
AN AUTOMATED SOFTWARE DESIGN EVALUATOR

Nancy Giddings and Tim Colburn
Honeywell Systems and Research Center

Minneapolis, Minnesota

Abstract

A prototype automated software design evaluator
was implemented as part of a project whose
long-term goal is the application of AI techniques
to the tools in a software engineering
environment. The purposes of undertaking this
prototype were to: I) identify the attributes of a
software design that could be captured as design
rules, 2) investigate machine-processable
representations of a software design, and 3) build
a proof-of-principle prototype that demonstrates
that an automated design assistant can be built.

Introduction

A driving philosophy of our software engineering
environment work is that environments must be
customized for the application domain. That is,
they must exhibit some level of understanding of
the application problem domain, the selected
software development method, and the individual
user in order for the environment to, first, be
accepted by the user, and second, be successful.

The primary objectives of the project described
here are

To exhibit the feasibility of applying
knowledge-based techniques to software design;
specifically, a rule-based approach.

To identify the attributes of a design method
that support the construction of a
knowledge-based interface.

The prototype development chosen is an automated
design evaluator. The basic concept is to have an
automated member of a software design review teem.
The design is provided to the evaluator, and it

Permission to copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.

,9 1984 AC M 0-89791-144-x/84/1000¢0109 75¢

applies a number of criteria (rules) for a "good"
design. A summary is provided to the user, as well
as identification of design problem areas.

Ideally, one would like to have an automated
software assistant that is an active participant in
the design process. As the design process
proceeds, the automated assistant could guide the
designer in the selected design methodology and
enforce certain design rules. The assistant could
suggest areas needing refinement and identify
potential design problems, such as bottlenecks.

An assistant that exhibits this level of
intelligence in real-time is an ambitious
undertaking. Our project selected a more
conservative first effort for its prototype. The
design evaluator that has been implemented has been
limited in the following ways.

A design is evaluated only when it is
submitted to the evaluator. The designer
decides when to request a review.

The design evaluator knows how to identify
selected design flaws and anomalies, but
currently has little to say about how to
correct the flaw. Ideally, for example, if a
part X was identified as being a bottleneck,
advice such as "consider breaking X into three
pieces--with piece X1 connecting to ..." is
highly desirable. The present evaluator
simply tells the designer to look at part X.

The Nature of Software Engineering

Most rule-based systems have been successfully
implemented to date in domains [1]

o That have large amounts of available data

In which problem solving may be characterized
as a search of a solution space (preferably
small or partitionable)

o In which knowledge is encapsulated in formal
rules

When applying expert system paradigms to software
engineering, particularly in the abstract area of

Proceedings acm'84 Annual Conference
T h e Fif th G e n e r a t i o n C h a l l e n g e

1984 October 8-10

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800171.809611&domain=pdf&date_stamp=1984-01-01

design, one immediately runs into problems.
Specifically,

o Lack of machine-processable designs and
evaluation processes.

o Lack of software design quality measures.

o Lack of agreed upon standard attributes of a
software design (based on the measures).

o The process is not a solution space search.

These points are discussed in more detail in the
following paragraphs.

First, in order to support automated evaluation
of a design, the design must be machine
processable. In addition, any transformations,
traversals, or evaluation rules must be formalized
and automated. Many software design efforts,
particularly in the early functional allocation
steps, have none of these attributes.

Second, software design, particularly at the
functional (software architecture) level is not
typically characterized by quantifiable
evaluation--evaluation using measures of quality.
Although software metrics are available (and were
used in this project), they are principally
appropriate for use in the implementation phases.
In addition, software engineering has not built up
experience in the form of quality measures.

Third, there is not an agreed upon definition of
a "good" software design. There are some generally
agreed upon characteristics--"cyclical dependencies
are bad"--but a set of standard attributes of a
good software design that can be matched against an
in-progress design is not available. This is
related to the second point, in that without
quantifiable measures of quality, it is difficult
to describe standard attributes.

