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Summary 

The time and incremental complexity reouired 
to perform two-operand addition using logical cir- 
cuit~! are c~ared for nonr~]undant and mln~mally 
redundant enc~]in~s pC the orerands. The compari- 
son is extended to multi-operand addition and two- 
ooerand multiplication. 

Introduction and Review 

The times reouire<1 to oerfiorm the arithmetic 
operations of addition and multiplication using 
logical ~i~cultry have been investigated by 
Winog~ad ' . qhe model of a logical circuit C 
e~nployed in these st~ies consists of a set of 
(d,r) loFical elements and a rule or interconnec- 
tions with designated sets of input and output 
lines, qhe (d,r) loFical element has r input 
lines and one output llne; these lines--can assume 
one of d distinct states. The (d,r) logical ele- 
ment has a unit time delay; that is, the state of 
the output line at the time t+l is a function of 
the states of the input lines at time t. 

The circuit C is said to be capable of com- 
putin¢ the function f in time T if the specified 
result in coded representation Is observed on its 
output lines T time units after the arp~ments were 
applied (in coded representation) to the input 
lines. At the time of application of the inputs 
the circuit C is set to a standard ~nternal state, 
and the inputs are held fixed until the time T. 
5he metbod of encodln~ of the operands is not 
specified except for the reouirement that the out- 
put encoding should be one-one; that is, redun- 
dancy of representation is excluded in the notion 
of computation. Lower bounds for the time re- 
qulred are then derived as functions of d, r, and 
of the range N of the input arguments, and compu- 
tation schemes are devised which approach the 
bounds. Precise definitions of the (d,r) logical 
element, logical circuit ,2and ccmoutation are 
found in the references~'-; a familiarity with 
these references is assumed in this discussion. 

An earlier study of digital arithmetic by 
Avizienis~led to the empirical development of an 
addition algorithm which requires a constant time 
T=2 to compute the sum of two operands regardless 
of their ranFe. The codin~ of the operands and 
of the result employs a positional, constant 
radix b>2 "sip~qed-digit" redundant form in v~ich 
the allowed di~t values are {-a,... ,-1,0,1,... ,a} 
with b-1 _< a -< ~(b+l)/2-~ where Ix[ is the smallest 
integer not smaller than x. 

~he first pair of logical elements (with d = 
2a+l and r=2 according to Winograd's model ) 
accepts the operand digits x i snd Yi (indexing: 

n-l,...,i,... ,I,0) and forms the outnut "transfer 
digit" t.+] with three allowed values {-I,0,i} 
an~ the ~out "interJ/~ sum" digit w~ in the 
range {-(a-l),...,a-l} such that - 

xi + Yi = b ti+ I + w i (i) 

is satisfied (i.e., ti+ I = 1 if x~ + y~ -> a; t~¢ I 
= -1 ifl x~ + y~ -< -a, arid t~+ I = 0 if a%x~+y~>-gf 
The second logical element ~c~eots the ififput~ w i 
and t i and forms the sum digit s i such that 

s i = w i + t i (with a >- s i ~ -a). (2) 

']he codln~ used for the operands is preserved in 
the result, and the amount of redundancy is not 
increased. 

Measures of C~lexlty: 
Two-Ope-~-~-~6~-~ t ~ime~Addition 

The purpose of the present discussion is to 
consider the differences encountered in confuting 
arit~m~etic functions with redundant and non-re- 
dundant encodir~gs of the results ~d to establish 
the measure of additional or "incremental" com- 
plexity which represents the cost of holding the 
two-operand addition time to constant values T=3, 
2, and 1. the summation of several operands and 
the multiplication of two operands are considered 
subsequently. 

.~flnim~l P~edundancy_ with T=2 

~e existing set of signed-digit algorithms 3 

was devised to satisfy practical d~si~n constraints 
o ~ ar!thmetlc O~n~esso~. ~mong these, a conven- 
ient arlditive inverse algorithm, a unique repre- 
sentation of zero, and a convenient range test al- 
gorithm were needed and led to the choice of the 
synnetric sets {-a,... ,a} for digit values, and 
{-i,0,i} for transfer digit values. In general, 
the two-operand "constant time T=2" addition al- 
goritb~n (i), (2) requires the minim~n redundancy 
of b+2 digit values for any radix b>2. Negative 
digit values are avoided when the transfer digit 
values {0,1,,2}>and the digit set {iI,I0,...,I~0}~ 
one used an~ b-3; however, the transfer value se~ 
{-i,0,i} and b+2 values around zero e.g. ,{-(b+l)/2 
to (b+l)/2} for odd b->3 and {T.(b/2) to ±(l+b/2)} 
for even bad offer the advantages of a simnle range 
test algorithm and a unique renresentation of zero 
modulo b n, both of which are not available with 
digit values xi_>b. 

