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Abstract 

A prototype automated software design evaluator 
was implemented as part of a project whose 
long-term goal is the application of AI techniques 
to the tools in a software engineering 
environment. The purposes of undertaking this 
prototype were to: I) identify the attributes of a 
software design that could be captured as design 
rules, 2) investigate machine-processable 
representations of a software design, and 3) build 
a proof-of-principle prototype that demonstrates 
that an automated design assistant can be built. 

Introduction 

A driving philosophy of our software engineering 
environment work is that environments must be 
customized for the application domain. That is, 
they must exhibit some level of understanding of 
the application problem domain, the selected 
software development method, and the individual 
user in order for the environment to, first, be 
accepted by the user, and second, be successful. 

The primary objectives of the project described 
here are 

To exhibit the feasibility of applying 
knowledge-based techniques to software design; 
specifically, a rule-based approach. 

To identify the attributes of a design method 
that support the construction of a 
knowledge-based interface. 

The prototype development chosen is an automated 
design evaluator. The basic concept is to have an 
automated member of a software design review teem. 
The design is provided to the evaluator, and it 
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applies a number of criteria (rules) for a "good" 
design. A summary is provided to the user, as well 
as identification of design problem areas. 

Ideally, one would like to have an automated 
software assistant that is an active participant in 
the design process. As the design process 
proceeds, the automated assistant could guide the 
designer in the selected design methodology and 
enforce certain design rules. The assistant could 
suggest areas needing refinement and identify 
potential design problems, such as bottlenecks. 

An assistant that exhibits this level of 
intelligence in real-time is an ambitious 
undertaking. Our project selected a more 
conservative first effort for its prototype. The 
design evaluator that has been implemented has been 
limited in the following ways. 

A design is evaluated only when it is 
submitted to the evaluator. The designer 
decides when to request a review. 

The design evaluator knows how to identify 
selected design flaws and anomalies, but 
currently has little to say about how to 
correct the flaw. Ideally, for example, if a 
part X was identified as being a bottleneck, 
advice such as "consider breaking X into three 
pieces--with piece X1 connecting to ..." is 
highly desirable. The present evaluator 
simply tells the designer to look at part X. 

The Nature of Software Engineering 

Most rule-based systems have been successfully 
implemented to date in domains [1] 

o That have large amounts of available data 

In which problem solving may be characterized 
as a search of a solution space (preferably 
small or partitionable) 

o In which knowledge is encapsulated in formal 
rules 

When applying expert system paradigms to software 
engineering, particularly in the abstract area of 
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design, one immediately runs into problems. 
Specifically, 

o Lack of machine-processable designs and 
evaluation processes. 

o Lack of software design quality measures. 

o Lack of agreed upon standard attributes of a 
software design (based on the measures). 

o The process is not a solution space search. 

These points are discussed in more detail in the 
following paragraphs. 

First, in order to support automated evaluation 
of a design, the design must be machine 
processable. In addition, any transformations, 
traversals, or evaluation rules must be formalized 
and automated. Many software design efforts, 
particularly in the early functional allocation 
steps, have none of these attributes. 

Second, software design, particularly at the 
functional (software architecture) level is not 
typically characterized by quantifiable 
evaluation--evaluation using measures of quality. 
Although software metrics are available (and were 
used in this project), they are principally 
appropriate for use in the implementation phases. 
In addition, software engineering has not built up 
experience in the form of quality measures. 

Third, there is not an agreed upon definition of 
a "good" software design. There are some generally 
agreed upon characteristics--"cyclical dependencies 
are bad"--but a set of standard attributes of a 
good software design that can be matched against an 
in-progress design is not available. This is 
related to the second point, in that without 
quantifiable measures of quality, it is difficult 
to describe standard attributes. 

Finally, software design is not a search of a 
solution space. In software designs, particularly 
those of embedded systems, the architecture as well 
as the majority of individual components are 
custom-designed. There is, therefore, an infinite 
number of "correct" solutions. The previous two 
points deal with the creation of a knowledge base. 
This point deals with the kind of processing that 
must be done on the knowledge base. Processing 
based on a design process heuristic is necessary as 
compared to a search paradigm. 

