
SPEED-UPS BY CHANGING

THE ORDER IN WHICH SETS ARE ENLBIERATED

(PRELIMINARY VERSION)

Paul R. Young
Purdue University

Lafayette, Indiana

SUR~IARY

In a suitably g e n e r a l context, the following
analogue of the Blum Speed-up Theorem is proven:
There are some infinite sets which are so diffi-
cult to enumerate that, given any order for
e n u m e r a t i n g t h e s e t , t h e r e i s some o t h e r o r d e r ,
and some one method o f e n u m e r a t i n g t h e s e t i n t h i s
s e c o n d o r e ~ w h i c h i s much f a s t e r t h a n a n ~ m e t h o d
o f e n u m e r a t i n g t h e s e t i n t h e f i r s t o r d e r i n g . I t
may be p o s s i b l e to interpret this result as a
statement about the relative merits of "hardware"
v_~. "programming" speed-ups. The proof itself is
one of the first nontrivial applications of
priority methods to questions of computational
complexity. As such, it perhaps represents an
advance in bringing the results and techniques of
contemporary "pure" recursion theory to bear on
questions of computational complexity.

In t h i s p a p e r we s h a l l p r o v e , i n a s u i t a b l y
g e n e r a l c o n t e x t , t h e f o l l o w i n g a n a l o g u e o f t h e
Blum Speed-up Theorem, [B1]: The re a r e some
i n f i n i t e s e t s which a r e so d i f f i c u l t t o e n u m e r a t e
t h a t , g i v e n any o r d e r f o r e n u m e r a t i n g t h e s e t ,
t h e r e i s some o t h e r o r d e r , and some one method o f
e n u m e r a t i n g t h e s e t i n t h i s s econd o r ~ r which i s
much f a s t e r t h a n an~ method o f e n u m e r a t i n g t h e s e t
i n t h e f i r s t o r d e r i n g .

Be fo re p r o c e e d i n g w i t h t h e d e t a i l s , l e t us
c o n s i d e r a p o s s i b l e i n t e r p r e t a t i o n . While we w i l l
n o t vouch f o r t h e s t r i c t v a l i d i t y o f t h e i n t e r -
p r e t a t i o n , i t w i l l p e r h a p s s u g g e s t why t h e r e s u l t
is interesting. In any real computer installation
there are two components to the computational
procedures. First, there is a physical machine,
and second, there are programs for the machine.
If, for example the programs are written in a
higher level language, there may also be a compiler
for translating the higher level language into
machine language. As always when doing recursion
theory, we assume a potentially unlimited memory,
so that there is, e.g., no limit to the number of
tapes which a machine may use in executing a
program.

We now imagine a program written in a higher
level language which is designed to enumerate or
generate an infinite list of integers. We ask how
we can speed-up the task. An obvious answer is to
speed up the basic cycle time of the machine.

S u p p o r t e d by N .S .F . R e s e a r c h G r a n t Nd~' GP 6 i20

I n d e e d , such ha rdware s p e e d - u p s have b e e n an
i m p o r t a n t r e a s o n f o r t h e i n c r e a s e d e f f i c i e n c y o f
d i g i t a l c o m p u t e r s . C l e a r l y , an i n c r e a s e i n t h e
basic cycle time of the machine w i l l not change the
order in which a given program will enumerate a
fixed set of integers. Although it is possible to
imagine hardware improvements utilizing parallel
processing which will change the order in which a
given higher level program enumerates a given set,
there is a good reason for avoiding such changes in
the order in which the members of the set are
enumerated as output (even though the internal
sequence of machine operations may change): A
programmer working in a higher level language has
a good notion of how he expects the program to
operate. If a machine fails to enumerate the ans-
wers in the order implicitly assumed by the
programmer, the programs are likely to be difficult
to "debug". Indeed, to the extent that higher
level languages are "machine independent", we may
expect that hardware improvements will not change
the order in which programs enumerate sets.

