Check for
Updates

SPEED-UPS BY CHANGING
THE ORDER IN WHICH SETS ARE ENUMERATED
(PRELIMINARY VERSION)

Paul R. Young
Purdue University

Lafayette,

SUMMARY

In a suitably general context, the following
analogue of the Blum Speed-up Theorem is proven:
There are some infinite sets which are so diffi-
cult to enumerate that, given any order for
enumerating the set, there is some other order,
and some one method of enumerating the set in this
second order which is much faster than any method
of enumerating the set in the first ordering, It
may be possible to interpret this result as a
statement about the relative merits of "hardware"
vs. "programming" speed-ups. The proof itself is
one of the first nontrivial applications of
priority methods to questions of computational
complexity. As such, it perhaps represents an
advance in bringing the results and techniques of
contemporary ''pure' recursion theory to bear on
questions of computational complexity,

In this paper we shall prove, in a suitably
general context, the following analogue of the
Blum Speed-up Theorem, [Bl]: There are some
infinite sets which are so difficult to enumerate
that, given any order for enumerating the set,
there is some other order, and some one method of
enumerating the set in this second order which is
much faster than a any method of enumerating the set
in the first ordering.

Before proceeding with the details, let us
consider a possible interpretation. While we will
not vouch for the strict validity of the inter-
pretation, it will perhaps suggest why the result
is interesting. In any real computer installation
there are two components to the computational
procedures, First, there is a physical machine,
and second, there are programs for the machine.
1f, for example the programs are written in a
higher level language, there may also be a compiler
for translating the higher level language into
machine language. As always when doing recursion
theory, we assume a potentially unlimited memory,
so that there is, e.g., no limit to the number of
tapes which a machine may use in executing a
program,

We now imagine a program written in a higher
level language which is designed to enumerate or
generate an infinite list of integers. We ask how
we can speed-up the task. An obvious answer is to
speed up the basic cycle time of the machine.

Supported by N.S.F. Research Grant No, GP 6120

Indiana

Indeed, such hardware speed-ups have been an
important reason for the increased efficiency of
digital computers. Clearly, an increase in the
basic cycle time of the machine will not change the
order in which a given program will enumerate a
fixed set of integers, Although it is possible to
imagine hardware improvements utilizing parallel
processing which will change the order in which a
given higher level program enumerates a given set,
there is a good reason for avoiding such changes in
the order in which the members of the set are
enumerated as output (even though the internal
sequence of machine operations may change): A
programmer working in a higher level language has

a good notion of how he expects the program to
operate. If a machine fails to enumerate the ans-
wers in the order implicitly assumed by the
programmer, the programs are likely to be difficult
to "debug'", Indeed, to the extent that higher
level languages are "machine independent", we may
expect that hardware improvements will not change
the order in which programs enumerate sets.

Our result now strongly suggests that there
are some infinite sets which have the property that,
no matter what program is used to enumerate the set,
a single reprogramming will result in much greater
gains in operational efficiency than can be
achieved by any improvement that can be made by
speeding up the hardware (without changing the
order of enumeration).

We briefly review our notion of an enumeration
technique, explained more fully in [Y]. We let
Do,Dl, D,,... be any canonical enumeration of all

finite subsets of N, the set of nonnegative integers:
from i, one can effectively list all members of Dy
and know when the listing is complete. A total
recursive function E is an enumeration technique if
for every recursively enumerable (r.e.) set W there
is an integer e such that W = DE(e,n)' We call

e an index of W and write W_ for L/ DE(e n* We

always assume that the resulting indexings satlsfy
the Universal Turing Machine Theorem and the S

Theorem (for sets; for details see [Y]). For con-
venience, we always assume DE(e o) = @, and we
3

define E'(e,n) by D We use

E'(e,m) st DECe,m).

the A - notation for functions, e.g., if E is a
function of two variables, AyE(x,y) is, for each

_89_


http://crossmark.crossref.org/dialog/?doi=10.1145%2F800169.805424&domain=pdf&date_stamp=1969-05-05

fixed x, the resulting function of the second
variable alone. Aiﬂi is a fixed standard enumera-

tion of all partial recursive functions, We

assume no special connections between the indexings
Aiﬂi and AiWj; in particular W; need not be the
range or domain of #;. v is any 1-1 effective map
from NXN to N, and we always denote t(X,y) by
Xpy>. T SXy> = X and LIS 24 2

Definition, With every enumeration technique
—_— . " X

E we associate the partial recursive function

AinA; (n) defined by

Ai(n) = (uy) [IDﬁu(i’y)l :n]n

where "(uy)[...]" means "the least y such that
[ese]" and ’DE'(i n)lis the number of elements in
»

Der(i,n).

