing C = A U B. If the only assignment
to A in the loop is A = A U {x}, then
surely ~(A, p) can be maintained in con-
stant work by writing the Piece of program
as:

if x not in A
--then Z~+(A, D) = ~+(A, p) U {x}
A = A O {x}

C = A U B

A+(A, p) =
/~-(A, o) =

If B is a constant within the loop,
we can use ~X(A , p) to simulate the assign-
ment C : A U B. Technically, what happens
is this. We observe that since B presum-
ably does not change, the change in the
expression A U B from point p is almost
the same as ~(A, p). In particular,

A+(AUB, O) = A+(A, P) - B and ~.~.~(AUB, D) =
~X-(A, p) - B. If both ~i (A, D) and
~-(A, D) are bounded, as they are in this
example, then ~X+(AUB, p) is easy to com-
pute. In general, if A and B vary in the
loop, we can compute ~X(AUB, p) from
/~(A, p) and A(B, p) , provided both are
small.

Now we assume that C is only assigned
at C = A U B within the loop. Therefore,
~(C, p) = ~(AUB, p) , and we can replace
the above program by:

if x not in A then
- - A + (A , p) = ,K~(-~, p) u {x}
if x not in B then
- - ~ + (A U B , p) =~÷ (AUB, p) U {x }
A = A U {~}
C = C U ~ (AUB, p) -~(AUB, p)
Z~ +(A, p) =
~(A, p) = 96
~k (AUB, p) =
~k- (AUB, p) = ~6

Note that the ~-'s can be ignored here but
were included for form. Also, depending
on what goes on elsewhere in the loop, we
may drop consideration of ~(A, D) or even
of A itself.

We see that in the above simple case
we have been able to replace a union of
arbitrary sets A and B by unions and
differences of sets that remain small, in
fact they have at most one element. Thus
an asymptotic order of magnitude savings
has been achieved.

We would now like to formalize furth-
er the two important factors in this type
of code improvement, (i) the ability to
efficiently maintain f~(e, p) for expres-
sions e and (2) the boundedness of these
sets.

Definition: We use ~(e, p), for expression
e and point p, to stand for the pair
~+(e, p) and ~(e, D). Zi+(e, p)
represents the set of elements added to
the set denoted by e and not removed from
that set, since the last time control
passed point p. ~-(e, p) represents the
set of elements removed from and not added

to that set since control last passed p.
Note that this definition coincides with
the earlier definition of ~ in the case e
is a single identifier.

We say e is an induction e_xpression
of loop L at point p whenever we can main-
~in~(e, p) with a bounded amount of work
between successive times through point p,
as long as control does not leave L.

Definition: Let us say an expression is of
limited perturbation at point D in loop L
i ~ , ~--and ~-(e, ~ are of bounded
size as lonq as control stays within loop
L.

It is important to note that the no-
tions of "induction expression" and "ex-
pression of limited perturbation" are not
the same, nor does one imply the other.
For example, ~k+(e, p) miaht be known to be
either ~ or {a}, but we have to solve the
halting problem for Turing machines to
tell which. Thus an expression could be
of limited perturbation yet not be an in-
duction expression. Conversely, consider
the situation of Fig. i, where A could be

106

q I,A = B'U C] r lA D U E I

P

Figure i.

assigned either B U C or D U E before con-
trol reaches point p. Then if B U C and D
U E are induction expressions, at points q
and r, respectively, we shall see that A
is an induction variable (hence an induc-
tion expression) at point p. yet B U C
and D U E can differ by arbitrary amounts,
and we might travel a path such as
q...p...r...p, so ZI(A, p) is surely not of
limited perturbation.

5. Building Induction Variables and

We shall now develop the mechanism
whereby induction variables can be detect-
ed in a straightfoward manner and reduc-
tion in strength performed on them where
possible, retaining the assurance that
what changes to the proqram are made will
actually improve things. The theorems
presented here encompass most of the stan-
dard set oberators. The implication is
that the reason reduction in strength can-
not be performed in many cases has to do
with the structure of control flow in the
program rather than the properties of the
operators used in calculation.

