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Abstract 

We explore the notion of an induction variable in the context of ~ set- 
theoretic programming languge. An aoorooriate definition, we believe, in- 
volves both the necessity that changes in the variable around a loop be 
easily computable and that they be small. We attempt to justify these re- 
quirements and show why they are independent assumotions. Next the oues- 
tion of what operators on sets play the role of +, ~ and * for arithmetic 
languages is explored, and several theorems allowing us recursivelv to 
detect induction variables in a loop are given. It is shown that most of 
the usual set operations do fit nicely into the theory and help form induc- 
tion variables. The reason most variables fail to be induction variables 
concerns the structure of control flow, more than it does the operators ap- 
plied. 

i. Background 

"Reduction in strength," that is, the 
replacement of multiplication by addition 
in a iooo, and its attendant detection and 
elimination of induction variables (those 
whose va'lue assumes-an-ari~m~r~--~rogre s- 
sion at a ooint) forms a key optimization 
for arithmetic languages like FORTRAN 
[1-4]. Recently, there has been consider- 
able interest in algorithms for performing 
this kind of optimization [5-7]. However, 
in the FORTRAN environment, there is never 
more than a constant factor speedup avail'- 
able by these methods. 

On the other hand, recent proposals 
such as [8-9] have dealt with reduction in 
strength applied to set-theoretic 
languages. In this context, reduction in 
strength becomes a method for altering al- 
gorithms to improve their asymptotic run- 
ning time, and order of magnitude improve- 
ment is possible. Earley [8] proposes 
"iterator inversion." which is a powerful 
techniaue for improving alqorithms au- 
tomatically. Unfortunately, as [8] ad- 
mits, it is not clear how to tell in ad- 
vance whether a transformation is helping 
or hurting the running time. 

Our answer to that problem is that a 
set of permissible transformations must be 
built up "from the bottom," starting with 
a few obviously safe transformations and 
developing additional safe transformations 
recursively. Schwartz [9] has a similar 
idea, based on the notion of "continuous" 
functions, where an expression 
e(xl, x~,..., x ) is said to be continuous 
in x~ zif sma~l changes in (~-esumably 
set-vAlued) variable x~ produces a change 
in e which can be easily calculated from 
the old value of e and the old and new 
values of x.. We propose a related idea, 
but one which we beiieve is more aeneral 
in its treatment of Boolean valued opera- 
tors on sets, such as the relation of set 
inclusion, and in its extension from ex- 
pressions to proarams. 

2. The Model 

We assume a set-oriented language 
such as SETL [10]. The operations which 
we assume can be done in unit time are: 

(i) arithmetic on integers 

(2) insertion of an element into a 
set 

* Work partially supported by NSF grant DCR-74-15255. 

I04 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800168.811544&domain=pdf&date_stamp=1976-01-01


(3) deletion of an element from a set 

(4) selection of some member from a 
set 

(5) testing whether an atom is in a 
set 

These assumptions are valid, at least 
in an expected time sense, if one uses a 
hash table representation for sets, such 
as in [10] , with elements which are sets 
represented by pointers to their values. 
We take it as a corollary to (4) that a 
set may be tested for emotiness in unit 
time. 

It is assumed further that we are 
presented a program as a flow graph, with 
basic blocks consisting of three-address 
statements, e. g., A = B U C, but not A = 
B U C ~ D, which would appear as: 

T = C ~ D 
A = B U T 

3. Goals 

We are interested primarily in 
developing a theory of induction variables 
and reductions in strength for set- 
theoretic languages that is analogous to 
the one for FORTRAN-like ones. However, 
in the environment of a set-theoretic 
language, where large amounts of time are 
already given up to system overhead, it 
does not make sense to concern ourselves 
solely with constant factor speedups, as 
one does for FORTRAN. We orient our de- 
finitions so that induction variables are 
those for which an order of magnitude im- 
provement in the running time of the pro- 
gram is possible by properly evaluating 
its induction variables. 

