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Summary

The time and incremental complexity required
to perform two-operand addition using logical cir-
cultry are camared for nonredundant and minimally
redundant encodings of the operands. The compari-
son 1s extended to multi-operand addition and two-
onerand multiplication.

Introduction and Review

The times reaquired to perform the arithmetic
operations of addition and multiplication using
logical iigcuitry have been investigated by
Winograd™?>~. The model of a logical circuilt C
employed in these studies consists of a set of
(d,r) lopical elements and a rule of interconnec—
tions with designated sets of input and output
lines. The (d,r) loglcal element has r input
lines and one output line; these lines can assume
one of d distinct states. The (d,r) losical ele-
ment has a unit time delay; that is, the state of
the output line at the time t+1 is a function of
the states of the input lines at time t.

The circuit C is said to be canmable of com—
putine the function f in time T if the specified
result in coded rerresentation is observed on its
output lines T time units after the arpuments were
applied (in coded representation) to the input
lines. At the time of application of the inputs
the circult C is set to a standard internal state,
and the inputs are held fixed until the time T.
The method of encodine of the operands is not
specified except for the requirement that the out-
put encoding should be one-one; that is, redun-
dancy of representation is excluded in the notion
of computation. Lower bounds for the time re-
quired are then derived as functions of 4, r, and
of the range N of the input arguments, and compu-
tatlon schemes are devised which approach the
bounds. Precise definitions of the (d,r) logical
element, logical circui&,pand camputation are
found in the references™>“; a familiarity with
these references is assumed in this discussion,

An e%rlier study of digital arithmetic by
Avizienis~ led to the empirilcal development of an
addition algorithm which requires a constant time
T=2 to compute the sum of two operands regardless
of their ranpe. The coding of the operands and
of the result employs a positional, constant
radix b>2 "signed-digit" redundant form in which
the allowed diglt values are {-a,...,-1,0,1,...,a}
with b-1 < a < [(b+1)/3] where xT is the smallest
inteper not smaller than x.

The first pair of logical elements (w}th a=
2atl and r=2 according to Winograd's model™)
accepts the operand digits x; and vy (indexing:

n-1,...,1,...,1,0) and forms the outnut "transfer
diplt" t, . with three allowed values {-1,0,1}
and the dlitput "interim sum" dipit w, in the
range {-(a-1),...,a-1} such that -

xi + yi =Db ti+l + wi (1)

is satisfied (i.e., tigp = 1if x +y, 2a;5t,

= -1 if x4y, < a3 t, = 0 1fdox +y,> 5,
The secon& logical elerment gc%epts the inpu vy
ard ti and forms the sum dipit Sy such that

s +ty (with a = Sy 2 -a). (2)

1 7Y
The coding used for the operands is preserved in
the result, and the amount of redundancy is not
increased.

Measures of Canplggitg:
Two-Operand "Constant Time' Addition

The purpose of the present discussion is to
consider the differences encountered in canputing
arithmetic functions with redundant and non-re-
dundant encodings of the results and to establish
the measure of additional or "incremental" com-
plexity which represents the cost of holding the
two-overand addition time to constant values =3,
2, and 1. The sumation of several operands and
the multiplication of two operands are considered
subsequently.

Minimal Redundancy with T=2

The existing set of sipned—digit algorithms3
was devised to satisfy practical deslon constraints
of arithmetic proenssora, Among these, a conven-
ient additive inverse algorithm, a unique repre-
sentation of zero, and a convenient range test al-
gorithm were needed and led to the choice of the
symmetric sets {-a,...,a} for digit values, and
{~1,0,1} for transfer digit values. In general,
the two-operand "constant time T=2" addition al-
gorithm (1), (2) requires the minimm redundancy
of b+2 diglt values for any radix b>2. HNegative
diglt values are avoided when the trﬁnsferAdigit
values {0,1,2} and the diglt set {11,10,...,1,0}
one used any b23; however, the transfer value se%
{-1,0,1} and b+2 values around zero e.z.,{~(b+1)/2
to (b+1)/2} for odd b23 and {7(b/2) to +(1+h/2)}
for even bzl offer the advantages of a simnle range
test algorithm and a unique representation of zero
modulo b, both of which are not available with
digit values xizb.

The least redundancy which satisfies the "T=2"
addition algorithm (1), (2) consists of two addi-
tional values in each radix b digital position,
glving an incremental redundancy ratio of (b+2)/b
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per digit. Considering a complete radix b posi-
tional encoding of n digits length, we observe
that the conventional (non-redundant) repre-
sentation has b unique forms while a minimally
redundant representation has a total of (b+2)"
forms representing b + 2(b"-1)/(b-1) distinct
integers. The introduction of redundancy adds
(b+2)1 ~ b1 = B ((2142/6)1 -1) new forms, of which
2(b"-1)/(b-1) represent new values, while the re-
maining forms provide alternate (redundant) rep-
resentation for the results of additions in which
the non-redundant representation requires "carry
propagation" across one or more digits.