The least redundancy which satisfies the "T=2" 
addition algorithm (i), (2) consists of two addi- 
tional values in each radix b digital position, 
giving an incremental redundancy ratio of (b+2)/b 

-2~5- 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800169.805441&domain=pdf&date_stamp=1969-05-05


per digit. Considering a complete radix b posi- 
tional encoding of n digits length, we observe 
that the conventional (non-redundant) repre- 
sentation has b n unique forms while a minimally 
redundant representation has a total of (b+2) ~ 
forms representing b n + 2(bn-1)/(b-1) distinct 
integers. The introduction of redundancy adds 
(b+2) n - b n = bn((l+2/b) n -1) new forms, of which 
2(bn-1)/(b-1) represent new values, while the re- 
maining fo~s provide alternate (redundant) rep- 
resentation for the results of additions in which 
the non-redundant representation requires "carry 
propagation" across one or more digits. 

Minimal Redundanc F with T=3 

A modified "two-transfer" or "constant time 
T=3" addition algorithm has also been devised3, in 
which a cascade of three logic elements form the 
addition circuit. This algorithm requires only 
b+l values in each position of the radix b~2 po- 
sitional encoding; three values of the transfer 
digit are again required. The "T:3" addition al- 
gorithm has the incremental redundancy of (b+l)/b 
per digit. The same considerations affect the 
choice of digit values around zero: {-b/2 to b/2} 
for even b_>2 and {¥(b-1)/2 to +-(b+l)/2} for odd 
b>-3. The total redundancy count shows (b+l) n 
forms representing b n + (bn-1)/(b-1) distinct 
integers. The redundancy adds 

(b+l) n - b n = bn((l+l/b)n-1) 

new forms, of which (bn-1)/(b-1) represent new 
values, and the remaining are redundant. 

Minimal Complexity of Logical Element 9 

The originally developed "T=2" addition al- 
gorithm (1), (2) requires the cascading of two 
(d,r) logical elements, giving T:2 (independent 
of the range of the operands) with r~2 and d->5 
(for radix b=d-2>-3). The constant addition time 
T:2 is not,available with d<5; however, it has 
been shown 5 that the "T=3" addition algorithm 
applies for any radix b>-2 with b+l digit values, 
giving T=3 with r~2 and d>-3 (for radix b=d-1 >-2). 

It is evident that s = f(xi,Yl,X. ,y. ) • i i-I l- 
that holds for the "T:2" algorithm (i), [2), and 

s~: f(xi,Yi,Xi_l,Yi_1,xi_2,Yi_ 2) holds for the 
=3" algorithm. A~ ~ncrease in the n~oer r of 

input lines (without altering d) permits the 
restatement of both algorithms in terns of a 
sirkgle (d,r) logical element for every digit 
of the s~n. 

'Ik,~o "T=i" algorithms are possible: 

(la) The "T:2" a]~zorithm yields the "T:i" 
algorithm with the minimal complexity r:4 @rid 
d>-5 for the radix b=d-2. 
(ib) The "T=3" algorithm yields the "(~-i" 
algorithm with the minimal complexity r=6 and 
d>-3 for the radix b=d-l. 

Total Cp~p.lexit~_ of the Addition Circuit 

The total count of the (d,r) logical elements 
used ~n the addition circuit of two n-digit radix 
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b operands is readily determined because of the 
si~ole structure of the circuit: 
(a) The "~-i" algorithms (la) and (ib) require 
n+l (d,r) elements. 
(b) The "T:2" algorithm requires 3n-i (d,r) 
elements. 
(c) The "T:3" algorithm requires 5n-4 (d,r) 
element s. 
These total complexity counts offer a measure for 
the evaluation of the relative cost of non-re- 
dundant addition schemes. 