4. Induction Variables 
. . . . . . . . . . . . . . . . . . . . .  

The canonical situation for a FORTRAN 
level induction variable is a loop in 
which statements like: 

I = I + l  
J = 2 * I  

appear. If I is not changed elsewhere in 
the loon, it is clearly an induction vari- 
able. Moreover, J is an induction vari- 
able, at least at the point immediately 
after J = 2 * I. We can arrange to. main- 
tain the value of J by additions and sub- 
tractions only, if we create a temporary T 
whose value is always twice that of I. 
Then follow I = I + 1 by T = T + 2, and 
where I is initialized outside the loop, 
initialize T to twice I. Replace J = 2 * 
I by .~ = T, yielding the sequence: 

I = I + l  
T = T + 2  
J=T 

In many cases we can dispense with I 
and/or identify J with T, adding to our 
savings. In any event, we have eliminated 
the "expensive" multiplication at the cost 
of several copies and additions- perhaps a 
worthwhile change. 

Now let's repeat the above in the 
set-theoretic context. It is generally 
recognized that the basic role played by 
statements of the form I = I + 1 and I = I 
- 1 in the arithmetic world belongs to S = 
S U {x} and S = S - {x} in the set world 
(see [8,9]). These statements are just 
insertions and deletions of elements, 
operations which we have taken as primi- 
tive. We might see in a loop the pair of 
statements: 

A = A U {x} 
C = A U B 

where B is presumed constant within the 
loop for simplicity in our present infor- 
mal discussion. It is natural to suppose 
that we could create set T, whose value 
will always be that of A U B. Then we 
could follow A = A U {x} bv T = T U {x} 
and initialize T to A U B outside the 
loop. If we replace C = A U B by C = T we 
have: 

A = A U {x} 

T = T U {x} 
C = T 

Have we saved significantly here? The 
answer is that probably we haven't, since 
the operation o~ copying T and assigning 
the value to C takes the same order of 
time as computing A U B. 

Of course it is possible that on ex- 
amination of the entire loop we would find 
that C and T could be identified, thus re- 
placing the union of arbitrary sets A and 
B by the adjoining of one element x. This 
would definitely be an order of magnitude 
savings. However, it is possible that the 
value of C is used in the loop in a way 
that makes its identification with T im- 
possible. In that case, we propose the 
following. 

Definition: A loop is a set of blocks with 
a heater which dominates all other blocks 
in the loop, i. e., access to the loop is 
via the header only. 

Definition: Define ~(A, p) , for identifier 
~+ and point p to be the pair of sets 

(A, D) and ~-(A, p) , where 21+(A, p) is 
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the set of elements added to A and not re- 
moved from A since the last time control 
passed point p, and Z~-(A, p) is the set of 
elements removed from A and not added. 
That is, Z~+(A, D) and ZI-(A, D) are new set 
valued identifiers whose value it is Dos- 
sible to maintain. Every time control 
passes point p, we set z~(A, n) to (~, ~) 
and alter ~(A, D) as the "current" value 
of A changes and as long as control does 
not again reach p. 

Definition: Call A an induction variable 
of loop L at point p if there is a con- 
stant upper bound on the work necessary to 
maintain the value of ~k(A, p) between any 
two consecutive times that control passes 
point p, staying within loop L. 

Returning to our informal example of 
the statements: 

A = A U { x }  
C = A U B 

we may let D be the point immediately fol- 
lowing C = A U B. If the only assignment 
to A in the loop is A = A U {x}, then 
surely ~(A, p) can be maintained in con- 
stant work by writing the Piece of program 
as: 

if x not in A 
--then Z~+(A, D) = ~+(A, p) U {x} 
A = A O {x} 

C = A U B 

A+(A, p) = 
/~-(A, o) = 

If B is a constant within the loop, 
we can use ~X(A , p) to simulate the assign- 
ment C : A U B. Technically, what happens 
is this. We observe that since B presum- 
ably does not change, the change in the 
expression A U B from point p is almost 
the same as ~(A, p). In particular, 

A+(AUB, O) = A+(A,  P) - B and ~.~.~(AUB, D) = 
~X-(A, p) - B. If both ~i (A, D) and 
~-(A, D) are bounded, as they are in this 
example, then ~X+(AUB, p) is easy to com- 
pute. In general, if A and B vary in the 
loop, we can compute ~X(AUB, p) from 
/~(A, p) and A(B, p) , provided both are 
small. 