The design evaluator implemented in this project 
deals with these issues in the following way: 

o A machine-processable design representation 
was used. 

A set of complexity metrics, which are 
meaningful at functional design levels, was 
used. 

o Thresholds for the metrics and other physical 
characteristics of the design were selected. 

o A set of rules that operate on the design and 
the accompanying metrics was defined. 
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We emphasize that the approach is not limited to 
the particular design representation, metrics, and 
rules implemented. The important conclusion, we 
think, is that given a design and some fairly 
generic evaluation rules, an automated evaluator 
can make meaningful statements about the 
design--statements that a human evaluator may miss 
due to the sheer volume of the design. 

The Evaluator 

Software Design View 

The design evaluator operates on a software 
architecture view of the design. Software 
architecture is the identification of subsystems 
and smaller parts during design, concentrating on 
the inter-relationships between parts rather than 
on their internal, operational characteristics. 

The software architecture is represented via a 
component interconnection language (CIL), a 
machine-processable design notation developed in a 
related project. The CIL basically provides the 
ability to name and type components of a design and 
to specify the existence of interconnections among 
components of several types. The CIL is described 
in detail elsewhere [2, 3]. 

An example of a simple design is shown in 
graphical and CIL representations in Figure i. 

system ISS&M 

parts l i s t  
act ive PROCESS SIGNALS 
active INTERCOM MONITOR 
active SIGNAL ALGORITHMS 
data RAW SIGNALS 
data TRANSMIT AND RECEIVE 
data SELECTED SIGNALS 

connections 
PROCESSSIGNALS uses RAW SIGNALS 
PROCESS SIGNALS uses TRANSMIT AND RECEIVE 
PROCESS-SIGNALS uses INTERCOM-MONTTOR (A) 
INTERCOM MONITOR uses SIGNAL ALGORITHMS 
SIGNAL ALGORITHMS uses SELECTED SIGNALS 

assembly PROCESS ANALOG SIGNALS 

parts 1 ist 
active SAMPLE 
active SCALE AND STORE 
active TRANSMIT ~ND REC 
data RAW ANALOG--SIGnALS 
data TRANSMIT A~D RECEIVE 
data UNSCALED--LOC~L 
data SIGNAL LTST 
data SCALED--DATA 

connections 
SAMPLE uses RAW ANALOG SIGNALS 
SAMPLE uses SIGNAL LIST 
SAMPLE uses UNSCAL~D LOCAL 
SAMPLE uses SCALE AN~ STORE 
SCALE AND STORE u~es ~IGNAL LIST 
SCALE--AND--STORE use s UNSCAL~D LOCAL 
SCALE--AND--STORE uses SCALE D D~TA 
SCALE--AND--STORE uses TRANSMTT AND REC 
TRANSMIT ~ND REC uses SIGNAL EIST-- 
TRANSMIT--AND--REC uses SCALED--DATA 

(C) TRANSMIT--AND--REC uses TRANSMTT AND RECEIVE 

Figure I. A CIL Example 



(D) 

component COMPARE AND CONTROL 

parts list 
provides 

subprogram COMPARE AND CONTROL (SL: in SIGNALLIST) 
hides 

oonnections 
COMPARE AND CONTROL 
COMPARE--AND--CONTROL 
COMPARE--AND-CONTROL 
COMPARE AND CONTROL 
COMPARE--AND--CONTROL 

COMPARE AND CONTROL 
COMPARE-AND-CONTROL 
COMPARE AND CONTROL 
COMPARE--AND--CONTROL 
COMPARE--AND--CONTROL 
COMPARE--AND--CONTROL 
COMPARE AND CONTROL 
COMPARE--AND--CONTROL 

