ON THE PROBLEM OT COMPUTATTONAL TTTME AND

COMPLFXITY OF ARTIFMFTIC FUNCTTONS

Alcirdas Avỉienis
University of Califormia, Los Anceles, California

Summary

The time and incremental complexty required to perform two-operand addition using logical circuitry are comnared for nonredundant and minimally redundant encodings of the operands. The comparison is extended to multi-operand addition and twoonerand multiplication.

Introduction and Review

The times reauired to nerform the arithmetic operations of addition and multiplication using logical circuitry have been investigated by Winograd ${ }^{2}$. The model of a lopical circuit C employed in these studies consists of a set of (d,r) lofical elements and a rule of interconnections with designated sets of innut and outout lines. The (d, r) logical element has r input lines and one output line; these lines can assume one of distinct states. The (d,r) Jopical element has a unit time delay; that is, the state of the output line at the time $t+1$ is a function of the states of the input lines at time t.

The circuit C is said to be canable of computing the function f in time T if the snecified result in coded representation is observed on its output lines T time units after the arpuments were applied (in coded representation) to the inout lines. At the time of application of the inputs the circuit C is set to a standard intermal state, and the inputs are held fixed until the time T. The method of encodine of the operands is not specified except for the reauirement that the output encoding should be one-one; that is, redundancy of representation is excluded in the notion of computation. Lower bounds for the time required are then derived as functions of d, r, and of the range N of the input arguments, and computation schemes are devised which anproach the bounds. Precise definitions of the (d, r) lopical element, logical circuit, and computation are found in the references ${ }^{1,2}$; a familiarity with these references is assumed in this discussion.

An earlier study of dipital arithmetic by Avizienis ${ }^{3}$ led to the empirical develoment of an addition algorithm which requires a constant time $T=2$ to compute the sum of two operands regardless of their ranpe. The coding of the operands and of the result employs a positional, constant radix b>2 "sipned-digit" redundant form in which the allowed digjt values are $\{-a, \ldots,-1,0,1, \ldots, a\}$ with $b-1 \leq a \leq\lceil(b+1) / 2\rceil$ where $\lceil x\rceil$ is the smallest integer not smaller than x .

The first pair of lomical elements (with $d=$ $2 a+1$ and $r=2$ according to Winograd's model ${ }^{1}$) accepts the operand digits x_{i} and y_{i} (indexinf:
n-l,...,i,..., 1,0) and forms the outnut "transfer dirit" t_{j+1} with three allowed values $\{-1,0,1\}$ and the output "interim sum" dipit w_{i} in the range $\{-(a-1), \ldots, a-1\}$ such that

$$
\begin{equation*}
x_{i}+y_{j}=b t_{i+1}+w_{i} \tag{1}
\end{equation*}
$$

is satisfled (i.e., $t_{i+1}=1$ if $x_{i}+y_{i} \geq a ; t_{i+1}$ $=-1$ if $x_{i}+y_{i} \leq-a$, and $t_{i+1}=0$ if $a>x_{1}+y_{i}>-a$. The second logical element accepts the inputs w_{i} and t_{i} and forms the sum digit s_{i} such that

$$
\begin{equation*}
s_{i}=w_{i}+t_{i}\left(\text { with } a \geq s_{i} \geq-a\right) . \tag{2}
\end{equation*}
$$

IThe codine used for the operands is nreserved in the result, and the amount of redundancy is not increased.

Measures of Complexity: Two-Operand "Constant Time" Addition

The purpose of the present discussion is to consider the differences encountered in computing arithmetic functions with redundant and non-redundant encodings of the results and to establish the measure of additional or "incremental" complexity which represents the cost of holding the two-onerand addition time to constant values $T=3$, 2, and 1. The summation of several operands and the multiplication of two operands are considered subsequently.