Finally, software design is not a search of a
solution space. In software designs, particularly
those of embedded systems, the architecture as well
as the majority of individual components are
custom-designed. There is, therefore, an infinite
number of "correct" solutions. The previous two
points deal with the creation of a knowledge base.
This point deals with the kind of processing that
must be done on the knowledge base. Processing
based on a design process heuristic is necessary as
compared to a search paradigm.

The design evaluator implemented in this project
deals with these issues in the following way:

o A machine-processable design representation
was used.

A set of complexity metrics, which are
meaningful at functional design levels, was
used.

o Thresholds for the metrics and other physical
characteristics of the design were selected.

o A set of rules that operate on the design and
the accompanying metrics was defined.

Proceedings acm'84 Annual Conference
The Fifth Generation Challenge
1984 October 8 -10

We emphasize that the approach is not limited to
the particular design representation, metrics, and
rules implemented. The important conclusion, we
think, is that given a design and some fairly
generic evaluation rules, an automated evaluator
can make meaningful statements about the
design--statements that a human evaluator may miss
due to the sheer volume of the design.

The Evaluator

Software Design View

The design evaluator operates on a software
architecture view of the design. Software
architecture is the identification of subsystems
and smaller parts during design, concentrating on
the inter-relationships between parts rather than
on their internal, operational characteristics.

The software architecture is represented via a
component interconnection language (CIL), a
machine-processable design notation developed in a
related project. The CIL basically provides the
ability to name and type components of a design and
to specify the existence of interconnections among
components of several types. The CIL is described
in detail elsewhere [2, 3].

An example of a simple design is shown in
graphical and CIL representations in Figure i.

system ISS&M

parts l i s t
act ive PROCESS SIGNALS
active INTERCOM MONITOR
active SIGNAL ALGORITHMS
data RAW SIGNALS
data TRANSMIT AND RECEIVE
data SELECTED SIGNALS

connections
PROCESSSIGNALS uses RAW SIGNALS
PROCESS SIGNALS uses TRANSMIT AND RECEIVE
PROCESS-SIGNALS uses INTERCOM-MONTTOR (A)
INTERCOM MONITOR uses SIGNAL ALGORITHMS
SIGNAL ALGORITHMS uses SELECTED SIGNALS

assembly PROCESS ANALOG SIGNALS

parts 1 ist
active SAMPLE
active SCALE AND STORE
active TRANSMIT ~ND REC
data RAW ANALOG--SIGnALS
data TRANSMIT A~D RECEIVE
data UNSCALED--LOC~L
data SIGNAL LTST
data SCALED--DATA

connections
SAMPLE uses RAW ANALOG SIGNALS
SAMPLE uses SIGNAL LIST
SAMPLE uses UNSCAL~D LOCAL
SAMPLE uses SCALE AN~ STORE
SCALE AND STORE u~es ~IGNAL LIST
SCALE--AND--STORE use s UNSCAL~D LOCAL
SCALE--AND--STORE uses SCALE D D~TA
SCALE--AND--STORE uses TRANSMTT AND REC
TRANSMIT ~ND REC uses SIGNAL EIST--
TRANSMIT--AND--REC uses SCALED--DATA

(C) TRANSMIT--AND--REC uses TRANSMTT AND RECEIVE

Figure I. A CIL Example

(D)

component COMPARE AND CONTROL

parts list
provides

subprogram COMPARE AND CONTROL (SL: in SIGNALLIST)
hides

oonnections
COMPARE AND CONTROL
COMPARE--AND--CONTROL
COMPARE--AND-CONTROL
COMPARE AND CONTROL
COMPARE--AND--CONTROL

COMPARE AND CONTROL
COMPARE-AND-CONTROL
COMPARE AND CONTROL
COMPARE--AND--CONTROL
COMPARE--AND--CONTROL
COMPARE--AND--CONTROL
COMPARE AND CONTROL
COMPARE--AND--CONTROL

COMPARE AND CONTROL

call returns COPY AND TRANSMIT
call--returns COPY--AND--RECEIVE
call--returns COMPUTE ~HECKSUM
call--returns VALIDATE
call~ ADJUST

reads SIGNAL LIST
reads CHECKSUM
reads LOCAL CKWD
reads LOC AL--VALW D
reads RIGHT--C KW D
reads RIGHT-VALWD
reads LEFT ~KWD
reads LEFT--VALWD

writes AVAIL PROCESSORS (E)

Figure i. A CIL Example (concluded)

The metrics operate on the CIL representation of
the design, which is a directed graph. To support
evaluation of functional level designs, an abstract
notion of connectivity is needed, such as Belady's
(clustering) complexity measure [4]. The metrics
that were defined are based on a similar notion.