COMPARE AND CONTROL 

call returns COPY AND TRANSMIT 
call--returns COPY--AND--RECEIVE 
call--returns COMPUTE ~HECKSUM 
call--returns VALIDATE 
call~ ADJUST 

reads SIGNAL LIST 
reads CHECKSUM 
reads LOCAL CKWD 
reads LOC AL--VALW D 
reads RIGHT--C KW D 
reads RIGHT-VALWD 
reads LEFT ~KWD 
reads LEFT--VALWD 

writes AVAIL PROCESSORS (E) 

Figure i. A CIL Example (concluded) 

The metrics operate on the CIL representation of 
the design, which is a directed graph. To support 
evaluation of functional level designs, an abstract 
notion of connectivity is needed, such as Belady's 
(clustering) complexity measure [4]. The metrics 
that were defined are based on a similar notion. 

Structural metrics or metrics based on 
relationships can be used to 

o Find the optimal groupings for a set of 
components and their connections 

o Locate stress points and stress groups 

o Identify missing "levels of abstraction" 

The metrics we have defined fall into two 
classes. One metric focuses on the local 
relationships (direct connections--such as that 
between parts 1 and 3 in Figure 2a). The intent is 

(a) (b) 

Figure 2. Path Metric Details 

to discover highly interconnected parts--ones for 
which a change would have a large impact on the 
remainder of the system. A second metric expands 
the focus. Here we must consider not only direct 
relationships, but indirect ones as well (part 1 is 
connected to 3, and 3 is connected to 7, therefore 
1 is indirectly connected to 7, as in Figure 2b). 
More detail on the metrics may be found elsewhere 
[2, 3]. 

These metrics have been implemented in the design 
evaluator accompanied by rules that interpret their 
meaning. 

Design Rules Overview 

The design rules implemented in the design 
evaluator embody generally accepted notions of good 
design. The basic concepts are 

o Complexity should be introduced into a design 
at a steady conservative pace (use stepwise 
refinement and decomposition). 

o Highly interconnected designs are undesirable. 

o Cyclical dependencies are undesirable. 

Ten rules were developed to quantify these design 
notions. In the process, thresholds were set for 
some design attributes, including: 

o Rate of increase of metric values between 
design refinements 

o Humber of interconnections per part 

o Ratio of data to active parts 

At this point, the numeric thresholds are 
arbitrary. They are based on examinations of 
representative "desirable" designs versus 
"undesirable" designs. The values are not 
validated, nor is this a major objective of this 
project. In addition, we suspect that the 
thresholds are application domain-specific and must 
be derived and validated on that basis. 

The design rules implemented consider the 
interconnectivity of individual software parts, the 
complexity of the design as a whole, and the 
relationships among successive design iterations. 
Since the software design can be represented by a 
directed graph, the statement of the design rules 
involves some graph terminology. 

Each rule is capable of triggering a message 
stating that its particular design attribute has 
been violated. For rules that deal with node level 
attributes (such as Rule 3), the evaluator will 
list the individual nodes that have been identified 
as exceptions, as well as provide a summary of the 
node's relationship to other nodes. For example, a 
node identified as too highly interconnected will 
also receive a report on its interconnections to 
aid the designer in revising the design. 

Similarly, for Rule 5, if cycles are detected, a 
detailed report on cycles present is given. The 
designer has the option of receiving node-level 
cycle reports as well. 
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Rule 1: 

Rule 2: 

Rule 3: 

Rule 4: 

Rule 5: 

For a first design iteration, number of 
active nodes + number of data nodes <# 
12. (Initially no more than 12 total 
parts.) 

0.5<= number of active nodes/number of 
data nodes<= 2.0. (No more than a 
2-to-i imbalance between active and data 
parts.) 

For any node "n" in the graph, 
in-degree(n) + out-degree(n) <=5. (No 
software part uses and/or is used by a 
total of more than five other parts.) 

0.5<= number of arcs/number of nodes <= 
1.5 (where an arc represents a "uses" 
relation between software parts). 

The graph is cycle-free. (No software 
part directly or indirectly uses 
itself.) 