Measures of Comnlexit~j: Other AiKorithms 

Additive Inverse 

The additive inverse of a signed-digit oper- 
and is generated by changing the signs of all 
nonzero digit values. One additional digit value 
at the inputs of the addition circuit is required 
in the cases in which the digit set is not sym- 
metrical around zero: 
(a) A total of b+3 digit values (i.e., d=b+3) 
are required ~n the "T=2" algorithn and the re- 
lated "T=i" algorithm (la) ~qen the radix b(->3) 
is even; 
(b) A total of b+2 d~it values (i.e., d=b+2) 
are re~uired in the "T=3" algorithm and the re- 
lated "T=I" algorithm (ib) when the radix b(~2) 
is odd. 
The one-unit increase in the value of d causes 
corresnondinF chan~es in redundancy and logical 
element complexity,. ~he other ~arameters (t~me 
and total co~lexitv) remain unchanged. 

Multi-O0erand Addition 

This section considers the time and complex- 
itz of a lo~ical circuit which Derform~s the addi- 
tion of k>2 operands. The multi-operand addition 
81gorJthm developed for the si~ned-digit number 
systems consists of two harts: 
(a) The original k operands are summed to yield 
the sum in the form of two encoded numbers; 
(b) The two-operand addition algorithm is aD- 
plied to get the result. 
The time and comolexitv of the circuit required 
for part (a) is considered next; Dart (b) has 
been considered in the previous section. 

The algorithm for the suym~tionrof r d{gits 
from the position i of r oDerands (x ,...,x ) has 
the form: 

r 
for r-<b+l, [ ~i = bUi+l + vi (3) 

J=l 
with the limit r<_b+l imposed to guarantee that 
the digits in the two results u and v have the 
same (redundant) set oC ~alueslas the input 
digits the oDerands of x ,...x . In tern~s of 
(d,r) logical elements, two (d,r) elements (with 
d=b+2, or d=b+l and r~b+l) for every position 
i will reduce r encoded ooerands to a sum repre- 
sented by two similarly encoded results in one 
time unit (Tr=l). 

For a total of k operands, when k>r, time 
T>i is reaulred. Time T=2 is required when: 



k is in the range max2(k)->k>maXl(k), with 

max2(k)=rLr/2J+(r-2[r/2 ] ), and maXl(k)=r 

Oene~ally, time T=J is required when: 

maxj (k)->k>maxj l(k), where 

(k) = [maxj -1 (k ) /2 ]  r+ (maxj -1 (k) - maxj 

2 Lmaxj_l(k)/2] ) 

For the case of an even value of r, thc above ex- 
pression reduces to 

maxj (k)=2(r/2) j (for r>-4, even) 

The time required for a complete addition with m]y 
value of k and an even r>_4 then is given by the 
expression (with r_<b+l) : 

T (k) =J +1= [ logr/2 [k/2] ] +1 

where the f i r s t  tertn •! Fives the time for  the c i r -  
cu i t  which conIoutes two results and the constant i 
accounts for the last 2-oDerand addition. 

The total complexity of the circuit which 
orecedes the last 2-operand addition and requires 
the time T=J depends on k,r, an(] the ranKe (in 
digits) of the redundantly encoded input operands. 
For example consider a Riven time J and the 
simpler case of an even]r>-4. If the number of 
inouts k~nax~(k)=2(r/2)' , then the one-digit cross 
section of the circuit shows (beFinnln~ with the 
circuit ' s output) : 

P(J )=1+ ( r /2)+( r /2)2+. .+  ( r /2 )J- l+( r /2 ) ' l  = 

( (r/2)J+l-l)/((r/2)-l) 

pairs of (d,r) logical elements. If k<maxj(h), 
then 

P=P(J-1)+D={ ( ( r / 2 ) J - 1 ) / ( r / 2 ) - l } +  

F(k-2 ( r / 2 ) , I - 1 ) / ( r - 2  )] 

where P(J-i) is the count for the J-I complete 
levels and D is the count For the incomplete first 
level of the circuit. Range considerations show 
that when the input level has n-digit operands, 
the length of the "u" output of (3) increases by 
one in each consecutive level, and the :'u" output 
has a range of n+J digits. An uooer bound for the 
total complexity is 

N'=2"(n+J)-P 

(d,r) loKical elements. The actual count N is 
obtained by considering the exact lengths of the 
consecutive levels of the circuit. 

