
HIGH LEVEL DESCRIPTION
AND II~LEMENTATION OF
RESOURCE SCHEDULERS

Dennis W. Leinbaugh
The Ohio State University
Department of Computer and

Information Science
Columbus, Ohio 43210

ABSTP~CT

Resource sharing problems can be described
in three basically independent components.

• The constraints the resource places upon
sharing because of physical limitations
and consistency requirements.

• The desired ordering of resource requests
to achieve efficiency -- either efficiency
of resource utilization or efficiency for
processes making the requests.

• Modifications to the ordering, to prevent
starvation of processes waiting for
requests which might otherwise never
receive service.

A high level description language to specify
these components of resource sharing problems is
introduced. An implementation that lends itself
to mechanical synthesis is described. Synthesis
of the scheduler code by-passes the long and error-
prone process of someone doing the coding them-
selves. Proof techniques at the high level
description level are introduced to show how to
prove schedulers, synthesized from their des-
cription, are or are not deadlock and starvation
free. Solutions to the classical resource
sharing problems of producer/consumer, reader/
writer, and disk scheduler (to the sector level)
are shown to illustrate the expressiveness of this
description language.

Key Words: Resource sharing, resource scheduling,
protected resource, process synchronization,
specification language, nonprocedural
language, and process starvation.

INTRODUCTION

An important activity in any multiple user
system is resource sharing. Many schemes have
been proposed and developed to aid in resource
sharing. Monitors [HOAR74] and serializers
[HEWI79] were designed primarily to enforce

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-085-0/82/010/0169 $00.75

cooperation among users sharing resources. These
schemes provide primitives and language structures
which make it relatively easy to write code to
enforce the necessary rules and desired policies
upon resource sharing.

This work describes how to directly specify
the resource sharing rules needed and policies
wanted for resource sharing problems. The code
to enforce these rules and policies can then
be automatically generated (synthesized) from the
high level description provided. The advantages
are clear. Since the rules and policies are
specified directly, it is known exactly what
they are and that they are enforced. Finally,
proof techniques are shown to determine if
solutions are deadlock and starvation free.

Ramamritham and Keller [RAI~80] attacked
the same problem [LEIN81]. The specification
language they describe for synchronizers is at
a lower level than that described here and conse-
quently may not be as easy to read or write.
Synchronizers do not allow concurrency of opera-
tions which modify the same state variable,
whereas the schedulers described here allow
as much concurrency as the resource does.

Proof techniques for monitors [HOWA76] and
serializers [HEWI79] involve program proving
because these schemes use synchronization proce-
dures. Synchronizers use predicate calculus with
temporal operators [RAHA81]. Proofs with both
these techniques can be long and complicated
because of the low level upon which they are
based. The structure and high level description
of schedulers, on the other hand, make it possible
to do proofs directly at that level.

The specification of resource sharing
consists of three major independent components.
First, the resource invariant to determine if an
additional request can be accepted by the resource
and still maintain resource consistency and
correct servicing of requests. Second, the
request ordering policy to determine which of
several acceptable requests will be next serviced.
Third, modifications to the ordering policy to
avoid endless waits by some requests and hence
avoid starvation of the processes waiting on the
completion of these requests.

The ability to specify resource sharing in
independent components has great advantages. It
reduces the problem of resource sharing into
simpler components, making it easier to correctly

1 6 9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800174.809791&domain=pdf&date_stamp=1982-01-01

specify each. These are natural divisions in
the sharing problem and allow a person to more
clearly deal with each separately.

HIGH LEVEL DESCRIPTION OF RESOURCE SHARING

A resource is viewed as a collection of opera-
tions upon an object. A scheduler for that
resource is a process that has exclusive use of
the object. The scheduler receiw~s operation
requests from other processes and forwards them
to the resource in accordance with the descrip-
tion of resource sharing. A response message
is sent to the requesting process after the
scheduler receives the completion response from
the operation (see Figure 1).

SCHEDULING
request arrival MODULE

pos Jpone condition

~ true
fals 4

postpone condition POSTPONED SET
OF REQUESTS false

ORDERED gET
OF REQUESTS 1

all join if J requests

- ORDERED SET empty

expedi te cond i t ions
true

EXPEDITED SET
OF REQUESTS

EXPEDITED SET empty /
resource c o n s t r a i n t / ordering policy

I resource constraint

li iable [d iable
uncertaintv uncertainty

request response

t

Figure i: Structure and Scheduling Strategy of Schedulers

The description language allows specification
of six modular components to solve resource
sharing problems:

• Definition of request messages,
• Declaration and modification of resource

state variables,
• The resource invariant,
• The ordering policy,
• The postponement policy, and
o The expedite policy.

The remainder of this section is a brief
overview of the syntax and semantics of the des-
cription language. A complete syntax and semantics
can be found in [LEIN81], although that syntax
as well as that used here is intended to be only
suggestive. The syntax is verbose to enhance
understandability in reading the examples in this

paper without first studying the syntax and
semantics. Abstract resource types could easily
be defined, just as some languages allow user
defined abstract data types, but is omitted for
brevity. While reading this section, Figures 2
through 4 can be examined for examples of the
language features described.

Definition of Request Messages

The REQUEST DECLARATIONS section defines the
fields of the request messages that make up the
requests. A request is a record of fields. A
request's type is identified by values in one or
more of those fields.

Scheduler Variables

Variables are used in the remaining scheduler
components so are described prior to those compo-
nents. There are three categories of variables.