The first theorems enable us to con-
struct new induction variables and expres-
sions from old ones. These theorems will
all be stated in a simple form that ig-
nores the possibility that two or more
variables could be mutually dependent in-
duction variables, e. g., in a loop con-
taining assignments A = B U {x} and B = A
U {y}, both A and B might be induction
variables. Once the principles are under-
stood, this type of extension is easy.

Definition: Call an assignment incidental
if it is of the form A = A U {x~ or A = A
- {x}.

Theorem i: If in iOOD L, identifier A has
o61y-Tnc~dental assignments, then it is an
induction variable and is of limited per-
turbation at all points in L where there
is a bound on the number of incidental as-
signments to A encountered going from p to
p in L.

Proof: The size of Z~+(A, D) and /i-(A, p)
changes by at most one and can be updated
by a bounded amount of work each time an
incidental assignment of A is encountered.
Since there is only a bounded number of
incidental assignments of A ~oing from P
to P within L, the size of ~T(A, p) and
L~(A, p) , and the total work involved in
maintaining ~(A, p) from p to p are also
bounded. Hence A is an induction variable
and is of limited perturbation at p.

The example in Figure 2 shows a si-
tuation where A is not an induction vari-
able and is not of limited perturbation at
a point p in loop L even though all as-
signments to A in L are incidental.

Theorem 2: If in lOOn L, A and B are in-
duction variables and of limited perturba-
tion at point p, then A U {x}, A - {x}, A
U B, A I--I B and A - B (in general, any
binary Boolean operation on A and B) are

"induction expressions and of limited oer-
turbation at p.

Proof: We shall show that if e is one of
the expressions A U ix}, A - {x}, A U B, A
I-I B, A - B, then ~r(e, p) and ~-(e, p)
are bounded in size and can be obtained
from ~(A, p) and /i(B, p) using a bounded
amount of work. Hence e is an induction
expression and is of limited perturbation
at p.

First let e be the expression A U
{x}. Then ~(e, p) can be calculated from
~(A, p) by the following program:

/ .

o '

Figure 2.

107

~+(e, p) = ~x+(A, D)
fi-(e, p) = Zx-(A, p)
if x in ~-(A, D)
-- then Z~-(e, P) = ZX-[e, p) - {x}

%ise if x n0t in ~i~(e, D)
teen Z~ +(e , p) : Z~ +(e , D) u {x}

Since ~+(A, o) and ~-(A, p) are

((E U B) - (F U A) , (F U A) - (E U B))

Lemma i: Let D, a, r De points in loop L.
Suppose control passes from p to g through
path ii, then from g to r through path 12.
Let ~i I be the pair ~(A, p) at a after con-
trol ~asses from p to q through path ii.
Let ZX2 be the pair IX(A, a) at r after con-
trol passes from q to r through path 12. bounded in size and can be maintained us-

inq a bounded amount of work, ~+(e, p) and Let ZX- be ZX(A, P) at r after control
~-(e, p) are also bounded in size and can passesSfrom D to r through ii followed by
be obtained using a bounded amount of 12. Then if we write each ~; , i = 1,2,3
work. as the ordered pair ~, ~) , £hen

Similarly, let e be A - {x}. ~i(e, p)
can be calculated as follows:
~ + (e , p) = ~x+(A, p)
~i-(e, D) ~ ~-(A, p)
if x in Z~ (e, D) = z~i +
-- then ~i+(e, p) (e, p) {x}

else if x not in ~i-(e, p)
. t~en ~i-(e, P) = ~i-(e, D) U {x}

Let e be A U B. Then z~+(e, p) =
(A, D) U ~+(B , D) and ~-(e, D) =
(A, p) -v(b)] U ~-(S, p) - v(A)],

where v(A) and v(B) denote the current
value of A and B respectively.

Note that both ~X-(A, p) - v(B) and
~X+(B, p) - v(A) may be obtained in time
proportional to the size of ~-(A, p) and
~+(s, p).