Minimal Redundancy with $T=2$

The existinc set of signed-digit algorithms ${ }^{3}$ was devised to satisfy practical deston constraints of arithmetic mmonssom. Amnny these, a convenient additive inverse algorithm, a unique representation of zero, and a convenient range test algorithm were needed and led to the choice of the symmetric sets $\{-a, \ldots$, a\} for digit values, and $\{-1,0,1\}$ for transfer digit values. In general, the two-operand "constant time $T=2$ " addition algorithm (1), (2) requires the minimum redundancy of $b+2$ dicit values for any radix $b>2$. Negative digit values are avoided when the transfer digit values $\{0,1,2\}$ and the digit set $\{11,10, \ldots, 1,0\}$ one used any $b \geq 3$; however, the transfer value set $\{-1,0,1\}$ and $b+2$ values around zero e. ... $\{(-(b+1) / 2$ to $(b+1) / 2\}$ for odd $b \geq 3$ and $\{\mp(b / 2)$ to $\pm(1+b / 2)\}$ for even $b \geq 4$ offer the advantages of a simple range test algorithm and a unique representation of zero modulo b^{n}, both of which are not available with digit values $x_{i} \geq b$.

The least redundancy which satisfies the " $\mathrm{T}=2$ " addition algorithm (1), (2) consists of two additional values in each radix b digital position, giving an incremental redundancy ratio of ($\mathrm{b}+2$) $/ \mathrm{b}$
per digit. Considering a complete radix b positional encoding of n digits length, we observe that the conventional (non-redundant) representation has b^{n} unique forms while a minimally redundant representation has a total of ($b+2)^{n}$ forms representing $\mathrm{b}^{\mathrm{n}}+2\left(\mathrm{~b}^{\mathrm{n}}-1\right) /(\mathrm{b}-1)$ distinct integers. The introduction of redundancy adds $(b+2)^{n}-b^{n}=b^{n}\left((1+2 / b)^{n}-1\right)$ new forms, of which $2\left(b^{n}-1\right) /(b-1)$ represent new values, while the remaining forms provide altermate (redundant) representation for the results of additions in which the non-redundant representation requires "carry propagation" across one or more digits.

Minimal Redundancy with $\mathrm{I}=3$

A modifled "two-transfer" or "constant time $\mathrm{T}=3^{\prime \prime}$ addition algorithm has also been devised3, in which a cascade of three logic elements form the addition circuit. This algorithm requires only $b+1$ values in each position of the radix $b \geq 2$ positional encoding; three values of the transfer digit are again required. The " $\mathrm{I}=3$ " addition algorithm has the incremental redundancy of ($b+1$)/b per digit. The same considerations affect the choice of digit values around zero: $\{-\mathrm{b} / 2$ to $\mathrm{b} / 2\}$ for even $b \geq 2$ and $\{\mp(b-1) / 2$ to $\pm(b+1) / 2\}$ for odd $\mathrm{b} \geq 3$. The total redundancy count shows $(\mathrm{b}+1)^{\mathrm{n}}$ forms representing $b^{n}+\left(b^{n}-1\right) /(b-1)$ distinct integers. The redundancy adds

$$
(b+1)^{n}-b^{n}=b^{n}\left((1+1 / b)^{n}-1\right)
$$

new forms, of which $\left(b^{n}-1\right) /(b-1)$ represent new values, and the remaining are redundant.

Minimal Complexity of Logical Elements

The originally developed " $\mathrm{T}=2$ " addition algorithm (1), (2) requires the cascading of two (d,r) logical elements, giving $\mathrm{T}=2$ (independent of the range of the operands) with $r=2$ and $d \geq 5$ (for radix $b=d-2 \geq 3$). The constant addition time $\mathrm{T}=2$ is not available with d<5; however, it has been shown that the " $\mathrm{T}=3$ " addition algorithm applies for any radix $\mathrm{b} \geq 2$ with $\mathrm{b}+1$ digit values, giving $T=3$ with $r=2$ and $d \geq 3$ (for radix $b=d-1 \geq 2$).