A; (n) may be thought of, e.g., as the number
of steps Turing machine i takes to enumerate at
least n elements, or as the number of tape squares
machine i takes to enumerate at least n elements,
or as the length of the longest derivation which
Post-system i uses to enumerate at least n elements,
or as the number of instructions the i'th Fortran
program takes in order to write at least n elements,

Etc. The predicate Ai(x):y is a recursive
predicate of three variables.

We now wish to talk about programs i and j
which enumerate the same set in the same order.
Since this notion cannot be recursively defined,
we must content ourselves with a series of recur-
sive approximations which in the limit give us
almost, but not quite, the notion we are after,

Definition, We say that i appears to have the
same order as j through n steps and write i app” j
if for all x < n and for all y, z < n,

Pg (1,2 € Be(5,%) °F g (5,0 E0%(1,0)] &
n e q)El(i’Y"l) - E’(i’}')) n

P5(1,y) S P5'(3,241) & Per(3,2) S 5 ‘(1,501 ).

Definition, We say that i appears to have the
same order as j and write i app j if for all
sufficiently large n, i app™ j is true.

We leave the reader to verify that this notion
is intuitively correct (bearing in mind that
DE'(i,y+1)' DE'(i,y) may have more than one element

(so we have given the broadest possible inter-
pretation to 'have the same order")), that not i
app" j implies not i app™*l j, that {<i,j> |not i
app j} is r.e., and that {<i,j>| i app j} is not
obviously enumerable,

(1) We also ask the reader to note that i app
j iff both W; and Wj are infinite and i and j
enumerate the same set in the same order, or else
one of W; and W;j is a finite subset of the other

g 1(5,201) = PE1(5,2))

but the orders cannot be distinguished from the
enumeration, (Thus the relation i app j when res-
tricted to those i and j for which W; and W; are
infinite is an equivalence relation. But 1f i;
is an index of the empty set, then i, app j for
any j.)

We now define a recursive function s(j,n)
with the hope that lgm s(j,n) will be the smallest

index i for which Wj = W; and i app j. We do not
fully succeed.

Definition. s(0,n) = 0 for all n and
s(j+1,n) = (wi)[i<j+16i app" j+1 § (Vz<j)

(not z app” j+1 = i#s(z,n)]].

Again, we leave the reader to verify simple
facts about s:

s(j,n)<j for all j and n.

(2) I%m s(j,n) always exists (by induction

on j).
(3) 1%m s(j,n) = lgm s(i,n) » j app i,
(4) If 1 is the smallest index for which wi=wj

and i app j, then I%m s(j,n):}.

Finally, in order to state our theorem, we
recall one final

Definition. An operator F carrying partial
recursive functions to partial recursive functions
is effective if there is a total recursive func-
tion g such that

F =
FBe) = By00)
for all e such that § ¢ domain F.

We shall be concerned only with effective
operators which carry all total recursive functions
to total recursive functions. Examples of such
operators include: (i) If r(x,y) is any total
recursive function, the operator F; defined by

El(gi)(x) = r(x,0;(x)), and (ii), the operator E,
defined by F,(d;) (x) = #;(#;(x)).

Theorem 1, Let E be any enumeration technique
and 1et T be any effective operator carrying all
total recursive functions to total recursive func-
tions. Then there exists an infinite r.e. set W
such that if wi = W, there exists i' such that

Wi, = W and for any j such that i and j enumerate

W in the same order

Aj (n) > E(Ail) (n)

-9Q-



for all but finitely many n.

The details of our proof are lengthy and te-
dious, and we will reserve them for later publica-
tion. We will however give a brief outline of
the proof, explaining how it builds on and differs
from the proofs of speed-up theorems in [Bl] and
[M-F]. We assume the reader is familiar with one
or both of these earlier proofs.

As is usual, we first define a total recur=-
sive function t(u,v,%) satisfying three conditions,
which we number to correspond to the numbering of
our proof:

(12) Suppose ¢, is a total recursive func-
tion., Then there is a (possibly noneffective)
sequence 0 = VO'Vl‘Vz'va"" such that

W =W =W
t(0,0,2) ~ "t(1,v;,0) © “t(2,v,,9)

(13) There exists a total recursive func-
tion @#, for which, for all i and v, and for all t
such that (n-1)3<t<n3,

nz(<i,n>):pax{f(At(i+1'v’z))(t), ¢2(<i+1,n>)}

for all but finitely many n,

(14) For ﬂl given by (13), if wi=wt(°0°'z)

and if i is the smallest index for enumerating
wt(o,o,z) in the order given by i, then for any j
for which wj=wt(0'°’2) and i app j, we must have,

for t such that (n-1)3<t<n,

Aj(t)>ﬂl(<i,n>) for all but finitely many n.