Structural metrics or metrics based on
relationships can be used to

o Find the optimal groupings for a set of
components and their connections

o Locate stress points and stress groups

o Identify missing "levels of abstraction"

The metrics we have defined fall into two
classes. One metric focuses on the local
relationships (direct connections--such as that
between parts 1 and 3 in Figure 2a). The intent is

(a) (b)

Figure 2. Path Metric Details

to discover highly interconnected parts--ones for
which a change would have a large impact on the
remainder of the system. A second metric expands
the focus. Here we must consider not only direct
relationships, but indirect ones as well (part 1 is
connected to 3, and 3 is connected to 7, therefore
1 is indirectly connected to 7, as in Figure 2b).
More detail on the metrics may be found elsewhere
[2, 3].

These metrics have been implemented in the design
evaluator accompanied by rules that interpret their
meaning.

Design Rules Overview

The design rules implemented in the design
evaluator embody generally accepted notions of good
design. The basic concepts are

o Complexity should be introduced into a design
at a steady conservative pace (use stepwise
refinement and decomposition).

o Highly interconnected designs are undesirable.

o Cyclical dependencies are undesirable.

Ten rules were developed to quantify these design
notions. In the process, thresholds were set for
some design attributes, including:

o Rate of increase of metric values between
design refinements

o Humber of interconnections per part

o Ratio of data to active parts

At this point, the numeric thresholds are
arbitrary. They are based on examinations of
representative "desirable" designs versus
"undesirable" designs. The values are not
validated, nor is this a major objective of this
project. In addition, we suspect that the
thresholds are application domain-specific and must
be derived and validated on that basis.

The design rules implemented consider the
interconnectivity of individual software parts, the
complexity of the design as a whole, and the
relationships among successive design iterations.
Since the software design can be represented by a
directed graph, the statement of the design rules
involves some graph terminology.

Each rule is capable of triggering a message
stating that its particular design attribute has
been violated. For rules that deal with node level
attributes (such as Rule 3), the evaluator will
list the individual nodes that have been identified
as exceptions, as well as provide a summary of the
node's relationship to other nodes. For example, a
node identified as too highly interconnected will
also receive a report on its interconnections to
aid the designer in revising the design.

Similarly, for Rule 5, if cycles are detected, a
detailed report on cycles present is given. The
designer has the option of receiving node-level
cycle reports as well.

ProceedingsaCm'84AnnualConference ~ ~ ~
The Fif th G e n e r a t i o n C h a l l e n g e 1984 October 8-10

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 5:

For a first design iteration, number of
active nodes + number of data nodes <#
12. (Initially no more than 12 total
parts.)

0.5<= number of active nodes/number of
data nodes<= 2.0. (No more than a
2-to-i imbalance between active and data
parts.)

For any node "n" in the graph,
in-degree(n) + out-degree(n) <=5. (No
software part uses and/or is used by a
total of more than five other parts.)

0.5<= number of arcs/number of nodes <=
1.5 (where an arc represents a "uses"
relation between software parts).

The graph is cycle-free. (No software
part directly or indirectly uses
itself.)

Rule 6:

Rule 7:

For a first design iteration, path
metric<= i0. (See "Computing the Path
Metric of a Software Design" section.)

For a second design iteration, path
metric<= I00.

Rule 8: The increase in number of nodes between
any two successive design iterations <=
50%.

Rule 9:

Rule I0:

The increase in path metric between any
two successive design iterations is less
than or equal to a factor of 5.

The number of consecutive increases in
path metric between successive design
iterations <= 2.

The Implementatiqn

We have implemented the software design evaluator
using Interlisp/VAX (USC-ISl) on a VAX-II/780. The
system operates by prompting the software engineer
for a software (system) architecture in terms of
software components and their interconnections.

