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SUR~IARY 

In a suitably g e n e r a l  context, the following 
analogue of the Blum Speed-up Theorem is proven: 
There are some infinite sets which are so diffi- 
cult to enumerate that, given any order for 
e n u m e r a t i n g  t h e  s e t ,  t h e r e  i s  some o t h e r  o r d e r ,  
and some one method o f  e n u m e r a t i n g  t h e  s e t  i n  t h i s  
s e c o n d  o r e ~ w h i c h  i s  much f a s t e r  t h a n  a n ~ m e t h o d  
o f  e n u m e r a t i n g  t h e  s e t  i n  t h e  f i r s t  o r d e r i n g .  I t  
may be p o s s i b l e  to interpret this result as a 
statement about the relative merits of "hardware" 
v_~. "programming" speed-ups. The proof itself is 
one of the first nontrivial applications of 
priority methods to questions of computational 
complexity. As such, it perhaps represents an 
advance in bringing the results and techniques of 
contemporary "pure" recursion theory to bear on 
questions of computational complexity. 

In  t h i s  p a p e r  we s h a l l  p r o v e ,  i n  a s u i t a b l y  
g e n e r a l  c o n t e x t ,  t h e  f o l l o w i n g  a n a l o g u e  o f  t h e  
Blum Speed-up  Theorem, [B1]:  The re  a r e  some 
i n f i n i t e  s e t s  which  a r e  so  d i f f i c u l t  t o  e n u m e r a t e  
t h a t ,  g i v e n  any o r d e r  f o r  e n u m e r a t i n g  t h e  s e t ,  
t h e r e  i s  some o t h e r  o r d e r ,  and some one method o f  
e n u m e r a t i n g  t h e  s e t  i n  t h i s  s econd  o r ~ r  which  i s  
much f a s t e r  t h a n  an~ method o f  e n u m e r a t i n g  t h e  s e t  
i n  t h e  f i r s t  o r d e r i n g .  

Be fo re  p r o c e e d i n g  w i t h  t h e  d e t a i l s ,  l e t  us 
c o n s i d e r  a p o s s i b l e  i n t e r p r e t a t i o n .  While  we w i l l  
n o t  vouch f o r  t h e  s t r i c t  v a l i d i t y  o f  t h e  i n t e r -  
p r e t a t i o n ,  i t  w i l l  p e r h a p s  s u g g e s t  why t h e  r e s u l t  
is interesting. In any real computer installation 
there are two components to the computational 
procedures. First, there is a physical machine, 
and second, there are programs for the machine. 
If, for example the programs are written in a 
higher level language, there may also be a compiler 
for translating the higher level language into 
machine language. As always when doing recursion 
theory, we assume a potentially unlimited memory, 
so that there is, e.g., no limit to the number of 
tapes which a machine may use in executing a 
program. 

We now imagine a program written in a higher 
level language which is designed to enumerate or 
generate an infinite list of integers. We ask how 
we can speed-up the task. An obvious answer is to 
speed up the basic cycle time of the machine. 
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I n d e e d ,  such  ha rdware  s p e e d - u p s  have  b e e n  an 
i m p o r t a n t  r e a s o n  f o r  t h e  i n c r e a s e d  e f f i c i e n c y  o f  
d i g i t a l  c o m p u t e r s .  C l e a r l y ,  an i n c r e a s e  i n  t h e  
basic cycle time of the machine w i l l  not change the 
order in which a given program will enumerate a 
fixed set of integers. Although it is possible to 
imagine hardware improvements utilizing parallel 
processing which will change the order in which a 
given higher level program enumerates a given set, 
there is a good reason for avoiding such changes in 
the order in which the members of the set are 
enumerated as output (even though the internal 
sequence of machine operations may change): A 
programmer working in a higher level language has 
a good notion of how he expects the program to 
operate. If a machine fails to enumerate the ans- 
wers in the order implicitly assumed by the 
programmer, the programs are likely to be difficult 
to "debug". Indeed, to the extent that higher 
level languages are "machine independent", we may 
expect that hardware improvements will not change 
the order in which programs enumerate sets. 