Our r e s u l t now s t r o n g l y s u g g e s t s t h a t t h e r e
a r e some i n f i n i t e s e t s which have t h e p r o p e r t y t h a t ,
no m a t t e r what p rogram i s u sed t o enumera t e t h e s e t ,
a s i n g l e r ep rogramming w i l l r e s u l t i n much g r e a t e r
g a i n s i n o p e r a t i o n a l e f f i c i e n c y t h a n can be
achieved by any improvement that can be made by
speeding up the hardware (without changing the
order of enumeration).

We b r i e f l y r e v i e w o u r n o t i o n o f an e n u m e r a t i o n
t e c h n i q u e , e x p l a i n e d more f u l l y i n [Y]. We l e t
Do,D1, D 2 , . . . be any c a n o n i c a l e n u m e r a t i o n o f a l l

f i n i t e s u b s e t s o f N, t h e s e t o f n o n n e g a t i v e i n t e g e r s :
from i , one can e f f e c t i v e l y l i s t a l l members o f D i
and know when t h e l i s t i n g i s c o m p l e t e . A t o t a l
r e c u r s i v e f u n c t i o n E i s an e n u m e r a t i o n t e c h n i q u e i f
f o r e v e r y r e c u r s i v e l y e n u m e r a b l e (r . e .) s e t W t h e r e
i s an i n t e g e r e such t h a t W = ~ D E (e , n) . We c a l l

e an i n d e x o f W and w r i t e We f ° r U D E (e , n) ' n We

always assume t h a t t h e r e s u l t i n g i n d e x i n g s s a t i s f y
t h e U n i v e r s a l T u r i n g Machine Theorem and t h e S n - m
Theorem (f o r s e t s ; f o r d e t a i l s s ee [Y]) . For con-
v e n i e n c e , we a lways assume DE(e,o) = ~, and we

d e f i n e E ' (e , n) by D E , (e , n) = m<~n DE(e,m)" We use

t h e X - n o t a t i o n f o r f u n c t i o n s , e . g . , i f E i s a
f u n c t i o n o f two v a r i a b l e s , ~yE(x ,y) i s , f o r e ach

-89-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800169.805424&domain=pdf&date_stamp=1969-05-05

f i x e d x, t h e r e s u l t i n g f u n c t i o n o f t h e s econd
v a r i a b l e a l o n e . ~i~ i i s a f i x e d s t a n d a r d enumera-

t i o n o f a l l p a r t i a l r e c u r s i v e f u n c t i o n s . We
assume no special connections between t h e £ndexings
~i¢ i and ~iWi; in particular W i need not be the
range or domain of ¢£. T is any I-1 effective map
from NXN to N, and we always denote T(x,y) by
<x,y>. ~l<x,y> = x and ~2<x,y> = y.

D e f i n i t i o n . With e v e r y e n u m e r a t i o n t e c h n i q u e
E we associate the partial recursive function
tinAi(n) defined by

Ai(n) = (~y) [[DE, ci,y)[~n],

where "(~y)[...]" means "the l e a s t y such that
[...]" and ~DE,(i,n)[. is the number of elements in

DE'(i,n).

b u t t h e o r d e r s c a n n o t be d i s t i n g u i s h e d from t h e
e n u m e r a t i o n . (Thus t h e r e l a t i o n i a p p j when r e s -
t r i c t e d t o t h o s e i and j f o r which W i and Wj a r e
i n f i n i t e i s an e q u i v a l e n c e r e l a t i o n . But i f i o
i s an i n d e x o f t h e empty s e t , t h e n i o app j f o r
any j .)

We now define a recursive function s(j,n)
w i t h t h e hope t h a t l im s (j , n) w i l l be t h e s m a l l e s t

i n d e x £ f o r which Wj = W i and i a p p j . We do n o t
f u l l y s u c c e e d .