Once Interlisp is entered and the appropriate
function file loaded, the user invokes the design
evaluator by typing the function call
(EVALDESIGN). The system responds by asking for
the name of the design to be evaluated. A design
is represented by a list and a property list. If
the name given is new during the current session a
property list is created for it. If the name and
hence its property list already exist, then the
ensuing design specification will be taken to be a
refinement of a previous design of the same name.
A design's property list contains the number of
nodes and the path metric value for each of its
iterations, so that rules 8, 9, and I0 can be
tested.

The system then prompts for the active parts of
the design, followed by the data parts. For each
part (or node), a property list is created, the
first element of which is a predicate indicating
whether the node is an active or data part. Rules
I, 2, and 8 are then tested.

' = " ' ° ° ° ' ° ° ° ' ° ' "
The Fifth Generation Challenge
1984 October 8-10

Next, the system asks for the part interconnec-
tions, after which the property list for each node
is'updated to include a list of nodes using it and
a list of nodes used by it. Rules 3 and 4 can then
be tested.

The design now specified, the system analyzes the
interconnections for cyclical dependencies,
invoking rule 5. If any cycles are detected they
are displayed and the user is given an opportunity
to see a more detailed cycle report by node. The
property list of each node is updated to include a
list of cycles it is involved in.

Node property lists are now complete and used to
help calculate the design's path metric value.
This value is then displayed and rules 6, 7, 9, and
I0 are tested. Any criticisms or recommendations
are made and control returns to the Interlisp
interpreter. The user may then either log out or
input a new design or design iteration by typing
(EVALDESlGN) again.

Computing the Path Metric of a Software Design

The complexity of a software design represented as
a directed graph is a measure of the lengths,
number, and cyclical/noncyclical nature of its
paths. For example, we may take as the measure of
the complexity of a directed graph the sum of the
lengths of its paths. Thus the "path metric" of
the design shown in Figure 3 is equal to
length(ACD) + length(BCD) = 2 + 2 = 4. By this
measure the path metric of the design in Figure 4
would be length(ABC) + length(ABD) = 2 + 2 = 4.
Intuitively we would like to say that D1 is more
complex as a software design than D2 because a
change to the more connected node C in D1 "ripples
back" to two users of C (namely, A and B), while a
change to the more connected node B in D2 affects
only one user (namely A). We can capture this
intuition in the calculation of path metrics by
counting the common head (i.e., path AB in D2) just
once when summing path lengths. The path metric
f~or D2 then is length(AB) + length(BC) + length(BD)
=i+1+1=3.

1 ®
D1

Figure 3. Sample D1

®

02

Figure 4. Sample D2

Using these ideas, consider the graphical design
shown in Figure 5. The paths starting at node A
are ACD, ACE, ACFG, and ACG. Since each of these
paths has the common head AC, the path metric for

113

F i g u r e 5. Sample D3

t h a t p a r t o f D3 a c c e s s i b l e t h r o u g h A, i s l e n g t h (A t)
+ l e n g t h (C D) + l e n g t h (C E) + l e n g t h (C F G) +
l e n g t h (C G) = 1 + 1 + 1 + 2 + 1 = 6. S i n c e no p a t h
starting at node B has a head in common with any
path starting at A, the path metric for that part
of D3 accessible through B can be added to that for
A to obtain the total path metric for D3. By
parity of reasoning, the path metric for that part
of D3 accessible from B is equal to that for A
(simply substitute "B" for "A" in the above
computation), namely 6. Let us write "M(N)" for
"the path metric for that part of the graph
accessible from N." Then the path metric for the
design is M(A) + M(B) = 6 + 6 = 12.

This walk-through suggests a recursive procedure
for computing path metrics. We can look at M(A) as
length(AC) + M(C) = 1 + M(C). Since CD, CE, CF,
and CG are all distinct heads, M(C) is the sum of

length(CD) + M(D)
length(CE) + M(E)
length(CF) + M(F) and
length(CG) + M(G)

or

1 + M(D)
I + M(E)
1 + M(F) and
1 + M(G)

Since D, E and G are terminal nodes, M(D) = M(E)
= M(G) = 0. Recursion is applied one more time at
node F: M(F) = 1 + M(G) = 1 + 0 + I.