It is evident that $s_{i}=f\left(x_{1}, y_{i}, x_{i-1}, y_{i-1}\right)$ holds for the " $\mathrm{T}=2$ " algorithm (1), (2), and that $s_{i}=f\left(x_{1}, y_{i}, x_{i-1}, y_{i-1}, x_{i-2}, y_{i-2}\right)$ holds for the $" t=3 "$ algorithm. An increase in the number r of input lines (without altering d) permits the restatement of both alporithms in terms of a single (d, r) logical element for every digit of the sum.

Two "T=1" algorithms are possible:
(1a) The " $\mathrm{T}=2$ " alsorithm yields the " $\mathrm{T}=\mathrm{l}$ " algoritrm with the minimal complexity $r=4$ and $d \geqslant 5$ for the radix $b=d-2$.
(1b) The " $\mathrm{T}=3$ " algorithm yields the " $\mathrm{T}=1$ " algorithm with the minimal complexity $r=6$ and $\mathrm{d} \geq 3$ for the radix $\mathrm{b}=\mathrm{d}-1$.

Total Complexity of the Addition Circuit

The total count of the (d, r) logical elements used in the addition circuit of two n-digit radix
b operands is readily determined because of the simple structure of the circuit:
(a) The " $\mathrm{T}=1$ " algorithms (la) and (lb) require $n+1$ (d, r) elements.
(b) The " $\mathrm{I}=2$ " algorithm requires $3 \mathrm{n}-1$ (d, r) elements.
(c) The " $\mathrm{T}=3$ " algorithm requires $5 \mathrm{n}-4$ (d, r) elements.
These total complexity counts offer a measure for the evaluation of the relative cost of non-redundant addition schemes.

Measures of Comnlexity: Other Alporithms

Additive Inverse

The additive inverse of a signed-digit operand is penerated by changing the sipns of all nonzero digit values. One additional digit value at the inputs of the addition circuit is required in the cases in which the digit set is not symmetrical around zero:
(a) A total of $b+3$ dipft values (i.e., $d=b+3$) are required in the " $\mathrm{T}=2$ " algorithm and the related " $\mathrm{T}=1$ " algorithm (1 a) when the radix $\mathrm{b}(\geq 3$) is even;
(b) A total of $b+2$ digit values (i.e., $d=b+2$) are required in the " $\mathrm{T}=3$ " algorithm and the related " $\mathrm{T}=1$ " alporithm (1 b) when the radix $\mathrm{b}(\geq 2$) is odd.
The one-unit increase in the value of d causes corresnonding chanpes in redundancy and logical element complexity. The other narameters (time and total complexity) remain unchanged.

Multi-Onerand Addition

This section considers the time and complexity of a lopical circuit which nerforms the addition of $k>2$ operands. The multi-operand addition algorithm develoned for the sioned-digit number systems consists of two parts:
(a) The oripinal k operands are summed to yield the sum in the form of two encoded numbers; (b) The two-operand addition algorithm is applied to ret the result.
The time and complexity of the circuit required for part (a) is considered next; part (b) has been considered in the previous section.

The alporithm for the summation of r digits from the position i of r operands (x^{r}, \ldots, x^{1}) has the form:

$$
\begin{equation*}
\text { for } r \leq b+1, \sum_{j=1}^{r} x_{i}^{i}=b u_{i+1}+v_{i} \tag{3}
\end{equation*}
$$

with the limit $r \leq b+1$ imposed to puarantee that the digits in the two results u and v have the same (redundant) set of yalues, as the input digits the operands of $x^{r}, \ldots x^{1}$. In terms of (d, r) logical elements, two (d, r) elements (with $d=b+2$, or $d=b+1$ and $r \leq b+1$) for every position i will reduce r encoded operands to a sum represented bv two similarly encoded results in one time unit ($\mathrm{T}_{\mathrm{r}}=1$).