The preceding discussion shows that the 
total complexity of circuits for the addition of 
k~2 operands is obtained by a straiFhtforwar~ 
counting process. 

Multin]_ication 

A two-digit product alyorithm 

aixj=bDi+j+l+qi+~ (4) 

has been developed previously ;i . This algorithm 
uses (d,r) lo~ic elements ~t~ r=2 and computes 
the product in the form of 2n- digits ~ich must 
be summed in a multi-onerand su~ation circuit 
with a provision to accent 2n-i innuts in the 
positions n and n-1 of the 2n dirts lonv mro- 
duct. '~]e time oF multiplication is then i+T 
(add 2n-i oDerands). 

It is observed that the al~orithm (4) re- 
auires only two Innuts, i.e., r=2. Two new 
al~orithms for digit multiplication have been 
devised which reduce the number of su~nands (and 
the time) for the multl-operand addition circuit 
by taking advantage or more inputs. The number 
of summands is reduced Prom 2n-i to n when four 
inputs (r=4) are allowed and the al~orlt~mlthen 
consists of formin~ three products accordin~ to 
(~): 

aixj_2, aixj_l, and a i xj 

and then fonmlng the digit Y~J-I of the product 
aix (x is the n-digit operan@)' as follows: 

Yi+ I = ( mi+J +ai+j ) -bti+j +i +t i+J 

Here algorithm (I) is used to determine t.+.+l 
from Oi+ I and qi+J' and ti+ j from Pi+.1-1 ~n~ 

q + • 

(5) 

The terms hi+j+ I and ai+J_2 need not be 

A further reduction of the nu~nber of sumnands 
to [(2n-l)/~ can be achieved by an extension of 
the above developed algorithm (5) when r=6 inputs 
are provided (ai,ai_l,ai_2,xj,xj_l,X1_2). 

The total conmolexity of the multiplication 
circuit is the sum of contributions from the digit 
multiplication, multi-operand summation and two- 
operand sumnation circuits. The (d,r) element 2 
count of the digit multiplication circuit is 2n 
for algorithm (4) and (n+l)n for algorithm (5). 
It must be noted that the internal comolexlty of 
one (d,r) element for (5) ~s consi4erably hiFher 
(about 3-4 times) than for (4). 

Concludinv Observations 

The primary objective of this note has been 
the identification of the additional complexity, 
(expressed in terms of redundancy and of the min- 
imal complexity reGuired for (d,r) Ionic elements), 
which must be accepted in order to att&In t~- 
operand addition in constant time of 3,2, and 1 
units respectively. This "prise" for circum- 
ventin~ Wino~rad's lower bound for non-redundant 
encodin~s has been established for all three 
cases. 

The same considerations have been appl~ed 
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also to the additive inverse, multi-operand addi- 
tion, and two-operand multiplication usflng logical 
circuitry and redundant encodir~s for the operands 
and results. In (k>2)-operand addition the time 
is shown to be a function of k,r, and d, and in- 
dependent of the range of the operands. The 
algoritl~n is a generalization of the "carry-save" 
principle of binary addition] The multiplication 
time is shown to be a function of the ranFe of the 
operands, since it is carried out usln~ k-ooerand 
summation, with k=2n-1, n, ar~ F(2n-l)/31 for 
increasing complexity off the (d,r) el~nent which 
carries out the digit multiplication o~eceding 
the sunmuation. Wino~rad's lower bound has not 
been reached; however, it is interestirF to note 
that the al~orit~s use the same encoding, and 
that the full product, its most significant half, 
and its least si~nifflcant half are obtained sim- 
ultaneously. 

rlhe total ccmolexity (number of (d,r) elements 
used) also has been considered. The simple struc- 
ture of the circuits (which is due to the redun- 
dancy and the use of the constant radix b) 
facilitates the countin~ of elements. A model for 
the measurement of total complexity for non-redun- 
dant as well as r~undant encodln~s is beir~ 
developed; the redundant case is expected to 
provide a reference point for complexity vs. t~me 
comparisons. 

The results of this study suggest thaZ redun- 
dancy in encodin~ of numbers is also an aspect of 
ccmputational complexity, s~d that the general 
notion of computing an arithmetic function should 
encompass ~e~undant encodin~s as well as 
Wino~rad's ~' special case of non-redundant 
encoding of the results. 
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