Now we assume that C is only assigned 
at C = A U B within the loop. Therefore, 
~(C, p) = ~(AUB, p) , and we can replace 
the above program by: 

if x not in A then 
- - A + ( A ,  p) = ,K~(-~, p) u {x} 
if x not in B then 
- - ~ + ( A U B ,  p) =~÷ (AUB,  p) U {x }  
A = A U {~} 
C = C U ~ (AUB, p) -~(AUB, p) 
Z~ +(A,  p) = 
~(A, p) = 96 
~k (AUB, p) = 
~k- (AUB, p) = ~6 

Note that the ~-'s can be ignored here but 
were included for form. Also, depending 
on what goes on elsewhere in the loop, we 
may drop consideration of ~(A, D) or even 
of A itself. 

We see that in the above simple case 
we have been able to replace a union of 
arbitrary sets A and B by unions and 
differences of sets that remain small, in 
fact they have at most one element. Thus 
an asymptotic order of magnitude savings 
has been achieved. 

We would now like to formalize furth- 
er the two important factors in this type 
of code improvement, (i) the ability to 
efficiently maintain f~(e, p) for expres- 
sions e and (2) the boundedness of these 
sets. 

Definition: We use ~(e, p), for expression 
e and point p, to stand for the pair 
~+(e, p) and ~(e, D). Zi+(e, p) 
represents the set of elements added to 
the set denoted by e and not removed from 
that set, since the last time control 
passed point p. ~-(e, p) represents the 
set of elements removed from and not added 

to that set since control last passed p. 
Note that this definition coincides with 
the earlier definition of ~ in the case e 
is a single identifier. 

We say e is an ....... induction e_xpression 
of loop L at point p whenever we can main- 
~in~(e, p) with a bounded amount of work 
between successive times through point p, 
as long as control does not leave L. 

Definition: Let us say an expression is of 
limited perturbation at point D in loop L 
i ~ ,  ~--and ~-(e, ~ are of bounded 
size as lonq as control stays within loop 
L. 

It is important to note that the no- 
tions of "induction expression" and "ex- 
pression of limited perturbation" are not 
the same, nor does one imply the other. 
For example, ~k+(e, p) miaht be known to be 
either ~ or {a}, but we have to solve the 
halting problem for Turing machines to 
tell which. Thus an expression could be 
of limited perturbation yet not be an in- 
duction expression. Conversely, consider 
the situation of Fig. i, where A could be 
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q I,A = B'U C] r lA D U E I 

P 

Figure i. 

assigned either B U C or D U E before con- 
trol reaches point p. Then if B U C and D 
U E are induction expressions, at points q 
and r, respectively, we shall see that A 
is an induction variable (hence an induc- 
tion expression) at point p. yet B U C 
and D U E can differ by arbitrary amounts, 
and we might travel a path such as 
q...p...r...p, so ZI(A, p) is surely not of 
limited perturbation. 

5. Building Induction Variables and 

We shall now develop the mechanism 
whereby induction variables can be detect- 
ed in a straightfoward manner and reduc- 
tion in strength performed on them where 
possible, retaining the assurance that 
what changes to the proqram are made will 
actually improve things. The theorems 
presented here encompass most of the stan- 
dard set oberators. The implication is 
that the reason reduction in strength can- 
not be performed in many cases has to do 
with the structure of control flow in the 
program rather than the properties of the 
operators used in calculation. 