For a total of k operands, when $k>r$, time $T>1$ is reauired. Time $T=$? is required when:
k is in the range $\max _{2}(k) \geq k>\max _{1}(k)$, with

$$
\max _{2}(k)=r\lfloor r / 2\rfloor+(r-2\lfloor r / 2\rfloor), \text { and } \max _{1}(k)=r
$$

Generally, time $T=;$ is required when:

$$
\begin{aligned}
& \max _{j}(k) \geq k>\max _{j-1}(k), \text { where } \\
& \max _{j}(k)=\left\lfloor\max _{j-1}(k) / 2\right\rfloor r+\left(\max _{j-1}(k)-\right. \\
& \left.2\left\lfloor\max _{j-1}(k) / 2\right\rfloor\right)
\end{aligned}
$$

For the case of an even value of r, the above expression reduces to

$$
\max _{j}(k)=2(r / 2)^{j} \quad(\text { for } r \geq 4, \text { even })
$$

The time required for a complete addition with any value of k and an even $r \geq 4$ then is given by the expression (with $r \leq b+1$):

$$
T(k)=j+l=\left\lceil\log _{r / 2}\lceil k / 27\rceil+1\right.
$$

where the first temn \mathfrak{i} gives the time for the circuit which comoutes two results and the constant 1 accounts for the last 2 -operand addition.

The total complexity of the circuit which precedes the last 2 -operand addition and requires the time $\mathrm{T}=\mathrm{f}$ depends on k, r, and the range (in digits) of the redundantly encoded input operands. For example consider a given time j and the simpler case of an even, $r \geq 4$. If the number of imputs $k=\max ,(k)=2(r / 2)^{j}$, then the one-dipit cross section of the circuit shows (berinninf, with the circuit's output):

$$
\begin{aligned}
& P(j)=1+(r / 2)+(r / 2)^{2}+\ldots+(r / 2)^{j-1}+(r / 2)^{j}= \\
& \left((r / 2)^{j+1}-1\right) /((r / 2)-1)
\end{aligned}
$$

pairs of (d, r) logical elements. If $k<\max _{j}(h)$, then

$$
\begin{aligned}
& P=P(j-1)+D=\left\{\left((r / 2)^{j}-1\right) /(r / 2)-1\right\}+ \\
& \left.\Gamma\left(k-2(r / 2)^{j-1}\right) /(r-2)\right\rceil
\end{aligned}
$$

where $P(j-1)$ is the count for the $j-1$ complete levels and D is the count for the incomplete first level of the circuit. Range considerations show that when the input level has n-digit operands, the length of the " u " output of (3) increases by one in each consecutive level, and the "u" output has a range of $n+j$ digits. An upper bound for the total complexity is

$$
N^{\prime}=2 \cdot(n+j) \cdot P
$$

(d, r) logical elements. The actual count N is obtained by considering the exact lenpths of the consecutive levels of the circuit.

The preceding discussion shows that the total complexity of circuits for the addition of $k>2$ operands is obtained by a straiphtforward counting process.

Multinlication

A two-dipit product alporithm

$$
\begin{equation*}
a_{i} x_{i}=b p_{i+i+1}+a_{i+i} \tag{4}
\end{equation*}
$$

has been developed previously ${ }^{4}$. This algorithm uses (d, r) logic elements with $r=$? and computes the nroduct in the form of $2 n^{2}$ dipsits which must be summed in a multi-onerand summation circuit with a provision to accent $2 n-1$ innuts in the positions n and $n-1$ of the $2 n$ dipits lone nroduct. The time of multiplication is then $1+T$ (add $2 \mathrm{n}-1$ onerands).