Definition. s(0,n) = 0 for all n and

s(j+1,n) = (~i)[i<j+l~i app n j+l ~ (~z~)

[no t z app n j + l ~ i ~ s (z , n)]] .

A i (n) may be t h o u g h t o f , e . g . , as t h e number
o f s t e p s T u r i n g mach ine i t a k e s t o e n u m e r a t e a t
l e a s t n e l e m e n t s , o r as t h e number o f t a p e s q u a r e s
machine i t a k e s t o e n u m e r a t e a t l e a s t n e l e m e n t s ,
o r as t h e l e n g t h o f t h e l o n g e s t d e r i v a t i o n which
P o s t - s y s t e m i u s e s t o e n u m e r a t e a t l e a s t n e l e m e n t s ,
o r as t h e number o f i n s t r u c t i o n s t h e i ' t h F o r t r a n
p rogram t a k e s i n o r d e r t o w r i t e a t l e a s t n e l e m e n t s .
E t c . The p r e d i c a t e A.(x)<l ~ , -is a r e c u r s i v e
p r e d i c a t e o f t h r e e v a r i a b l e s .

We now wish to talk about programs £ and j
which enumerate the same set in the same order.
S i n c e t h i s n o t i o n c a n n o t be r e c u r s i v e l y d e f i n e d ,
we must c o n t e n t o u r s e l v e s w i t h a s e r i e s o f r e c u r -
s i v e a p p r o x i m a t i o n s which i n t h e l i m i t g i v e us
a l m o s t , b u t n o t q u i t e , t h e n o t i o n we a r e a f t e r .

Definition. We say that i appears to have the
same order as j through n steps and write iapp n j
if for all x <n and for all y, z <n~

[DE,(i,x) C_DE,(j,x) or DE,(j,x) ~DE,(i,x)J

[m e CS'(i,y+l) - DE'(i,y)) ~(Ds'(j,z+l) - DE'(J,z))

=-~ 0z,(i,z) _~Ds,(j,=+l) g DZ,(~,=) c OZ,(i,y~1~

Definition. We say that i appears to have the
same order as j and write iapp j if for all
sufficiently large n, iapp n j is true.

We l e a v e t h e r e a d e r t o v e r i f y t h a t t h i s n o t i o n
i s i n t u i t i v e l y c o r r e c t (b e a r i n g i n mind t h a t
DE,(i,y+l) - OE,(i,y) may have more than one element

(so we h a v e g i v e n t h e b r o a d e s t p o s s i b l e i n t e r -
p r e t a t i o n t o " h a v e t h e same o r d e r ")) , t h a t n o t i
app n j implies not iapp n+l Js that (<i,j> Inot i
app j} is r.e., and that (<i,j> I iapp j} is not
obviously enumerable.

(i) We also ask the reader to note that iapp
j iff both W i and Wj are infinite and £ and j
enumerate the same set in the same order, or else
one of W i and Wj is a finite subset of the other

Again, we leave the reader to verify simple
facts about s:

s (j , n) ~ f o r a l l j and n .

(2) l i ra s C j ,n) a lways e x i s t s (by i n d u c t i o n
n

on j) .

(3) linm s (j , n) = limn s (i , n) ~ j app i .

(4) If i is the smallest index for which Wi=W j

and iapp j, t h e n linm s(j,n)<i.

F i n a l l y , i n o r d e r t o s t a t e our t h e o r e m , we
r e c a l l one f i n a l

D e f i n i t i o n . An o p e r a t o r F c a r r y i n g p a r t i a l
r e c u r s i v e f u n c t i o n s t o p a r t i a l ' r e c u r s i v e f u n c t i o n s
i s e f f e c t i v e i f t h e r e i s a t o t a l r e c u r s i v e f u n c -
t i o n g such t h a t

~(¢e) = Cg(e)
f o r a l l e such t h a t ~££ domain F.