The first theorems enable us to con- 
struct new induction variables and expres- 
sions from old ones. These theorems will 
all be stated in a simple form that ig- 
nores the possibility that two or more 
variables could be mutually dependent in- 
duction variables, e. g., in a loop con- 
taining assignments A = B U {x} and B = A 
U {y}, both A and B might be induction 
variables. Once the principles are under- 
stood, this type of extension is easy. 

Definition: Call an assignment incidental 
if it is of the form A = A U {x~ or A = A 
- {x}. 

Theorem i: If in iOOD L, identifier A has 
o61y-Tnc~dental assignments, then it is an 
induction variable and is of limited per- 
turbation at all points in L where there 
is a bound on the number of incidental as- 
signments to A encountered going from p to 
p in L. 

Proof: The size of Z~+(A, D) and /i-(A, p) 
changes by at most one and can be updated 
by a bounded amount of work each time an 
incidental assignment of A is encountered. 
Since there is only a bounded number of 
incidental assignments of A ~oing from P 
to P within L, the size of ~T(A, p) and 
L~(A, p) , and the total work involved in 
maintaining ~(A, p) from p to p are also 
bounded. Hence A is an induction variable 
and is of limited perturbation at p. 

The example in Figure 2 shows a si- 
tuation where A is not an induction vari- 
able and is not of limited perturbation at 
a point p in loop L even though all as- 
signments to A in L are incidental. 

Theorem 2: If in lOOn L, A and B are in- 
duction variables and of limited perturba- 
tion at point p, then A U {x}, A - {x}, A 
U B, A I--I B and A - B (in general, any 
binary Boolean operation on A and B) are 

"induction expressions and of limited oer- 
turbation at p. 

Proof: We shall show that if e is one of 
the expressions A U ix}, A - {x}, A U B, A 
I-I B, A - B, then ~r(e, p) and ~-(e, p) 
are bounded in size and can be obtained 
from ~(A, p) and /i(B, p) using a bounded 
amount of work. Hence e is an induction 
expression and is of limited perturbation 
at p. 

First let e be the expression A U 
{x}. Then ~(e, p) can be calculated from 
~(A, p) by the following program: 

/ . 

o '  

Figure 2. 
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~+(e, p) = ~x+(A, D) 
fi-(e, p) = Zx-(A, p) 
if x in ~-(A, D) 
-- then Z~-(e, P) = ZX-[e, p) - {x} 

%ise if x n0t in ~i~(e, D) 
teen Z~ +(e ,  p) : Z~ +(e ,  D) u {x} 

Since ~+(A, o) and ~-(A, p) are 

((E U B) - (F U A) , (F U A) - (E U B)) 

Lemma i: Let D, a, r De points in loop L. 
Suppose control passes from p to g through 
path ii, then from g to r through path 12. 
Let ~i I be the pair ~(A, p) at a after con- 
trol ~asses from p to q through path ii. 
Let ZX2 be the pair IX(A, a) at r after con- 
trol passes from q to r through path 12. bounded in size and can be maintained us- 

inq a bounded amount of work, ~+(e, p) and Let ZX- be ZX(A, P) at r after control 
~-(e, p) are also bounded in size and can passesSfrom D to r through ii followed by 
be obtained using a bounded amount of 12. Then if we write each ~; , i = 1,2,3 
work. as the ordered pair ~, ~) , £hen 

Similarly, let e be A - {x}. ~i(e, p) 
can be calculated as follows: 
~ + ( e ,  p) = ~x+(A, p) 
~i-(e, D) ~ ~-(A, p) 
if x in Z~ (e, D) = z~i + 
-- then ~i+(e, p) (e, p) {x} 

else if x not in ~i-(e, p) 
. . . . . .  t~en ~i-(e, P) = ~i-(e, D) U {x} 

Let e be A U B. Then z~+(e, p) = 
(A, D) U ~+(B ,  D) and ~-(e, D) = 
(A, p) -v(b)] U ~-(S, p) - v(A)], 

where v(A) and v(B) denote the current 
value of A and B respectively. 