Our r e s u l t  now s t r o n g l y  s u g g e s t s  t h a t  t h e r e  
a r e  some i n f i n i t e  s e t s  which  have  t h e  p r o p e r t y  t h a t ,  
no m a t t e r  what  p rogram i s  u sed  t o  enumera t e  t h e  s e t ,  
a s i n g l e  r ep rogramming  w i l l  r e s u l t  i n  much g r e a t e r  
g a i n s  i n  o p e r a t i o n a l  e f f i c i e n c y  t h a n  can be  
achieved by any improvement that can be made by 
speeding up the hardware (without changing the 
order of enumeration). 

We b r i e f l y  r e v i e w  o u r  n o t i o n  o f  an e n u m e r a t i o n  
t e c h n i q u e ,  e x p l a i n e d  more f u l l y  i n  [Y]. We l e t  
Do,D1, D 2 , . . .  be  any c a n o n i c a l  e n u m e r a t i o n  o f  a l l  

f i n i t e  s u b s e t s  o f  N, t h e  s e t  o f  n o n n e g a t i v e  i n t e g e r s :  
from i ,  one can  e f f e c t i v e l y  l i s t  a l l  members o f  D i 
and know when t h e  l i s t i n g  i s  c o m p l e t e .  A t o t a l  
r e c u r s i v e  f u n c t i o n  E i s  an e n u m e r a t i o n  t e c h n i q u e  i f  
f o r  e v e r y  r e c u r s i v e l y  e n u m e r a b l e  ( r . e . )  s e t  W t h e r e  
i s  an i n t e g e r  e such  t h a t  W = ~ D E ( e , n ) .  We c a l l  

e an i n d e x  o f  W and w r i t e  We f ° r U D E ( e , n ) ' n  We 

always assume t h a t  t h e  r e s u l t i n g  i n d e x i n g s  s a t i s f y  
t h e  U n i v e r s a l  T u r i n g  Machine Theorem and t h e  S n - m 
Theorem ( f o r  s e t s ;  f o r  d e t a i l s  s ee  [Y]) .  For  con-  
v e n i e n c e ,  we a lways  assume DE(e,o)  = ~, and we 

d e f i n e  E ' ( e , n )  by D E , ( e , n  ) = m<~n DE(e,m)" We use  

t h e  X - n o t a t i o n  f o r  f u n c t i o n s ,  e . g . ,  i f  E i s  a 
f u n c t i o n  o f  two v a r i a b l e s ,  ~yE(x ,y )  i s ,  f o r  e ach  
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f i x e d  x, t h e  r e s u l t i n g  f u n c t i o n  o f  t h e  s econd  
v a r i a b l e  a l o n e .  ~i~ i i s  a f i x e d  s t a n d a r d  enumera-  

t i o n  o f  a l l  p a r t i a l  r e c u r s i v e  f u n c t i o n s .  We 
assume no special connections between t h e  £ndexings 
~i¢ i and ~iWi; in particular W i need not be the 
range or domain of ¢£. T is any I-1 effective map 
from NXN to N, and we always denote T(x,y) by 
<x,y>. ~l<x,y> = x and ~2<x,y> = y. 

D e f i n i t i o n .  With e v e r y  e n u m e r a t i o n  t e c h n i q u e  
E we associate the partial recursive function 
tinAi(n) defined by 

Ai(n) = (~y) [[DE, ci,y)[ ~n], 

where "(~y)[...]" means "the l e a s t  y such  that 
[...]" and ~DE,(i,n)[. is the number of elements in 

DE'(i,n). 

b u t  t h e  o r d e r s  c a n n o t  be  d i s t i n g u i s h e d  from t h e  
e n u m e r a t i o n .  (Thus t h e  r e l a t i o n  i a p p  j when r e s -  
t r i c t e d  t o  t h o s e  i and j f o r  which  W i and Wj a r e  
i n f i n i t e  i s  an e q u i v a l e n c e  r e l a t i o n .  But i f  i o 
i s  an i n d e x  o f  t h e  empty s e t ,  t h e n  i o app j f o r  
any j .) 