We s h a l l be c o n c e r n e d o n l y w i t h e f f e c t i v e
o p e r a t o r s which c a r r y a l l t o t a l r e c u r s i v e f u n c t i o n s
t o t o t a l r e c u r s i v e f u n c t i o n s . Examples o f such
o p e r a t o r s i n c l u d e : (i) I f r (x , y) i s any t o t a l
r e c u r s i v e f u n c t i o n , t h e o p e r a t o r ~1 d e f i n e d by

F l (¢ i) (x) = r (x , ¢ i (x)) , and (i i) , t h e o p e r a t o r ~2

d e f i n e d by F 2 (¢ i) (x) = ~ i (¢ i (x)) .

Theorem 1. Le t E be any e n u m e r a t i o n t e c h n i q u e
and l e t F be any e f f e c t i v e o p e r a t o r c a r r y i n g a l l
t o t a l r e c u r s i v e f u n c t i o n s t o t o t a l r e c u r s i v e f u n c -
t i o n s . Then t h e r e e x i s t s an i n f i n i t e r . e . s e t W
such t h a t i f W i = W, t h e r e e x i s t s i ' s uch t h a t

Wi, = W and f o r any j such t h a t i and j e n u m e r a t e

W i n t h e same o r d e r

Aj (n) > ECAi,) (n)

- 9 0 -

for a l l but finitely many n.

The details of our proof are lengthy and te-
dious, and we will reserve them for later publica-
tion. We will however give a brief outline of
the proof, explaining how it builds on and differs
from the p roof s of speed-up theorems in [BI] and
(M-F]. We assume the reader is familiar with one
or both of these earlier proofs.

As is usual, we first define a total recur-
sire function tCu,v,£) satisfying three conditions,
which we number to correspond to the numbering of
our proof:

(12) Suppose @£ is a total recursive func-
tion. Then there is a (possibly noneffective)
sequence 0 = Vo,Vl,V2,v3,... such that

Wtco,o,£) = wtCl,Vl,£) = Wt(2,v2,£) = ... •

C13) There exists a total recursive func-
tion @o for which, for all i and v, and for all t
such t~at (n-l)3<t~n 3,

~£(<i,n>)imax{F(At(i+l,v,£)) (t), @~(<i+l,n>) }

for a l l but finitely many n.

(14) For ~£ given by (13), if Wi=Wt(o,o,£)

and if i is the smallest index for enumerating
Wtfo,o,£~.. in the order given by i, then for any j

for which W.=W and iapp j, we must have,
J tLo,o,z)

for t such that (n-l)3<t<n,

Aj(t)>~z(<i,n>) for all but finitely many n.

The proof then follows from (12), (15), and
(14) in virtually the same way similar results are
used to obtain the speed-up theorems of [~ and
(M-F], so we omit details.

To prove (15), we first define an effective
operator, F*, carrying all total recursive func-
tions to total recursive functions by

F* (@j) (n) =max(F (~j) (t) [(n- l)~t <_n 3).
(13) is now proven by using the method

introduced by Meyer and Fischer for proving their
operator speed-up theorem. (Actually, we get by
with a slightly simpler version of their proof.)
We use the recursion theorem to obtain a function
@£ for which

@£(<i,x>)=0 if x<i or [Bn~i)[@£(<0,n>) is not

defined in <x steps], otherwise

~(<i,x>)=v{x[~*(At(i+l,v,£))(x)+~(<i+l,v>)]-

For this £, it is easily seen that (13) holds

if ~@ is total. But it is easily seen that
~x@£1<i,x>) total implies ~x@£(<i+l,x>) total and

that if ~x@£(<0,x>) were not total then ~x~£(<i,x>)

would be total for all sufficiently large i, say
for all i>M. This in turn is adequate for showing
that Wt(M÷l,v,£) always has at least n elements for

n>M+l,v. This in turn implies the totality of
At(M+l,v,£) for all v, and hence the totality of