Note that both ~X-(A, p) - v(B) and 
~X+(B, p) - v(A) may be obtained in time 
proportional to the size of ~-(A, p) and 
~+(s, p). 

For example ,  l e t  C = ~ - ( A ,  p) - v (B) .  
C can be obtained by the following piece 
of code: 

c=~ 
for x in ~-(A, p) do 

if x not in v(B) then C = C U {x} 

Since we have assumed that membership 
testing and insertion can be performed in 
unit time, C can be obtained in time pro- 
portional to the size of ~-(A, p). 

+ Let e be A J--J B. ~hen ~+(e D) - 

[A (A, p) J-J v(B)] U [A' (B, o) J-[ V(A)? 
and ~-(e, p) = /k (A, p) U fi (B, p). 

Let e be A - B. Then z~i +(e, p) = 

[~X+(A' P)e, - v(B)]"  U [z~(Bi ! J-J viA)] 
and ZX- ( P) = ~- (A, ~) I-I (B, p) U 
ES(A, EA IB,  I viA) - v(B) ] U 

Before goin 9 on to Theorem 3, we need 
some definitions of operations on the Zi's. 

Definition: Let A,B,C,D be sets. De- 
fine (A,B) [+] (C,D) to be the pair 

((A-D) U (C-B), (D-A) U (B-C)) 

Definition: Let A, B, E, F be sets. Define 
(E,F) [-] (A,B) to be the pair 

(1) % :A 1 [+]% 

(2) ~i 2 = ~i 3 [-] ~i 

Proof: The proof of (i) is straightfor- 
ward-and is omitted here. 

B), 
(i) 

TO Drove (2) , let ~I ' ~o, ~ be (A, 
(C, .D) and (E, F) resp@cti~elv. By 

E = (A-D) U (C-B) 

F = (B-C) U (D-A) 

We claim that C = (E U B) - (F U A) , i.e., 
C = [(A-D) U (C-B) U B] - [(B-C) U (D-A) U 
A] = [(A-D) U C U BI - [(B-C) U D U A]. 

Let T1 = (A-D) U C U B and let T2 = (B-C) 
U D U A. We shall show that C is a subset 
of T1 - T2, and T2 - T1 is a subset of C. 

For all x in C, x is in (A-D) U C U 
B, i.e., x is in Ti. Obviously x is not 
in (B-C). Also x is not in D because C 
and D are disjoint by definition of ~. 
Again x is not in A because A End C are 
disjoint due to the fact that ii and 12 
are consecutive paths. Hence x is not in 
(B-C) U D U A, i.e. not in T2. Therefore 
x is in T1 - T2. i.e. C is a subset of T1 
- T2. 

TO Drove that T1 - T2 is a subset of 
C, suppose the contrary, i.e. there exists 
x in T1 - T2 which is not in C. Since x 
is in T1 = (A-D) U C U B, and not in C, x 
must be in either (A-D)-C or in (B-C). In 

both cases x is in (B-C) U D U A, contrad- 
icting the assumption that x is not in T2. 
Hence T1 - T2 is a subset of C. Therefore 
C = T1 - T2. 

That D = (F U A) - (E U B) can be 
proved in similar fashion. 

Theorem 3: Suppose there is a unique as- 
signment A = e which is always the last 
non-incidental assignment to A before con- 
trol reaches p, and that there is a bound- 
ed number of incidental assignments to A 
going from assignment A = e to Point D. 
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If e is an induction expression and of 
limited perturbation at the point of as- 
signment A = e, then A is an induction 
variable and of limited perturbation at p. 

Proof: Let q be the point of assignment A 
= e . We want to show that ~(A, p) is of 
bounded size and can be obtained using a 
bounded amount of work. 