The proof then follows from (12), (13), and
{14) in virtually the same way similar results are
used to obtain the speed-up theorems of [B] and
[M-F], so we omit details,

To prove (13), we first define an effective
operator, F*, carrying all total recursive func-
tions to total recursive functions by

E*(8;) (M) =max{F (8,) (t) | (-1t}

(13) is now proven by using the method
introduced by Meyer and Fischer for proving their
operator speed-up theorem, (Actually, we get by
with a slightly simpler version of their proof.)
We use the recursion theorem to obtain a function
ﬂz for which

¢£(<i,x>)=0 if x<i or Gan:})[¢£(<0,n>) is not
defined in <x steps], otherwise
02(<1.X>)=v§;[f*(At(i+1,v,z))(x)+¢z(<i+1’V>)]‘

For this £, it is easily seen that (13) holds

-Q1-

if @, is total., But it is easily seen that
Ax¢1%<i,x>) total implies Ax¢1(<i*1,x>) total, and

that if Ax¢1(<0,x>) were not total then Ax¢£(<i,x>)

would be total for all sufficiently large i, say

for all i>M, This in turn is adequate for showing
b3

that wt(M+1,vﬂ3 always has at least n elements for

n>M+],v. This in turn implies the totality of
.. ‘ ]
At(M+1,v.1) for all v, and hence the totality o

Ax¢£(<M,x>). Iterating, we see that Ax¢2(<0,x>) is
total.

The trick in our construction is to define the
recursive function t(u,v,&) in such a way that (12}
and (14) hold. (14) is not too difficult, for if
i and j are as described in (14), we may observe by
(4) that I%m s(j,n)<i. Let i' = lim s(j,n), The

n
construction is so arranged that once s(j,n)
achieves its limit, i', if

Aj(t)iﬁlci'.rp) o €. a.e.)

then we must attack i' by j by withholding a member
of W. from W unless i' is under attack by
J t(o,0,2)

some smaller j!' with l%m s(j',n) = i', Since
lim s(j',n) = I%m s(j,n), by (3) j app j'. Since
n

wj is infinite this implies by (1) that ijEWj'
Since i' is under attack by j', some member of wj,

(and hence of wj(=wi)) is withheld from wt(o,o,l)'

Our proof of (12) is more difficult than the
proof of the corresponding results in [B1l] and
[M~F]. There are several problems to be overcome
here, but the most notable is the following: In
the corresponding proofs in [Bl] and [M-F], each i
gets attacked at most finitely often, The variable

v in wt(u,v,ﬁ) is thus used to handle the finitely

many attacks on the finitely many i's<u. However,
we have been unable to arrange that each i be
attacked at most finitely often. Consequently, we
have had to arrange that if i gets attacked infi-
nitely often, almost all of the attacks are
irrelevant, and v must somehow accomodate only the
relevant attacks. This seems to make this portion
of our proof considerably more delicate than the
corresponding proofs in [Bl]} and [M-F]. We shall
give the details in the published version of this
paper,

In conclusion, we might remark that the sort
of speed-up described by Theorem 1 of this paper is
not the only sort of speed-up for enumerating sets:
Suppose E is an enumeration technique for which it
is possible, given an intuitive description for
enumerating a set, to obtain an index e for which
A"DE(e,n) enumerates the set in the same order

as given by the intuitive description. Then a
straightforward adaptation of the proof of the Blum
Speed-up Theorem in [B1] or its generalization in
[M-F] yields:



Theorem 2. Let E be any effective operator
carrying all total recursive functions to total
recursive functions. Then there exists an infinite

r.e. set W and an index i of W for which if wj = W

there exists an i' such that W; = W, i app i', and
Aj(n)zf(Ai,)(n) for all but finitely many n.

Finally, we remark that anytime one has a set
W, like those constructed in Theorems 1 and 2,
which is difficult to enumerate, W cannot have an
infinite subset S which is "much easier' to
enumerate than is W itself, The reason is that
no set W is "much more difficult" to enumerate
than any of its subsets, S. This is because a
"simultaneous" enumeration of S and W produces
elements "almost" as rapidly as does an enumeration
of S alone,

[B1]

(82]
[M-F]

[R)

(vl

~92-

References

Blum, Manuel, A machine independent theory
of computational complexity, J. Assoc, Comp.
Mach., 14 (1967), 322-336.

Blum, Manuel, On the size of machines, Inf.
and Control, 11 (1967), 257-265.

Meyer, A, R., and Fischer, P.C,, On computa-
tional speed-up, to appear,

Rogers, H., Jr., Theory of Recursive Func-
tions and Effective Computability, McGraw-
Hill, New York, (1967).

Young, P.R., Toward a theory of enumerations,
J. Assoc, Comp. Mach, 16, (1969), to appear.
(Preliminary version in Proc. 9th annual
I1.E.E,E. Symposium on Switching and Automata
Theory, (1968), 334-350.)