For example , l e t C = ~ - (A , p) - v (B) .
C can be obtained by the following piece
of code:

c=~
for x in ~-(A, p) do

if x not in v(B) then C = C U {x}

Since we have assumed that membership
testing and insertion can be performed in
unit time, C can be obtained in time pro-
portional to the size of ~-(A, p).

+ Let e be A J--J B. ~hen ~+(e D) -

[A (A, p) J-J v(B)] U [A' (B, o) J-[V(A)?
and ~-(e, p) = /k (A, p) U fi (B, p).

Let e be A - B. Then z~i +(e, p) =

[~X+(A' P)e, - v(B)]" U [z~(Bi ! J-J viA)]
and ZX- (P) = ~- (A, ~) I-I (B, p) U
ES(A, EA IB, I viA) - v(B)] U

Before goin 9 on to Theorem 3, we need
some definitions of operations on the Zi's.

Definition: Let A,B,C,D be sets. De-
fine (A,B) [+] (C,D) to be the pair

((A-D) U (C-B), (D-A) U (B-C))

Definition: Let A, B, E, F be sets. Define
(E,F) [-] (A,B) to be the pair

(1) % :A 1 [+]%

(2) ~i 2 = ~i 3 [-] ~i

Proof: The proof of (i) is straightfor-
ward-and is omitted here.

B),
(i)

TO Drove (2) , let ~I ' ~o, ~ be (A,
(C, .D) and (E, F) resp@cti~elv. By

E = (A-D) U (C-B)

F = (B-C) U (D-A)

We claim that C = (E U B) - (F U A) , i.e.,
C = [(A-D) U (C-B) U B] - [(B-C) U (D-A) U
A] = [(A-D) U C U BI - [(B-C) U D U A].

Let T1 = (A-D) U C U B and let T2 = (B-C)
U D U A. We shall show that C is a subset
of T1 - T2, and T2 - T1 is a subset of C.

For all x in C, x is in (A-D) U C U
B, i.e., x is in Ti. Obviously x is not
in (B-C). Also x is not in D because C
and D are disjoint by definition of ~.
Again x is not in A because A End C are
disjoint due to the fact that ii and 12
are consecutive paths. Hence x is not in
(B-C) U D U A, i.e. not in T2. Therefore
x is in T1 - T2. i.e. C is a subset of T1
- T2.

TO Drove that T1 - T2 is a subset of
C, suppose the contrary, i.e. there exists
x in T1 - T2 which is not in C. Since x
is in T1 = (A-D) U C U B, and not in C, x
must be in either (A-D)-C or in (B-C). In

both cases x is in (B-C) U D U A, contrad-
icting the assumption that x is not in T2.
Hence T1 - T2 is a subset of C. Therefore
C = T1 - T2.

That D = (F U A) - (E U B) can be
proved in similar fashion.

Theorem 3: Suppose there is a unique as-
signment A = e which is always the last
non-incidental assignment to A before con-
trol reaches p, and that there is a bound-
ed number of incidental assignments to A
going from assignment A = e to Point D.

108

If e is an induction expression and of
limited perturbation at the point of as-
signment A = e, then A is an induction
variable and of limited perturbation at p.

Proof: Let q be the point of assignment A
= e . We want to show that ~(A, p) is of
bounded size and can be obtained using a
bounded amount of work.

Consider the path as control passes
from p the i-th time to p the i+l-st time.
Since q is always the last non-incidental
assignment before control reaches p, we
can consider the following three paths:
ii, followed by 12, followed by 13 where

i. is the path followed as control passes
f~om g to p the ith time.

1 o is the path followed as control passes
from p the i-th time to a .

i~ is the math followed as control masses
f~om q to p the i+l-st time.

Let ~ denote the value of ~(A, q)
after control masses from a to a throuqh
math 11 followed by i~. ~ is bounded in
Size ~nd can be maintained using bounded
amount of work because A is an induction
variable and is of limited perturbation at
g.