Let us reconstruct this process:

path metric for D3 = M(A) + M(B)
M(A) = 1 + M(C)
M(C) = 4 + M(D) + M(E) + M(F) + M(G)
M(F) = 1 + M(G)
M(D) = 0

M(E) = 0
M(G) = 0

Now the recursion can be unwound:

M(F) = I + M(G) = 1 + 0 = 1
M(C) = 4 + M(D) + M(E) + M(F) + M(G)

=4+0+0+1+0
=5

M(A) = 1 + 5 = 6

Since M(A) = M(B), the path metric for D3 = M(A) +
M(B) = 6 + 6 = 12.

A recursive function (PMETRIC) for computing the
path metric for a directed graph G can be written
as follows. Let PMETRIC take as its argument a
list of nodes (xl,...,xn) and let this list
initially be the list of root nodes of G, i.e.,
those nodes of G having an in-degree of zero. Let
CARD(y) be the function returning the cardinality
(or length) of the list y. Finally, let
NEXTNODES(z) be the function returning the list of
nodes of G directly accessible (i.e., one arc away)
from node z. Then the path metric for G is defined
as PMETRIC((xl, xn)) where

PMETRIC((xl, xn))
= 0 if CARD((xl xn)) = 0

n
else =~ (CARD(NEXTNODES(xi)) +

= PMETRIC(NEXTNODES(xi)))

Complications arise if G involves cycles. First,
since cyclical dependencies among parts of a
software design are to be avoided, a penalty should
be added into the path metric each time a node
involving cycles is visited. This penalty is
defined for node n by CYCLEPENALTY(n) = the sum of
the lengths of the cycles involving n. Our
function for computing the path metric for graph G
then becomes

PMETRIC((xl xn))
= 0 if CARD((xl xn)) = 0,

n (CARD (NEXTNODES(xi)) +
else = y CYCLEPENALTY(xi)+

=I PMETRIC(NEXTNODES(xi)))

As PMETRIC stands, however, if G involves cycles
the function will never resolve, infinitely
recursing through the first cycle it encounters.
Clearly, the recursive call to PMETRIC must not
include in its argument any nodes already processed
on the current path to node xi. In our
implementation of PMETRIC this constraint is
effected by accumulating a predecessor list
(PREDLIST) for each xi as the nodes of G are
analyzed. For example, if NEXTNODES(P) = (Q,R)
then P is added to the predecessor lists of both Q
and R during G's path metric computation. (The
predecessor list for a node becomes the final item
on that node's property list.) Any node on the
predecessor list for xi is deleted from the list of
nodes directly accessible from xi:

NEWNEXTNODES(xi) = NEXTNODES(xi) -
PREDLIST(xi)

So now

PMETRIC((xl xn))
= 0 if CARD((xl xn)) = 0,

n (CARD(NEXTNODES(xi)) +
else = ~ CYCLEPENALTY(xi)+

=i PMETRIC(NEWNEXTNODES(xi)))

Keeping track of a node's predecessor list
requires some care. Consider the directed graph
shown in Figure 6. Listed below are the initial
steps in computing the path metric for D4.

Proceedings acm'84 Annual Conference ~ 1
The Fifth Generation Challenge

1984 October 8-10

®
+

114

F i g u r e 6. Sample D4

Following each step is the predecessor list of
the node(s) for which the current step is
calculating a path metric.

1. path metric for D4 = PMETRIC((A))

2. PMETRIC((A)) = i + PMETRIC((B))
PREDLIST(A) = NIL

3. PMETRIC((B)) = 2 + PMETRIC((D,F))
PREDLIST(B) = (A)

4. PMETRIC((D,F)) =

(I+PMETRIC((E))+4) + (i+PMETRIC((C))+4)

PMETRIC((D)) PMETRIC((F))
PREDLIST(D)=(A,B); PREDLIST(F)=(A,B)