~x@£(<M,x>). Iterating, we see that lx@£(<0,x>) is

t o t a l .
The t r i c k in our c o n s t r u c t i o n i s to d e f i n e the

r e c u r s i v e f u n c t i o n t (u , v , ~) i n such a way t h a t (12)
and (14) ho ld . (14) i s no t too d i f f i c u l t , f o r i f
i and j a re as d e s c r i b e d i n (14) , we may observe by
(4) t h a t lira s(j,n)<i. Let i' = lira s(j,n). The

n n
construction is so arranged that once s(j,n)
achieves its limit, i', if

A j (t) < _ O ~ i ' , ~ (>O£~i,n)) a . e .)

then we must a t t a c k i ' by j by w i t h h o l d i n g a member
o f Wj from Wt(o,o ,£) u n l e s s i ' i s under a t t a c k by

some smaller j' with lim s(j',n) = i'. Since
n

lira s(j',n) = lim s(j,n), by (5) j app j'. Since
n n
Wj is infinite this implies by (i) that Wj,~Wj.

Since i' is under attack by j', some member of Wj,
(and hence of Wj(=Wi)) is withheld from Wt(o,o,£).

Our proof of (12) is more difficult than the
proof of the corresponding results in [BI] and
(M-F]. There are several problems to be overcome
here, but the most notable is the following: In
the corresponding proofs in [Bi] and (M-F], each i
gets attacked at most finitely often. The variable
v in Wt(u,v Z) is thus used to handle the finitely

many attacks on the finitely many i's<u. However,
we have been unable to arrange that etch i be
attacked at most finitely often. Consequently, we
have had to arrange that if i gets attacked infi-
nitely often, almost all of the attacks are
irrelevant, and v must somehow accomodate only the
relevant attacks. This seems to make this portion
of our proof considerably more delicate than the
corresponding proofs in [Bi] and (M-P]. We shall
give the details in the published version of this
paper.

In conclusion, we might remark that the sort
of speed-up described by Theorem I of this paper is
not the only sort of speed-up for enumerating sets:
Suppose E is an enumeration technique for which it
is possible, given an intuitive description for
enumerating a set, to obtain an index e for which
~nD£(e,n) enumerates the set in the same order

as given by the intuitive description. Then a
straightforward adaptation of the proof of the Blum
Speed-up Theorem in [BI] or its generalization in
(M-F] yields:

-91-

Theorem 2. Let F be any e f f e c t i v e opera tor
ca r ry ing a l l t o t a l r ecu r s ive func t ions to t o t a l
recursive functions. Then there exists an infinite
r.e. set W and an index i of W for which if Wj = W

there exists an i' such that W i = W, iapp i',and

Aj(n)>F(Ai,)(n) for all but finitely many n.

Finally, we remark that anytime one has a set
W, like those constructed in Theorems I and 2,
which is difficult to enumerate, W cannot have an
infinite subset S which is "much easier" to
enumerate than is W itself. The reason is that
no se t W is "much more difficult" to enumerate
than any of its subsets, S. This is because a
"simultaneous" enumeration of S and W produces
elements "almost" as rapidly as does an enumeration
of S alone.

References

[B1] Blum, Manuel, A machine independent theory
of computat ional complexity, J . Assoc. Comp.
Hath. , 14 (1967), 322-336.

[B2] Blum, Manuel, On the s i ze of machines, I n f .
and Contro l , 11 (1967), 257-265.

[H-F) Meyer, A. R., and F ischer , P.C., On computa-
t i o n a l speed-up, to appear.

[R] Rogers, H., J r . , Theory of Recursive Func-
t i o n s and Ef fec t ive Computab i l i ty , McGraw-
Hill, New York, (1967).

[Y] Young, P.R., Toward a theory of enumerations,
J. Assoc. Comp. Math. 16, (1969), to appear.
(Preliminary version in Proc. 9th annual
I.£.E.E. Symposium on Switching and Automata
Theory, (1968), 334-350.)

-92-