Consider the path as control passes 
from p the i-th time to p the i+l-st time. 
Since q is always the last non-incidental 
assignment before control reaches p, we 
can consider the following three paths: 
ii, followed by 12, followed by 13 where 

i. is the path followed as control passes 
f~om g to p the ith time. 

1 o is the path followed as control passes 
from p the i-th time to a .  

i~ is the math followed as control masses 
f~om q to p the i+l-st time. 

Let ~ denote the value of ~(A, q) 
after control masses from a to a throuqh 
math 11 followed by i~. ~ is bounded in 
Size ~nd can be maintained using bounded 
amount of work because A is an induction 
variable and is of limited perturbation at 
g. 

Let ~" denote the value of Z~(A, q) at 
p ~fter control passes from q to p through 
path 11 . Z~" is bounded in size and can be 
maintained using a bounded amount of work 
because there are only a bounded number of 
incidental assignments between q and p. 

Hence b v (2) of Lemma i, ~(A, P) at a 
after control masses from p to a through 
path 1 2 is given by 

Z~ [ - ]  A 

Let ~" denote the value of A(A, q) at 
p a£ter control passes from g to p through 
path i~. By (i) of lemma i, Z~(A, p) when 
controI passes from p to p throuqh path 1 2 
followed by 13 is given by 

Z~ [-] A" [+] Z~" 

which is bounded in size anu can be ob- 
tained using a bounded amount of work. 

Theorem 3 illustrates a situation in 
which A can not be identified with the ex- 
pression e in the loop L, and shows how it 
can be handled without using a temporary 
the size of A or copying between A and the 
temmorarv. 

We can extend part of Theorem 3 to the 
common case where A has a value outside 
lo0p L, and the first time throuqh point p 
after entering L, the external assignment 

to A is the most recent non-incidental as- 
signment. In fact, a far stronger result 
is possible, as far as induction variables 
are concerned. 

Theorem 4: Suppose at point p in loop L 
there are k possible assignments to A, say 
A = e , A = e^,. ., A = e. which could be 

z ." • K 
the ~ast non-znczdental assignment to A, 
and suppose all e i for which A = e i is ac- 
tually in loop L are induction expressions 
and of limited perturbation at the point 
of assignment. Let qi be the point of as- 
signment A = e i. suppose there is a 
bounded number of incidental assignments 
of A going from qi to p. Suppose further 
that there is a bound on the number of as- 
signments to A encountered going from p to 
p in L. Then A is an induction variable 
of L at p. 

Proof: Intuitively, the value of A at p 
switches among k expressions, each of 
which is an induction expression. If k 
copies of A are kept, where the i-th copy 
has the value of A after its most recent 

assignment to e i, Z~(A, p) may be 
represented by a switch (an integer) and 
the list ~(e., p) ..... ~(ek, p) The 
switch is set to i to indicate that the 
i-th copy of A is currently applicable, 
i.e. any reference to A should be made to 
the i-th copy. ~f the last non-incidental 
assignment to A before reaching p is A = 
e , then ~(e~, p) = ~(e~ o) , if there is 
n~ assignments to A b~fween g and p. If 
there are incidental assignments to A 
between a and p, ~(ei, p) may be obtained 
as in THeorem 3. ~(e 
are reset only if theila~ n~in~nt~ 
assignment to A before reachinq p is A = 
e . The work to maintain the switch and 
a~l the Z~'s is bounded, since each of the 
~'s is maintained in bounded time, and the 
switch is changed a bounded number of 
times by the hypothesis of the theorem. 

Note that we are missing from Theorem 
4 a statement about A being of limited 
perturbation of L at p. The reason, obvi- 
ously, is that one cannot always conclude 
such a statement, and Fig. 1 provides the 
canonical example why not. Thus, while 
one can oscillate between Theorems 2 and 3 
to find more and more induction variables 
and expressions within a loop, one cannot 
do so between Theorems 2 and 4. We can, 
however, extend the idea of the switch to 
a generalization of Theorem 4. 