Minimal Redundancy with T=3

A modified "two-transfer" or "constant time
T=3" addition algorithm has also been devised3, in
which a cascade of three logic elements form the
addition circuit. This algorithm requires only
b+l values in each position of the radix b22 po-
sitional encoding; three values of the transfer
diglt are again required. The "T=3" addition al-
gorithm has the incremental redundancy of (b+1)/b
per digit. The same considerations affect the
choice of digit values around zero: {-b/2 to b/2}
for even b22 and {3(b~1)/2 to #(b+1)/2} for odd
b23. The total redundancy count shows (b+1)"
forms representing b? + (b™-1)/(b-1) distinct
integers. The redundancy adds

B+)? - b7 = B ((1+10)0-1)

new forms, of which (b™-1)/(b-1) represent new
values, and the remaining are redundant.

Minimal Complexity of Logical Elements

The originally developed "T=2" addition al-
gorithm (1), (2) requires the cascading of two
(d,r) logical elements, giving T=2 (independent
of the range of the operands) with r=2 and dz5
(for radix b=d-223). The constant addition time
T=2 is not3availab1e with d<5; however, it has
been shown” that the "T=3" addition algorithm
applies for any radix b22 with b+l digit values,
ziving T=3 with r=2 and d23 (for radix b=d-1 22).

It is evident that s, = £(Xy ,¥4 5X4-1>¥1_1)
holds gor the "T=2" algorithm (l}, j(2), and tF.Iiat
S: = F{X3 Vs 5X7_7 Y« X4 o,¥4i_o) holds for the
trhe 3 al%or%thrln.l T nc%@%seli% the nunber r of
input lines (without altering d) permits the
restatement of both algorithms in terms of a
single (d,r) logical element for every digit
of the sum.

Two "T=1" algorithms are possible:
(1la) The '"™=2" algorithm yields the "T=1"
algorithm with the minimal complexity r=4 and
d=5 for the radix b=d-2.
(1b) The "T=3" algorithm yields the "T=1"
algorithm with the minimal complexity r=6 and
dz3 for the radix b=d-1.

Total Complexity of the Addition Circuit

The total count of the (d,r) logical elements
used in the addition circuit of two n-diglt radix
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b operands is readily determined because of the
simple structure of the circuit:

(a) The "T=1" algorithms (1la) and (1b) require
ntl (d,r) elements.

(b) The "T=2" algorithm requires 3n-1 (d4,r)
elements.

(¢) The "T=3" algorithm requires 5n-4 (d,r)
elements.

These total complexity counts offer a measure for
the evaluation of the relative cost of non-re-
dundant addition schemes.

Measures of Complexity: Other Algorithms

Additive Inverse

The additive inverse of a signed-digit oper-
and is generated by changing the sipns of all
ronzero diglt values. One additional digit value
at the inputs of the addition circuit is required
in the cases in which the digit set 1s not sym-
metrical around zero:

(a) A total of b+3 dipit values (i.e., d=b+3)
are required in the "T=2" algoritim and the re-
lated "T=1" algoritim (la) when the radix b(z3)
is even;

(b) A total of b+2 digit values (i.e., d=b+2)
are required in the "T=3" algorithm and the re-
lated "T=1" aleorithm (1b) when the radix b(22)
is odd.

The one-unit increase in the value of d causes
corresponding chanees in redundancy and logical
element complexitv. The other parameters (time
and total complexitv) remain unchanged.

Multi~Operand Addition

This section considers the time and complex-
ity of a lorical circuit which performs the addi-
tion of k>2 operands. The multi-operand addition
algorithm developed for the sierned-digit number
systems consists of two parts:

(a) The original k operands are summed to yield
the sum in the form of two encoded numbers;

(b) The two-operand addition algorithm is ap-
plied to get the result.

The time and complexitv of the circuit required
for part (a) is considered next; part (b) has
been considered in the previous section.

The algorithm for the summation of r d}gits
from the position i of r overards (x ,...,x”) has
the form:

o

for r<b+l, Zl Xg =buyy + vy (3)
with the 1limit r<b+l imposed to puarantee that
the digits in the two results u and v have the
same (redundant) set of ¥alueslas the input
digits the operands of X ,...X In terms of
(d,r) logical elements, two (d,r) elements (with
d=b+2, or d=b+l and rs<h+l) for every position
1 will reduce r encoded operands to a sum repre-
sented bv two similarly encoded results in one
time unit (Tr=l)'

For a total of k operands, when k>r, time
T>1 is reguired. Time T=2 is reqguired when:



k is in the range me(k)?k>nlaxl(k), with
maxz(k)=rLr/2J+(r-2Lr/2J), and max; (k)=r
Generallv, time T=} is required when:

max, (k)2k>max _1(k), where

J J

max, ()=lmax, _; (k)/2)r+(max, k)=

ZUnaxJ_l(k)/2J)

Tor the case of an even value of r, the ahove ex-
pression reduces to

maxi(k)=2(r/2)J (for rzl, even)

The time required for a complete addition with any
value of k and an even rzll then is given by the
expression (with rs<b+l):

T(k)aj+l=rlogr/2 Tk/211+1

where the first term j gives the time for the cir-
cuit which computes two results and the constant 1
accounts for the last 2-operand addition.,

The total complexity of the circuit which
precedes the last 2-operand addition and requires
the time T=j] depends on k,r, and the range (in
diglts) of the redundantly encoded input operands.
For example consider a given time ] and the
simpler case of an evenirzh. If the number of
inputs k=max, (k)=2(r/2)”’, then the one~digit cross
section of the circult shows (beginning with the
circuit's output):

P(§)=1+(r/2)+(r/2)°+. 4 (r/2)3 e (r/2))=

((r/2Y3 1)/ ((e/2)-1)

pairs of (d,r) logical elements. If k<maxj(h),
then .