Rule 6: 

Rule 7: 

For a first design iteration, path 
metric<= i0. (See "Computing the Path 
Metric of a Software Design" section.) 

For a second design iteration, path 
metric<= I00. 

Rule 8: The increase in number of nodes between 
any two successive design iterations <= 
50%. 

Rule 9: 

Rule I0: 

The increase in path metric between any 
two successive design iterations is less 
than or equal to a factor of 5. 

The number of consecutive increases in 
path metric between successive design 
iterations <= 2. 

The Implementatiqn 

We have implemented the software design evaluator 
using Interlisp/VAX (USC-ISl) on a VAX-II/780. The 
system operates by prompting the software engineer 
for a software (system) architecture in terms of 
software components and their interconnections. 

Once Interlisp is entered and the appropriate 
function file loaded, the user invokes the design 
evaluator by typing the function call 
(EVALDESIGN). The system responds by asking for 
the name of the design to be evaluated. A design 
is represented by a list and a property list. If 
the name given is new during the current session a 
property list is created for it. If the name and 
hence its property list already exist, then the 
ensuing design specification will be taken to be a 
refinement of a previous design of the same name. 
A design's property list contains the number of 
nodes and the path metric value for each of its 
iterations, so that rules 8, 9, and I0 can be 
tested. 

The system then prompts for the active parts of 
the design, followed by the data parts. For each 
part (or node), a property list is created, the 
first element of which is a predicate indicating 
whether the node is an active or data part. Rules 
I, 2, and 8 are then tested. 
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Next, the system asks for the part interconnec- 
tions, after which the property list for each node 
is'updated to include a list of nodes using it and 
a list of nodes used by it. Rules 3 and 4 can then 
be tested. 

The design now specified, the system analyzes the 
interconnections for cyclical dependencies, 
invoking rule 5. If any cycles are detected they 
are displayed and the user is given an opportunity 
to see a more detailed cycle report by node. The 
property list of each node is updated to include a 
list of cycles it is involved in. 

Node property lists are now complete and used to 
help calculate the design's path metric value. 
This value is then displayed and rules 6, 7, 9, and 
I0 are tested. Any criticisms or recommendations 
are made and control returns to the Interlisp 
interpreter. The user may then either log out or 
input a new design or design iteration by typing 
(EVALDESlGN) again. 

Computing the Path Metric of a Software Design 

The complexity of a software design represented as 
a directed graph is a measure of the lengths, 
number, and cyclical/noncyclical nature of its 
paths. For example, we may take as the measure of 
the complexity of a directed graph the sum of the 
lengths of its paths. Thus the "path metric" of 
the design shown in Figure 3 is equal to 
length(ACD) + length(BCD) = 2 + 2 = 4. By this 
measure the path metric of the design in Figure 4 
would be length(ABC) + length(ABD) = 2 + 2 = 4. 
Intuitively we would like to say that D1 is more 
complex as a software design than D2 because a 
change to the more connected node C in D1 "ripples 
back" to two users of C (namely, A and B), while a 
change to the more connected node B in D2 affects 
only one user (namely A). We can capture this 
intuition in the calculation of path metrics by 
counting the common head (i.e., path AB in D2) just 
once when summing path lengths. The path metric 
f~or D2 then is length(AB) + length(BC) + length(BD) 
=i+1+1=3. 

1 ® 
D1 

Figure 3. Sample D1 

® 

02 

Figure 4. Sample D2 



Using these ideas, consider the graphical design 
shown in Figure 5. The paths starting at node A 
are ACD, ACE, ACFG, and ACG. Since each of these 
paths has the common head AC, the path metric for 
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F i g u r e  5. Sample D3 

t h a t  p a r t  o f  D3 a c c e s s i b l e  t h r o u g h  A, i s  l e n g t h ( A t )  
+ l e n g t h ( C D )  + l e n g t h ( C E )  + l e n g t h ( C F G )  + 
l e n g t h ( C G )  = 1 + 1 + 1 + 2 + 1 = 6.  S i n c e  no p a t h  
starting at node B has a head in common with any 
path starting at A, the path metric for that part 
of D3 accessible through B can be added to that for 
A to obtain the total path metric for D3. By 
parity of reasoning, the path metric for that part 
of D3 accessible from B is equal to that for A 
(simply substitute "B" for "A" in the above 
computation), namely 6. Let us write "M(N)" for 
"the path metric for that part of the graph 
accessible from N." Then the path metric for the 
design is M(A) + M(B) = 6 + 6 = 12. 