We now define a recursive function s(j,n) 
w i t h  t h e  hope t h a t  l im  s ( j , n )  w i l l  be  t h e  s m a l l e s t  

i n d e x  £ f o r  which  Wj = W i and i a p p  j .  We do n o t  
f u l l y  s u c c e e d .  

Definition. s(0,n) = 0 for all n and 

s(j+1,n) = (~i)[i<j+l~i app n j+l ~ (~z~) 

[no t  z app n j + l  ~ i ~ s ( z , n ) ] ] .  

A i ( n  ) may be  t h o u g h t  o f ,  e . g . ,  as t h e  number  
o f  s t e p s  T u r i n g  mach ine  i t a k e s  t o  e n u m e r a t e  a t  
l e a s t  n e l e m e n t s ,  o r  as t h e  number  o f  t a p e  s q u a r e s  
machine  i t a k e s  t o  e n u m e r a t e  a t  l e a s t  n e l e m e n t s ,  
o r  as  t h e  l e n g t h  o f  t h e  l o n g e s t  d e r i v a t i o n  which  
P o s t - s y s t e m  i u s e s  t o  e n u m e r a t e  a t  l e a s t  n e l e m e n t s ,  
o r  as  t h e  number  o f  i n s t r u c t i o n s  t h e  i ' t h  F o r t r a n  
p rogram t a k e s  i n  o r d e r  t o  w r i t e  a t  l e a s t  n e l e m e n t s .  
E t c .  The p r e d i c a t e  A.(x)<l ~ ,  -is a r e c u r s i v e  
p r e d i c a t e  o f  t h r e e  v a r i a b l e s .  

We now wish to talk about programs £ and j 
which enumerate the same set in the same order. 
S i n c e  t h i s  n o t i o n  c a n n o t  be  r e c u r s i v e l y  d e f i n e d ,  
we must  c o n t e n t  o u r s e l v e s  w i t h  a s e r i e s  o f  r e c u r -  
s i v e  a p p r o x i m a t i o n s  which  i n  t h e  l i m i t  g i v e  us  
a l m o s t ,  b u t  n o t  q u i t e ,  t h e  n o t i o n  we a r e  a f t e r .  

Definition. We say that i appears to have the 
same order as j through n steps and write iapp n j 
if for all x <n and for all y, z <n~ 

[DE,(i,x ) C_DE,(j,x ) or DE,(j,x ) ~DE,(i,x)J 

[m e CS'(i,y+l) - DE'(i,y)) ~(Ds'(j,z+l) - DE'(J,z)) 

=-~ 0z,(i,z ) _~Ds,(j,=+l ) g DZ,(~,= ) c OZ,(i,y~1~ 

Definition. We say that i appears to have the 
same order as j and write iapp j if for all 
sufficiently large n, iapp n j is true. 

We l e a v e  t h e  r e a d e r  t o  v e r i f y  t h a t  t h i s  n o t i o n  
i s  i n t u i t i v e l y  c o r r e c t  ( b e a r i n g  i n  mind t h a t  
DE,(i,y+l ) - OE,(i,y ) may have more than one element 

( so  we h a v e  g i v e n  t h e  b r o a d e s t  p o s s i b l e  i n t e r -  
p r e t a t i o n  t o  " h a v e  t h e  same o r d e r " ) ) ,  t h a t  n o t  i 
app n j implies not iapp n+l Js that (<i,j> Inot i 
app j} is r.e., and that (<i,j> I iapp j} is not 
obviously enumerable. 

(i) We also ask the reader to note that iapp 
j iff both W i and Wj are infinite and £ and j 
enumerate the same set in the same order, or else 
one of W i and Wj is a finite subset of the other 

Again, we leave the reader to verify simple 
facts about s: 

s ( j , n ) ~  f o r  a l l  j and n .  

(2) l i ra  s C j ,n )  a lways  e x i s t s  (by i n d u c t i o n  
n 

on j ) .  

(3) linm s ( j , n )  = limn s ( i , n )  ~ j app i .  

(4) If i is the smallest index for which Wi=W j 

and iapp j, t h e n  linm s(j,n)<i. 