It is observed that the alporithm (4) reauires only two innuts, f.e., $r=2$. Two new almorithms for digit multiplication have been devised which reduce the number of summands (and the time) for the multi-operand addition circuit by taking advantare of more inputs. The number of summands is reduced from $2 n-1$ to n when four inputs ($r=4$) are allowed and the alporithm then consists of forming three products according to (4) :

$$
a_{i} x_{j-2}, a_{1} x_{j-1} \text {, and } a_{1} x_{j}
$$

and then forming the digit y_{i+i} of the product $a_{1} x$ (x is the n-dipit operant) as follows:

$$
\begin{equation*}
y_{i+j}=\left(n_{i+j}+a_{i+j}\right)-b t_{i+j+1}+t_{i+j} \tag{5}
\end{equation*}
$$

Here algorithm (1) is used to determine t_{j+i}
from p_{i+j} and q_{i+j}, and t_{i+j} from p_{i+i+1} and from n_{i+j} and $a_{i+i, i}$, and t_{i+j} from p_{i+i-1} and ${ }^{+1}$ a_{i+i-1}. The terms n_{i+i+1} and a_{i+1-2} need not be
formed.

A further reduction of the number of surmands to $\Gamma(2 n-1) / 37$ can be achieved by an extension of the above developed alporithm (5) when $r=6$ inputs are provided ($a_{i}, a_{j-1}, a_{1-2}, x_{j}, x_{j-1}, x_{j-2}$).

The total complexity of the multinlication circuit is the sum of contributions from the digit multiplication, multi-operand summation and twooperand summation circuits. The (d, r) element 2 count of the digit multiplication circuit is $2 n^{2}$ for algorithm (4) and ($n+1$)n for alporithm (5). It must be noted that the internal complexity of one (d, r) element for (5) is considerably higher (about 3-4 times) than for (4).

Concludino Observations

The primary objective of this note has been the identification of the additional complexity, (exnressed in terms of redundancy and of the minimal complexity required for (d, r) lofic elements), which must be accented in order to attain twooperand addition in constant time of 3,2, and 1 units respectively. This "price" for circumventine, Winograd's lower bound ${ }^{I}$ for non-redundant encodings has been established for all three cases.

The same considerations have been applied
also to the additive inverse, multi-operand addition, and two-operand multiplication using lopical circuitry and redundant encodinps for the operands and results. In ($k>2$)-operand addition the time is shown to be a function of k, r, and d, and independent of the range of the operands. The algorithm is a generalization of the "carry-save" principle of binary addition. The multiplication time is shown to be a function of the ranpe of the operands, since it is carried out using, k-operand summation, with $k=2 n-1$, n, and $\Gamma(2 n-1) / 3\rceil$ for increasing complexity of the (d, r) element which carries out the digit multiplication preceding the summation. Winograd's lower bound has not been reached; however, it is interesting to note that the alporithms use the same encoding, and that the full product, its most significant half, and its least significant half are obtained simultaneously.

The total complexity (number of (d, r) elements used) also has been considered. The simple structure of the circuits (which is due to the redundancy and the use of the constant radix b)
facilitates the counting of elements. Λ model for the measurement of total complexity for non-redundant as well as redundant encodines is being: developed; the redundant case is expected to provide a reference point for complexity vs. time commarisons.

The results of this study sufgest that redundancy in encodine of numbers is also an aspect of computational complexity, and that the general notion of computing, an arithmetic function should encompass redundant encodines as well as Winograd's ${ }^{1,2}$ special case of non-redundant encoding of the results.

References

1. Winograd, S., "On the time required to perform addition", Journal of the ACM, Vol. 12, no. 2, (1965), 277-285.
2. Winograd, S., "On the time reauired to perform multiplication", Journal of the ACM, Vol. 14, no. 4, (1967), 793-802.
3. Avizienis, A., "Signed-digit number representations for fast parallel arithmetic", IRE Transactions, Vol. EC-10, no. 3. (1961), 389-400.
4. Avižienis, A., "Arithmetic microsystems for the the synthesis of function generators," Proc. of the IEEE, Vol. 54, no. 12 (1966), $1910-1919$.