This walk-through suggests a recursive procedure 
for computing path metrics. We can look at M(A) as 
length(AC) + M(C) = 1 + M(C). Since CD, CE, CF, 
and CG are all distinct heads, M(C) is the sum of 

length(CD) + M(D) 
length(CE) + M(E) 
length(CF) + M(F) and 
length(CG) + M(G) 

or 

1 + M(D) 
I + M(E) 
1 + M(F) and 
1 + M(G) 

Since D, E and G are terminal nodes, M(D) = M(E) 
= M(G) = 0. Recursion is applied one more time at 
node F: M(F) = 1 + M(G) = 1 + 0 + I. 

Let us reconstruct this process: 

path metric for D3 = M(A) + M(B) 
M(A) = 1 + M(C) 
M(C) = 4 + M(D) + M(E) + M(F) + M(G) 
M(F) = 1 + M(G) 
M(D) = 0 

M(E) = 0 
M(G) = 0 

Now the recursion can be unwound: 

M(F) = I + M(G) = 1 + 0 = 1 
M(C) = 4 + M(D) + M(E) + M(F) + M(G) 

=4+0+0+1+0 
=5 

M(A) = 1 + 5 = 6 

Since M(A) = M(B), the path metric for D3 = M(A) + 
M(B) = 6 + 6 = 12. 

A recursive function (PMETRIC) for computing the 
path metric for a directed graph G can be written 
as follows. Let PMETRIC take as its argument a 
list of nodes (xl,...,xn) and let this list 
initially be the list of root nodes of G, i.e., 
those nodes of G having an in-degree of zero. Let 
CARD(y) be the function returning the cardinality 
(or length) of the list y. Finally, let 
NEXTNODES(z) be the function returning the list of 
nodes of G directly accessible (i.e., one arc away) 
from node z. Then the path metric for G is defined 
as PMETRIC((xl, .... xn)) where 

PMETRIC((xl, .... xn)) 
= 0 if CARD((xl ..... xn)) = 0 

n 
else =~ (CARD(NEXTNODES(xi)) + 

= PMETRIC(NEXTNODES(xi))) 

Complications arise if G involves cycles. First, 
since cyclical dependencies among parts of a 
software design are to be avoided, a penalty should 
be added into the path metric each time a node 
involving cycles is visited. This penalty is 
defined for node n by CYCLEPENALTY(n) = the sum of 
the lengths of the cycles involving n. Our 
function for computing the path metric for graph G 
then becomes 

PMETRIC((xl ..... xn)) 
= 0 if CARD((xl ..... xn)) = 0, 

n (CARD (NEXTNODES(xi)) + 
else = y CYCLEPENALTY(xi)+ 

=I PMETRIC(NEXTNODES(xi))) 

As PMETRIC stands, however, if G involves cycles 
the function will never resolve, infinitely 
recursing through the first cycle it encounters. 
Clearly, the recursive call to PMETRIC must not 
include in its argument any nodes already processed 
on the current path to node xi. In our 
implementation of PMETRIC this constraint is 
effected by accumulating a predecessor list 
(PREDLIST) for each xi as the nodes of G are 
analyzed. For example, if NEXTNODES(P) = (Q,R) 
then P is added to the predecessor lists of both Q 
and R during G's path metric computation. (The 
predecessor list for a node becomes the final item 
on that node's property list.) Any node on the 
predecessor list for xi is deleted from the list of 
nodes directly accessible from xi: 

NEWNEXTNODES(xi) = NEXTNODES(xi) - 
PREDLIST(xi) 

So now 

PMETRIC((xl ..... xn)) 
= 0 if CARD((xl ..... xn)) = 0, 

n (CARD(NEXTNODES(xi)) + 
else = ~ CYCLEPENALTY(xi)+ 

=i PMETRIC(NEWNEXTNODES(xi))) 

Keeping track of a node's predecessor list 
requires some care. Consider the directed graph 
shown in Figure 6. Listed below are the initial 
steps in computing the path metric for D4. 
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F i g u r e  6. Sample D4 

Following each step is the predecessor list of 
the node(s) for which the current step is 
calculating a path metric. 