F i n a l l y ,  i n  o r d e r  t o  s t a t e  our  t h e o r e m ,  we 
r e c a l l  one f i n a l  

D e f i n i t i o n .  An o p e r a t o r  F c a r r y i n g  p a r t i a l  
r e c u r s i v e  f u n c t i o n s  t o  p a r t i a l ' r e c u r s i v e  f u n c t i o n s  
i s  e f f e c t i v e  i f  t h e r e  i s  a t o t a l  r e c u r s i v e  f u n c -  
t i o n  g such  t h a t  

~(¢e ) = Cg(e) 
f o r  a l l  e such  t h a t  ~££ domain F. 

We s h a l l  be  c o n c e r n e d  o n l y  w i t h  e f f e c t i v e  
o p e r a t o r s  which  c a r r y  a l l  t o t a l  r e c u r s i v e  f u n c t i o n s  
t o  t o t a l  r e c u r s i v e  f u n c t i o n s .  Examples  o f  such  
o p e r a t o r s  i n c l u d e :  ( i )  I f  r ( x , y )  i s  any t o t a l  
r e c u r s i v e  f u n c t i o n ,  t h e  o p e r a t o r  ~1 d e f i n e d  by  

F l ( ¢ i ) ( x )  = r ( x , ¢ i ( x ) )  , and ( i i ) ,  t h e  o p e r a t o r  ~2 

d e f i n e d  by F 2 ( ¢ i ) ( x )  = ~ i ( ¢ i ( x ) ) .  

Theorem 1. Le t  E be  any e n u m e r a t i o n  t e c h n i q u e  
and l e t  F be  any e f f e c t i v e  o p e r a t o r  c a r r y i n g  a l l  
t o t a l  r e c u r s i v e  f u n c t i o n s  t o  t o t a l  r e c u r s i v e  f u n c -  
t i o n s .  Then t h e r e  e x i s t s  an i n f i n i t e  r . e .  s e t  W 
such  t h a t  i f  W i = W, t h e r e  e x i s t s  i '  s uch  t h a t  

Wi, = W and f o r  any j such  t h a t  i and j e n u m e r a t e  

W i n  t h e  same o r d e r  

Aj (n) > ECAi,) (n) 
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for a l l  but finitely many n. 

The details of our proof are lengthy and te- 
dious, and we will reserve them for later publica- 
tion. We will however give a brief outline of 
the proof, explaining how it builds on and differs 
from the  p roof s  of speed-up theorems in [BI] and 
(M-F]. We assume the reader is familiar with one 
or both of these earlier proofs. 

As is usual, we first define a total recur- 
sire function tCu,v,£) satisfying three conditions, 
which we number to correspond to the numbering of 
our proof: 

(12) Suppose @£ is a total recursive func- 
tion. Then there is a (possibly noneffective) 
sequence 0 = Vo,Vl,V2,v3,... such that 

Wtco,o,£) = wtCl,Vl,£ ) = Wt(2,v2,£ ) = ... • 

C13) There exists a total recursive func- 
tion @o for which, for all i and v, and for all t 
such t~at (n-l)3<t~n 3, 

~£(<i,n>)imax{F(At(i+l,v,£)) (t), @~(<i+l,n>) } 

for a l l  but finitely many n. 

(14) For ~£ given by (13), if Wi=Wt(o,o,£) 

and if i is the smallest index for enumerating 
Wtfo,o,£~.. in the order given by i, then for any j 

for which W.=W .... and iapp j, we must have, 
J tLo,o,z) 

for t such that (n-l)3<t<n, 

Aj(t)>~z(<i,n> ) for all but finitely many n. 

The proof then follows from (12), (15), and 
(14) in virtually the same way similar results are 
used to obtain the speed-up theorems of [~ and 
(M-F], so we omit details. 