Let ~" denote the value of Z~(A, q) at
p ~fter control passes from q to p through
path 11 . Z~" is bounded in size and can be
maintained using a bounded amount of work
because there are only a bounded number of
incidental assignments between q and p.

Hence b v (2) of Lemma i, ~(A, P) at a
after control masses from p to a through
path 1 2 is given by

Z~ [-] A

Let ~" denote the value of A(A, q) at
p a£ter control passes from g to p through
path i~. By (i) of lemma i, Z~(A, p) when
controI passes from p to p throuqh path 1 2
followed by 13 is given by

Z~ [-] A" [+] Z~"

which is bounded in size anu can be ob-
tained using a bounded amount of work.

Theorem 3 illustrates a situation in
which A can not be identified with the ex-
pression e in the loop L, and shows how it
can be handled without using a temporary
the size of A or copying between A and the
temmorarv.

We can extend part of Theorem 3 to the
common case where A has a value outside
lo0p L, and the first time throuqh point p
after entering L, the external assignment

to A is the most recent non-incidental as-
signment. In fact, a far stronger result
is possible, as far as induction variables
are concerned.

Theorem 4: Suppose at point p in loop L
there are k possible assignments to A, say
A = e , A = e^,. ., A = e. which could be

z ." • K
the ~ast non-znczdental assignment to A,
and suppose all e i for which A = e i is ac-
tually in loop L are induction expressions
and of limited perturbation at the point
of assignment. Let qi be the point of as-
signment A = e i. suppose there is a
bounded number of incidental assignments
of A going from qi to p. Suppose further
that there is a bound on the number of as-
signments to A encountered going from p to
p in L. Then A is an induction variable
of L at p.

Proof: Intuitively, the value of A at p
switches among k expressions, each of
which is an induction expression. If k
copies of A are kept, where the i-th copy
has the value of A after its most recent

assignment to e i, Z~(A, p) may be
represented by a switch (an integer) and
the list ~(e., p) ~(ek, p) The
switch is set to i to indicate that the
i-th copy of A is currently applicable,
i.e. any reference to A should be made to
the i-th copy. ~f the last non-incidental
assignment to A before reaching p is A =
e , then ~(e~, p) = ~(e~ o) , if there is
n~ assignments to A b~fween g and p. If
there are incidental assignments to A
between a and p, ~(ei, p) may be obtained
as in THeorem 3. ~(e
are reset only if theila~ n~in~nt~
assignment to A before reachinq p is A =
e . The work to maintain the switch and
a~l the Z~'s is bounded, since each of the
~'s is maintained in bounded time, and the
switch is changed a bounded number of
times by the hypothesis of the theorem.

Note that we are missing from Theorem
4 a statement about A being of limited
perturbation of L at p. The reason, obvi-
ously, is that one cannot always conclude
such a statement, and Fig. 1 provides the
canonical example why not. Thus, while
one can oscillate between Theorems 2 and 3
to find more and more induction variables
and expressions within a loop, one cannot
do so between Theorems 2 and 4. We can,
however, extend the idea of the switch to
a generalization of Theorem 4.

Theorem 5: Consider a point p in loop L,
and suppose that the finite collection
e ,..., comprises all the formulas for
the val~ of variable A at p, in terms of
the values of variables the previous time
through point p. If each of the e "s are
induction expressions and of limited per-
turbation at p, then A is an induction
variable at p.

109

Proof: There are only a finite number of
different sequences of assignments which
can affect the value of A as we travel
from p to p within L, or else the set of
expressions for A would be infinite.
Represent ~(A, p) by a switch and the set
of ~(e ,p}-s for all 1 < i < k. k
"copieR" of A have to be kept so ~hat each
~(e~, o) represents the change with
respect to the i-th copy of A.

6. Boolean Valued Expressions

While we have stated our theory of
induction variables in great ~enerality,
when it comes to specific operators that
held form induction exoressions we have
only mentioned union, intersection and
similar operations. In fact, the theory
does extend nicely to the usual set
theoretic relations, such as inclusion.