Theorem 5: Consider a point p in loop L, 
and suppose that the finite collection 
e ,..., comprises all the formulas for 
the val~ of variable A at p, in terms of 
the values of variables the previous time 
through point p. If each of the e "s are 
induction expressions and of limited per- 
turbation at p, then A is an induction 
variable at p. 
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Proof: There are only a finite number of 
different sequences of assignments which 
can affect the value of A as we travel 
from p to p within L, or else the set of 
expressions for A would be infinite. 
Represent ~(A, p) by a switch and the set 
of ~(e ,p}-s for all 1 < i < k. k 
"copieR" of A have to be kept so ~hat each 
~(e~, o) represents the change with 
respect to the i-th copy of A. 

6. Boolean Valued Expressions 

While we have stated our theory of 
induction variables in great ~enerality, 
when it comes to specific operators that 
held form induction exoressions we have 
only mentioned union, intersection and 
similar operations. In fact, the theory 
does extend nicely to the usual set 
theoretic relations, such as inclusion. 

When dealing with an expression like 
A c B, whose value is Boolean, the ~ nota- 
tion and the notion of limited perturba- 
tion are meaningless, and in fact the ac- 
tual value of the expression is no harder 
to maintain than it is to increment. Thus 
we define a Boolean valued expression to 
be an induction expression of L at p if 
its value (r-at~er than 1Ts increment) can 
be maintained with a constant amount of 
work from p to p within L. 

Theorem 6: If A and B are induction vari- 
a--bfes~- then A c B and A = B (as well as a 
variety of similar relations) are induc- 
tion expressions. 

Proof: Consider A c B. By Theorem 2, A - 
B--~s an induction exoression and of limit- 
ed perturbation. The value of A c B can 
be maintained bv computing A - B and test- 
ing it for emptiness when it changes, a 
task we assume takes unit time per change. 
In the actual implementation, however, 
only the cardinality of A - B, whose value 
is 0 if and only if A c B, need be main- 
tained. 

Theorem 7: Boolean operations on Boolean 
valued induction variables yield induction 
expressions. 

7. Applications to Iterators 

We would like to extend the notion of 
induction variable to interesting itera- 
tors as discussed in [S] . Let us consider 
the set former {x ~ A I S(x)} to be 
specific. Now in the intermediate code we 
use, this iterator is actually a loop of 
its own, in which x runs through every 
element of A. Since x is not an induction 
variable here, the exoression {x C A I 

S(x)} cannot be an induction expression 
for this loop except under the most trivi- 
al of circumstances. Thus, the set former 

cannot be an induction expression in a 
loop outside its own internal loop. 

There is, on the other hand, a fairly 
broad condition under which we can prove 
an order of magnitude improvement in the 
calculation of the set former is possible. 

Theorem 8: Let L be a loop containing set 
former {x C A l S(x)} at point p. Suppose 
A and @(x) for all x which could ever be 
members of A are all induction expressions 
and of limited oerturbation at p in L. 
Then the value of {x ~ A I S(x)} can be 
maintained with work proportional to IAl + 
costS(x) , where by cost~(x) we mean the 
work necessary to compute ~(x) for any x 
that may be in A. (Note that the 
straightforward evaluation of the set 
former requires IAl costS(x) work.) 

Proof: Between any two consecutive execu- 
tions of {x ~ A I @(x)}, the number of x 
in A such that the value of ~(x) changes 
is bounded by IAI. Since each S(x) is an 
induction expression and is of limited 
perturbation at p, the total work involved 
in maintaining them is bounded by IAI. 
Between any two consecutive executions of 
the set former, the number of new elements 
added to or deleted from A is also bounded 
because A is an induction variable and is 
of limited perturbation at p. The work 
involved in the addition and deletion is 
proportional to costS(x). Hence the total 
work necessary is proportional to IAI + 
costS(x). 