To prove (15), we first define an effective 
operator, F*, carrying all total recursive func- 
tions to total recursive functions by 

F* (@j) (n) =max( F (~j) (t) [ (n- l)~t <_n 3 ). 
(13) is now proven by using the method 

introduced by Meyer and Fischer for proving their 
operator speed-up theorem. (Actually, we get by 
with a slightly simpler version of their proof.) 
We use the recursion theorem to obtain a function 
@£ for which 

@£(<i,x>)=0 if x<i or [Bn~i)[@£(<0,n>) is not 

defined in <x steps], otherwise 

~(<i,x>)=v{x[~*(At(i+l,v,£))(x)+~(<i+l,v>)]- 

For this £, it is easily seen that (13) holds 

if ~@ is total. But it is easily seen that 
~x@£1<i,x>) total implies ~x@£(<i+l,x>) total and 

that if ~x@£(<0,x>) were not total then ~x~£(<i,x>) 

would be total for all sufficiently large i, say 
for all i>M. This in turn is adequate for showing 
that Wt(M÷l,v,£) always has at least n elements for 

n>M+l,v. This in turn implies the totality of 
At(M+l,v,£) for all v, and hence the totality of 

~x@£(<M,x>). Iterating, we see that lx@£(<0,x>) is 

t o t a l .  
The t r i c k  in  our  c o n s t r u c t i o n  i s  to  d e f i n e  the  

r e c u r s i v e  f u n c t i o n  t ( u , v , ~ )  i n  such a way t h a t  (12) 
and (14) ho ld .  (14) i s  no t  too d i f f i c u l t ,  f o r  i f  
i and j a re  as d e s c r i b e d  i n  (14) ,  we may observe  by 
(4) t h a t  lira s(j,n)<i. Let i' = lira s(j,n). The 

n n 
construction is so arranged that once s(j,n) 
achieves its limit, i', if 

A j ( t ) < _ O ~ i ' , ~  (>O£~i,n)) a . e . )  

then  we must a t t a c k  i '  by j by w i t h h o l d i n g  a member 
o f  Wj from Wt(o,o ,£)  u n l e s s  i '  i s  under  a t t a c k  by 

some smaller j' with lim s(j',n) = i'. Since 
n 

lira s(j',n) = lim s(j,n), by (5) j app j'. Since 
n n 
Wj is infinite this implies by (i) that Wj,~Wj. 

Since i' is under attack by j', some member of Wj, 
(and hence of Wj(=Wi) ) is withheld from Wt(o,o,£). 

Our proof of (12) is more difficult than the 
proof of the corresponding results in [BI] and 
(M-F]. There are several problems to be overcome 
here, but the most notable is the following: In 
the corresponding proofs in [Bi] and (M-F], each i 
gets attacked at most finitely often. The variable 
v in Wt(u,v Z) is thus used to handle the finitely 

many attacks on the finitely many i's<u. However, 
we have been unable to arrange that etch i be 
attacked at most finitely often. Consequently, we 
have had to arrange that if i gets attacked infi- 
nitely often, almost all of the attacks are 
irrelevant, and v must somehow accomodate only the 
relevant attacks. This seems to make this portion 
of our proof considerably more delicate than the 
corresponding proofs in [Bi] and (M-P]. We shall 
give the details in the published version of this 
paper. 

In conclusion, we might remark that the sort 
of speed-up described by Theorem I of this paper is 
not the only sort of speed-up for enumerating sets: 
Suppose E is an enumeration technique for which it 
is possible, given an intuitive description for 
enumerating a set, to obtain an index e for which 
~nD£(e,n) enumerates the set in the same order 

as given by the intuitive description. Then a 
straightforward adaptation of the proof of the Blum 
Speed-up Theorem in [BI] or its generalization in 
(M-F] yields: 
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Theorem 2. Let F be any e f f e c t i v e  opera tor  
ca r ry ing  a l l  t o t a l  r ecu r s ive  func t ions  to t o t a l  
recursive functions. Then there exists an infinite 
r.e. set W and an index i of W for which if Wj = W 

there exists an i' such that W i = W, iapp i',and 

Aj(n)>F(Ai,)(n ) for all but finitely many n. 

Finally, we remark that anytime one has a set 
W, like those constructed in Theorems I and 2, 
which is difficult to enumerate, W cannot have an 
infinite subset S which is "much easier" to 
enumerate than is W itself. The reason is that 
no se t  W is "much more difficult" to enumerate 
than any of its subsets, S. This is because a 
"simultaneous" enumeration of S and W produces 
elements "almost" as rapidly as does an enumeration 
of S alone.  
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