5. PMETRIC((E)) = 1 + PMETRIC((F)) + 4
PREDLIST(E) = (A,B,D)

6. PMETRIC((F)) = 1 + PMETRIC((C)) + 4
PREDLIST(F) = (A,B,D,E)

7. PMETRIC((C)) = i + PMETRIC(NIL) + 4
=1+0+4
=5

PREDLIST(C) = (A,B,D,E,F)

Since, at step 7, PREDLIST(C) includes C's one
"next node," namely D, the recursion halts and the
function can be unwound back up to step 4, where
the left side of the sum, PMETRIC((D)), is
evaluated to 20 and computation begins on the right
side, PMETRIC((F)) or 1 + PMETRIC((C)) + 4:

5'. PMETRIC((C)) = 1 + PMETRIC(NIL) + 4
=1+0+4
=5

PREDLIST(C) = (A,B,D,E,F)

PMETRIC((D)) should be equal to PMETRIC((F))
since D and F are involved in the same cycle. But
the problem here is that the computation of
PMETRIC((F)) halts prematurely at I0 due to the
fact that F's predecessor list (A,B,D,E), and hence
C's are "left over" from the computation of the
left side of the sum in step 4. Once the recursion
for one of the terms in a sum such as in step 4 is
complete, the predecessor list for the node next
processed must be restored to its state before the
previous recursion. In this case the predecessor
list for F must be set back to (A,B). In our
implementation this is accomplished by identifying
and chopping off the appropriate tail of a node's
predecessor list each time the loop describing the
summation in PMETRIC is traversed. (The path
metric for D4 should be 43.)

P r o c e e d i n g s a c m ' 8 4 A n n u a l C o n f e r e n c e
The Fifth Generation Challenge
1984 Oc tobe r 8 - 1 0

Figure 7 shows some more sample directed graphs
and their path metrics. The reader should notice
how rapidly the path metric increases when the
level of interconnectivity in the design increases.

(I) (11)

PATH METRIC = 96

(iv) (v)

@ ® ® @ ®

PATH METRIC = 183 PATH METRIC = 276

Figure 7. Sample Graphs and Calculated Metrics

Summary

The existing evaluator is a prototype. We
consider it a conservative first step in applying
knowledge-based techniques to abstract tasks in
software engineering. The following are
observations on the evaluator.

The evaluator demonstrates that with a
suitable base (a machine-processable design
and accompanying metrics), rules can be
developed that capture the notions of "good"
design.

The rules and metric thresholds are
methodology and application domain-specific.
The rules can be tailored to reward and
criticize designs according to the wishes of
the design team.

In order to be believable, the rules and
metrics must undergo validation or substantial
experiential use.

A static evaluator is only the first step to
an active design assistant. The design
assistant is a superset of the evaluator. The
assistant knows a great deal more about
methodology, the application, and the user
than does the evaluator.

Acknowledgments

Thanks to John Beane for his guidance in using
and interpreting the metrics, which are the
cornerstone of the effort.

I.

2.

References

Hayes-Roth, F., Waterman, D., and Lenat, D.,
Building Expert Systems, Addison-Wesley, 1983.

Beane, J., Giddings, N., and Silverman, J.,
"Quantifying Software Designs," Proceedings,
of the 7th International Conference on

3.

Software Engineering, Orlando, March 1984.

Silverman, J., Beane, J., and Giddings, N., "A
Component Interconnection Language for
Evaluating Software Design Quality," Honeywell
Report, March 1983.

4.

5.

6.

7.

Belady, L., and Evangelisti, C., "System
Partitioning and Its Measure," Technical
Report RC 7560, T.J. Watson Research Center,
IBM, Yorktown Heigms, NY, March 1979.

Perlis, A.P., Sayward, F., and Shaw, M.
(eds.), Software Metrics.

Whitworth, M., and Szulewski, P., "The
Measurement of Control and Data Flow
Complexity in Software Designs," IEEE 1981.

Henry, S., and Kafura, D., "Software Structure
Metrics Based on Information Flow," IEEE
Transactions on Software Engineering,
September 1981.

CR Categories and Subject Descriptors: F.3.1
[Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs =- specification
techniques

J~

Proceedings acre'84 Annual Conference ~ 1
The Fifth Generation Challenge H 1984 October 8-10