When dealing with an expression like
A c B, whose value is Boolean, the ~ nota-
tion and the notion of limited perturba-
tion are meaningless, and in fact the ac-
tual value of the expression is no harder
to maintain than it is to increment. Thus
we define a Boolean valued expression to
be an induction expression of L at p if
its value (r-at~er than 1Ts increment) can
be maintained with a constant amount of
work from p to p within L.

Theorem 6: If A and B are induction vari-
a--bfes~- then A c B and A = B (as well as a
variety of similar relations) are induc-
tion expressions.

Proof: Consider A c B. By Theorem 2, A -
B--~s an induction exoression and of limit-
ed perturbation. The value of A c B can
be maintained bv computing A - B and test-
ing it for emptiness when it changes, a
task we assume takes unit time per change.
In the actual implementation, however,
only the cardinality of A - B, whose value
is 0 if and only if A c B, need be main-
tained.

Theorem 7: Boolean operations on Boolean
valued induction variables yield induction
expressions.

7. Applications to Iterators

We would like to extend the notion of
induction variable to interesting itera-
tors as discussed in [S] . Let us consider
the set former {x ~ A I S(x)} to be
specific. Now in the intermediate code we
use, this iterator is actually a loop of
its own, in which x runs through every
element of A. Since x is not an induction
variable here, the exoression {x C A I

S(x)} cannot be an induction expression
for this loop except under the most trivi-
al of circumstances. Thus, the set former

cannot be an induction expression in a
loop outside its own internal loop.

There is, on the other hand, a fairly
broad condition under which we can prove
an order of magnitude improvement in the
calculation of the set former is possible.

Theorem 8: Let L be a loop containing set
former {x C A l S(x)} at point p. Suppose
A and @(x) for all x which could ever be
members of A are all induction expressions
and of limited oerturbation at p in L.
Then the value of {x ~ A I S(x)} can be
maintained with work proportional to IAl +
costS(x) , where by cost~(x) we mean the
work necessary to compute ~(x) for any x
that may be in A. (Note that the
straightforward evaluation of the set
former requires IAl costS(x) work.)

Proof: Between any two consecutive execu-
tions of {x ~ A I @(x)}, the number of x
in A such that the value of ~(x) changes
is bounded by IAI. Since each S(x) is an
induction expression and is of limited
perturbation at p, the total work involved
in maintaining them is bounded by IAI.
Between any two consecutive executions of
the set former, the number of new elements
added to or deleted from A is also bounded
because A is an induction variable and is
of limited perturbation at p. The work
involved in the addition and deletion is
proportional to costS(x). Hence the total
work necessary is proportional to IAI +
costS(x).

Theorem 9: Let L be a loop containing the
predicate P(A) at p where P(A) is Vx G A :
~(x} or ~x C A : @(X). Suppose A and
~(x), for all x which could ever be
members of A. are all induction expres-
sions and are of limited perturbation at O
in L. Then the value of P(A) at p can be
maintained with work proportional to IAI +
cost@(x), where costS(x) is the work
necessary to compute @(x) for any x that
may be in A. (The straiqhtforward evalua-
tion of P(A) requires IAI costA(x) in the
worst case.)

Proof: Let P(A) = Vx ~ A : @(x). The
value of P(A) at p can be obtained by com-
puting t, the cardinality of the set {x C
A l not @(X)}, which can be maintained
with work proportional to IAI + cost@(x) ,
by Theorems 7 and 8. P(A) is true iff t =
0. Again in actual implementation , onlv

t rather the set itself is maintained.

Similarly, if P(A) = ~x G A : @(x),
its value is true iff the set {x ~ A I
~(x)} is nonempty.

In the actual imolementation, only r
those x in A such that @(x) has actually
changed should be updated. If the size of.

I I0

this subset of A is considerably smaller
than IAI and that the mapping to obtain
this subsets can be precomputed outside
the loop, it may be desirable to have this
mapping available. In some cases, this
mapping always maps to a subset of A of
constant size, then the total work in-
volved in maintaining the set ~former is
proportional to cost~(x). We shall illus-
trate this with examples.