P=P(§-1)4D={ ((r/2)3-1)/(x/2)-1}+
[k=2(r/2)3 ")/ (r-2)

where P(j-1) is the count for the J-1 complete
levels and D is the count for the incomplete first
level of the circult. Ranpe considerations show
that when the input level has n-digit operands,
the length of the "u" output of (3) increases by
one in each consecutive level, and the ™u" output
has a range of nt+j digits. An upper bound for the
total complexity is

N“=2°*(ntj) P
(d,r) logical elements. The actual count N is

obtained by considering the exact lengths of the
consecutive levels of the circuit.

The preceding discussion shows that the
total complexity of circuits for the addition of
k>2 operands is obtained by a straightforward
counting process.

Multinlication

A two-digit product algorithm

4 Xy700) 4541 4 ()

has been developed oreviously”. This algorithm
uses (d,r) lomic elements with r=2 and computes
the product in the form of 2n~ dieits which must
be summed in a multi-operand summation circuit
with a provision to acceot 2n-1 innuts in the
positions n and n-1 of the 2n digits lone oro-
duct. The time of multiplication is then 1+7
(add 2n-1 operands).

It is observed that the alporithm (4) re-
aulres only two inputs, i.e., r=2. Two new
alrorithms for diglt multiplication have been
devised which reduce the number of summands (and
the time) for the multi-operand addition circuit
by taking advantase of more innuts. The number
of summands is reduced from 2n-1 to n when four
inputs (r=4) are allowed and the aleorithm then
consists of forming three products accordineg to

(b):
aixj—E’ aixj-l’ and ay Xy

and then forming the digit y 4 of the product
a,x (x is the n-digit operanéy'as follows:

Vg™ Py 4y 7D 4141 4044y 5)
Here algorithm (1) is used to determine t$+é+l
from Di+j and qi+i’ and ti+j from Di+j-1 gl
q . The terms o and a need not be
St 441 T 1412

_ A further reduction of the number of summands
to [(2n-1)/3) can be achieved by an extension of
the above developed algorithm (5) when r=6 inputs
are provided (ai’ai-l’ai—2’xj’Xj-l’%1-2)'

The total complexlity of the multinlication
circuit 1s the sum of contributions from the digit
multiplication, multi-operand summation and two-
operand summation circults, The (d,r) element 5
count of the digit multiplication circuit is 2n
for algorithm (4) and (n+l)n for algorithm (5).
It must be noted that the internal comlexity of
one (d,r) element for (5) is considerably highe
(about 3-4 times) than for (U).

Concludine Observations

The primary objective of this note has been
the identification of the additional complexity,
(expressed in terms of redundancy and of the min-
imal complexity required for (d,r) logic elements),
which must be accented in order to attain two-
operand addition in constant time of 3,2, and 1
units respectively. This "price" for circum-
venting, Winograd's lower bound™ for non-redundant
encodings has been established for all three
cases.,

The same considerations have been applied
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also to the additive inverse, multi-operand addi-
tion, and two-operand multiplication using logical
circultry and redundant encodings for the operards
and results. In (k>2)-operand addition the time
is shown to be a function of k,r, and d, and in-
dependent of the range of the operands. The
algorithm is a generalization of the "carry-save"
principle of binary addition. The multiplication
time 1s shown to be a function of the range of the
operands, since it is carried out using k-operand
sumation, with k=2n-1, n, and [(2n-1)/31 for
increasing complexity of the (d,r) element which
carries out the digit multiplication p;eceding
the summation. Winograd's lower bound” has not
been reached; however, it is interestine to note
that the algorithms use the same encoding, and
that the full product, its most significant half,
and its least sipnificant half are obtained sim-
ultaneously.

The total comnlexity (number of (d,r) elements
used) also has been considered. The simple struc—
ture of the circuits (which is due to the redun-
dancy and the use of the constant radix b)
facilitates the counting of elements. A model for
the measurement of total complexity for non-redun-—
dant as well as redundant encodines 1s being
developed; the redundant case is expected to
rrovide a reference point for complexity vs. time
comparisons.,

The results of this study supgest that redun-
dancy in encoding of numbers is also an aspect of
camputational complexity, and that the general
notion of computing an arithmetic function should
encomnass Ee undant encodings as well as
Winograd's™®"~ special case of non-redundant
encoding: of the results.
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