Theorem 9: Let L be a loop containing the 
predicate P(A) at p where P(A) is Vx G A : 
~(x} or ~x C A : @(X). Suppose A and 
~(x), for all x which could ever be 
members of A. are all induction expres- 
sions and are of limited perturbation at O 
in L. Then the value of P(A) at p can be 
maintained with work proportional to IAI + 
cost@(x), where costS(x) is the work 
necessary to compute @(x) for any x that 
may be in A. (The straiqhtforward evalua- 
tion of P(A) requires IAI costA(x) in the 
worst case.) 

Proof: Let P(A) = Vx ~ A : @(x). The 
value of P(A) at p can be obtained by com- 
puting t, the cardinality of the set {x C 
A l not @(X)}, which can be maintained 
with work proportional to IAI + cost@(x) , 
by Theorems 7 and 8. P(A) is true iff t = 
0. Again in actual implementation , onlv 

t rather the set itself is maintained. 

Similarly, if P(A) = ~x G A : @(x), 
its value is true iff the set {x ~ A I 
~(x)} is nonempty. 

In the actual imolementation, only r 
those x in A such that @(x) has actually 
changed should be updated. If the size of. 
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this subset of A is considerably smaller 
than IAI and that the mapping to obtain 
this subsets can be precomputed outside 
the loop, it may be desirable to have this 
mapping available. In some cases, this 
mapping always maps to a subset of A of 
constant size, then the total work in- 
volved in maintaining the set ~former is 
proportional to cost~(x). We shall illus- 
trate this with examples. 

(i) Consider P(X) = Vy e B : f(y) = X. 

If B and f (consider a function as a 
set of ordered pairs with distinct first 
elements) are induction variables and are 
of limited perturbation at p, then the 
value of P(X) can be maintained by main- 
taining the value t = cardinality of the 
set {y C B I f(Y) # X} as follows: 

for y in ~+(B, p) do 
if f(y) # X the6 t t + 1 

for y in Z~-(B, D) do 
if f(y) ~ X th~ t = t - 1 

A change of f, say f(y) = z is 
rewritten as: 

if y is in B then 
begin 
~f .f(y) = x then t = t - 1 
if z = x then t = t + 1 
end 

f(y) = z 

(2) Consider e : {x e A I x c B }. 

If B is an induction variable and is 
of limited perturbation at D, then ~(x) = 
x c B is an induction expression and is of 
limited perturbation at p for all x in A. 

If A is also an induction variable 
and is of limited perturbation at p, then 
e is an induction variable and is of lim- 
ited perturbation at p. 

Let t(x) = Ix-Bl 

Let FIND(y) = {x ~ A I Y ~ x} 

~(e, p) can be computed as follows: 

~ + ( e ,  p) : 
~ - ( e ,  p) = 
for y in ~k-(A,_p) 42 

~-(e, D) = f~ (e, D) O {v} 

for y in ~+(A, p) do 
begin 
compute t(y) = ly-Bl 
if t~y) = 0 then 
---  ~ + ( e ,  p) ~ e ( e ,  p) U {y }  
end 

for y in Z~-(B, p) do 
Oegin 
for z in FIND(y) do 

begin 
if t(z) = 0 then 

~-(e, p) = ~-(e, p) U {z} 
t(z) = t(z) + 1 
end 

end 

for y in Z~+(B, p) do 
begin 
for z in FIND(y) do 

begin 
t(z) = t(z) - 1 
if t~z) = 0 then 
-- ~ (e, p) i~e(e, D) O {z} 
end 

end 

If FIND is computed outside the loop, 
then the work necessary to obtain 
~(e, p) is proportional to c + costa(x) , 
where c is an upper bound on the size of 
FIND(y) for any y in A, and ~{x} is Ix- 
BI. In the worst case c is IAI. Howev- 

er, if c is a constant independent of 
IAI, then ~(e, p) can be computed using 
work proportional to costS(x). 
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