1. path metric for D4 = PMETRIC((A)) 

2. PMETRIC((A)) = i + PMETRIC((B)) 
PREDLIST(A) = NIL 

3. PMETRIC((B)) = 2 + PMETRIC((D,F)) 
PREDLIST(B) = (A) 

4. PMETRIC((D,F)) = 

(I+PMETRIC((E))+4) + (i+PMETRIC((C))+4) 

PMETRIC((D)) PMETRIC((F)) 
PREDLIST(D)=(A,B); PREDLIST(F)=(A,B) 

5. PMETRIC((E)) = 1 + PMETRIC((F)) + 4 
PREDLIST(E) = (A,B,D) 

6. PMETRIC((F)) = 1 + PMETRIC((C)) + 4 
PREDLIST(F) = (A,B,D,E) 

7. PMETRIC((C)) = i + PMETRIC(NIL) + 4 
=1+0+4 
=5 

PREDLIST(C) = (A,B,D,E,F) 

Since, at step 7, PREDLIST(C) includes C's one 
"next node," namely D, the recursion halts and the 
function can be unwound back up to step 4, where 
the left side of the sum, PMETRIC((D)), is 
evaluated to 20 and computation begins on the right 
side, PMETRIC((F)) or 1 + PMETRIC((C)) + 4: 

5'. PMETRIC((C)) = 1 + PMETRIC(NIL) + 4 
=1+0+4 
=5 

PREDLIST(C) = (A,B,D,E,F) 

PMETRIC((D)) should be equal to PMETRIC((F)) 
since D and F are involved in the same cycle. But 
the problem here is that the computation of 
PMETRIC((F)) halts prematurely at I0 due to the 
fact that F's predecessor list (A,B,D,E), and hence 
C's are "left over" from the computation of the 
left side of the sum in step 4. Once the recursion 
for one of the terms in a sum such as in step 4 is 
complete, the predecessor list for the node next 
processed must be restored to its state before the 
previous recursion. In this case the predecessor 
list for F must be set back to (A,B). In our 
implementation this is accomplished by identifying 
and chopping off the appropriate tail of a node's 
predecessor list each time the loop describing the 
summation in PMETRIC is traversed. (The path 
metric for D4 should be 43.) 
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Figure 7 shows some more sample directed graphs 
and their path metrics. The reader should notice 
how rapidly the path metric increases when the 
level of interconnectivity in the design increases. 

(I) (11) 

PATH METRIC = 96 

(iv) (v) 

@ ® ® @ ® 

PATH METRIC = 183 PATH METRIC = 276 

Figure 7. Sample Graphs and Calculated Metrics 

Summary 

The existing evaluator is a prototype. We 
consider it a conservative first step in applying 
knowledge-based techniques to abstract tasks in 
software engineering. The following are 
observations on the evaluator. 

The evaluator demonstrates that with a 
suitable base (a machine-processable design 
and accompanying metrics), rules can be 
developed that capture the notions of "good" 
design. 

The rules and metric thresholds are 
methodology and application domain-specific. 
The rules can be tailored to reward and 
criticize designs according to the wishes of 
the design team. 

In order to be believable, the rules and 
metrics must undergo validation or substantial 
experiential use. 

A static evaluator is only the first step to 
an active design assistant. The design 
assistant is a superset of the evaluator. The 
assistant knows a great deal more about 
methodology, the application, and the user 
than does the evaluator. 
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