(i) Consider P(X) = Vy e B : f(y) = X.

If B and f (consider a function as a
set of ordered pairs with distinct first
elements) are induction variables and are
of limited perturbation at p, then the
value of P(X) can be maintained by main-
taining the value t = cardinality of the
set {y C B I f(Y) # X} as follows:

for y in ~+(B, p) do
if f(y) # X the6 t t + 1

for y in Z~-(B, D) do
if f(y) ~ X th~ t = t - 1

A change of f, say f(y) = z is
rewritten as:

if y is in B then
begin
~f .f(y) = x then t = t - 1
if z = x then t = t + 1
end

f(y) = z

(2) Consider e : {x e A I x c B }.

If B is an induction variable and is
of limited perturbation at D, then ~(x) =
x c B is an induction expression and is of
limited perturbation at p for all x in A.

If A is also an induction variable
and is of limited perturbation at p, then
e is an induction variable and is of lim-
ited perturbation at p.

Let t(x) = Ix-Bl

Let FIND(y) = {x ~ A I Y ~ x}

~(e, p) can be computed as follows:

~ + (e , p) :
~ - (e , p) =
for y in ~k-(A,_p) 42

~-(e, D) = f~ (e, D) O {v}

for y in ~+(A, p) do
begin
compute t(y) = ly-Bl
if t~y) = 0 then
--- ~ + (e , p) ~ e (e , p) U {y }
end

for y in Z~-(B, p) do
Oegin
for z in FIND(y) do

begin
if t(z) = 0 then

~-(e, p) = ~-(e, p) U {z}
t(z) = t(z) + 1
end

end

for y in Z~+(B, p) do
begin
for z in FIND(y) do

begin
t(z) = t(z) - 1
if t~z) = 0 then
-- ~ (e, p) i~e(e, D) O {z}
end

end

If FIND is computed outside the loop,
then the work necessary to obtain
~(e, p) is proportional to c + costa(x) ,
where c is an upper bound on the size of
FIND(y) for any y in A, and ~{x} is Ix-
BI. In the worst case c is IAI. Howev-

er, if c is a constant independent of
IAI, then ~(e, p) can be computed using
work proportional to costS(x).

111

Bibliography

[i] F. E. Allen, "Program Optimization,"
in Annual Review in Automatic
Program--m~ng, Vol. 5, Perqam--on, 1969, pp.
239-307.

[2] F. E. Allen and J. Cocke, "A Catalo-
gue of Optimizing transformations," in
Design and Optimization of Compilers (R.
Rustin, ed.), P~E~ce Hall, 1972, pp.
1-30.

[3] J. Cocke and J.T. Schwartz,
Programming Languages and Their
Compilers, Courant Institute, New York,
1971.

[4] A. V. Ano and J. D. Ullman, The
Theory of Parsing, Translation and
Compili_n_g~-Vol. II, Comp~ng, Prentlce
Hall, 1973.

[5] F. E. Allen, J. Cocke and K. Ken-
nedy, "Reduction of Operator Strength,"
TR 476-093-6, Dept. of Math. Sciences,
Rice Univ., Houston, Aug., 1974.

[6] J. Cocke and K. Kennedy, "An Algo-
rithm for Reduction of Operator
Strength," TR 476-093-2, Dept. of Math.
Sciences, Rice Univ., Houston, March,
1974.

[7] A. C. Fong, J. B. Kam and J. D. Ull-
man, "Application of Lattice Algebra to
LoOp Optimization," Proc. 2rid ACM Sym_~.
on Principles o~ Programming Languages,
J~n.7--i~7

[8] J. Earley, "High Level Iterators and
a Method of Automatically Designing Data
Structure representation," ERL-M416,
Computer Science Division, Univ. of Cal-
if., Berkeley, Feb., 1974.

[9] J. T. Schwartz, "On Earley's Method
of "Iterator Inversion'," SETL
Newsletter, No. 138, Courant Instit~e~
1974.

[10] J. T. Schwartz, On Programming,
Vols. I and II. Courant Instftute, 1971
and 1973.

112