• Set Counting Variables: WAITING.request~pe,
EXPEDITED.request~pe, and ACTIVE.requesttype
keep track of the numbers of requests of
type, requesttype, residing in the Waiting
Set, Expedited Set, and Active Set, respec-
tively. The number of requests postponed
is not available, to be consistent with the
concept that postponed requests are ignored.

e History Variables: LASTACTIVE.request~pe.
fieldncyne keeps track of the value in the
field, fieldnc~ze, of the last request of type,
requesttype, that has been sent to the
resource for service.

• Resource State Variables: Resource state
variables are the only category of variables
that are not built-in. State variables are
to reflect the known state of the resource.
The state of the resource changes as a con-
sequence of operations performed upon it.

Declaration and Modification of Resource State
Variables

Resource state variables are defined and
assigned initial values. The PROCESSING section
describes what operation each request type will
perform and how the state of the resource will
change UPON SERVICE of the request. However, the
exact time of the change is not known; both
because there are delays in sending requests to
the resource and receiving replies and because
even within the performance of the operation it-
self there will usually be a transitional
period during which the resource state changes
from the old value to the new value. The value
of each state variable is therefore kept as an
uncertainty range of the possible values it could
be. This uncertainty is increased whenever a
request is sent to the resource and decreased
whenever a reply is received back from the re-
source. There should be no uncertainty in the
value of a state variable when the resource is
idle. This uncertainty reflects exactly the in-
formation the scheduler can know about the
resource and greatly simplifies specifying
schedulers that allow concurrency of operations.

Resource Invariant

The resource invariant describes the legal
operating range of the resource. The only

1 7 0

consideration is that a request not be sent to the
resource if it causes an inconsistency or other
illegal action. To enforce this concept, only
information about the resource itself is allowed
in the resource invariant. This means WAITING
and EXPEDITED counts are not allowed. A request
fits the resource invariant if its entering the
resource leaves the resource invariant true (for
all values of state variables within their
uncertainty ranges).

Ordering Policies

In addition to maintaining proper operation
of the resource, it is often desired to impose
an ordering between those requests that fit the
resource invariant. This ordering is probably

to achieve efficiency -- either efficiency in
resource operation or efficiency in the response
time to requesting processes. In the absence of
any other ordering specifications, the default
ordering is always first in first out. There
are two types of ordering that can be specified.

• Ordering between different types of requests.
• Ordering between different requests of the

same type.

Ordering between types is easily specified
by defining the priority (weak priority) between
the different types. Ordering between requests
of the same type is determined by field values
within the requests and information about the
resource. This type of ordering could be achieved
with built-in ordering algorithms; however,

greater flexibility can be achieved by using a
high level description to specify the needed
ordering algorithms.

Specification of Ordering Algorithms

An ordering algorithm is nonprocedurally
defined in three components.

• Declaration of sets to hold requests,
• Conditions to determine which set a request

enters, and
• Search techniques for locating the next

request for service.

Since the examples given later utilize only
one set, managing additional sets is not discussed.
The set declaration specifies an expression,
based upon the fields in each request, to deter-
mine the request's position within the set. The
search techniques consist of one or more modes
of search. Each mode is defined in three parts.

• Initial positioning within the set to begin
the search.

• For what condition the search position
should be updated and to what.

• At the end of the search, what mode to
switch to or how to re-initialize the
search within the same mode.

This description is sketchy but adequate to
understand the examples.

Ordering specifications, while they may
improve efficiency, can easily introduce starva-
tion of some requests. The resource invariant
itself can make starvation possible. Starva-
tion of a request is defined as the condition
where that request, under possible circumstances,
simply never gets serviced but Under different

circumstances of request arrivals and service
completions could be serviced. Rather than
complicate the ordering policy, modifications to
the ordering are made to avoid starvation. Two
types of modifications are possible.

• Postpone requests from consideration.
• Expedite requests to be next for service.

Postpone Policies

The main reason that some requests starve
is that other later arriving requests keep being
serviced before them. One method to avoid this
starvation is to identify what arriving requests
may be responsible for this starvation and ignore
them (temporarily). The POSTPONE statement
attaches a condition to each type of request to
be postponed. The postponement conditions may
involve the current resource state and a considera-
tion of other waiting requests. A request can
only be postponed when it initially arrives and
then only until its postpone condition becomes
false or until the ordered set becomes empty.

Expedite Policies

Another method to avoid starvation is to
identify the requests that may otherwise starve
and make sure they are serviced. The EXPEDITE
statement attaches a condition to each type of
request that can be expedited. If that condition
ever becomes true while the request is waiting for
service, it is expedited -- making it next in
line for service ahead of any requests still
waiting in the ordered set.

In the absence of other measures, one very
useful measure of how unfairly a request is being
treated (and hence possibly being starved) is
a count of how many times the oldest request of
one type has been passed over in preference to
giving service to later arriving requests of
another type. This measure is expressed as

TIMES requesttypel HAS PASSED requesttype2.

A postpone or expedite condition is considered
true if it evaluates true for some value of
each state variable within its uncertainty
range. The resource may actually be in that
state. Also, it is better to postpone or
expedite an extra request than to miss one.

IMPLEIIENTATION STRATEGY

The overall scheduling strategy is illus-
trated in Figure i. A process issues a request
for service by sending a request message to the
Scheduling Module. The Scheduling Module imple-
ments the high level resource sharing specifica-
tions, and forwards a request to the Protected
Resource Module when it is to be performed.
When a request completes service, the Scheduling
Module is notified and the process receives a
response message.

Requests sent to the scheduling module can
only reside as postponed requests, ordered
requests, expedited requests, or requests being
serviced. 0nly a request that leaves the
resource invariant true when it starts service is
accepted into the resource. As a request joins
the requests being serviced, the uncertainty of
the resource state is increased. When the

171

resource replies to tb@ request, the resource has
been updated so the uncertainty of the resource
state is decreased.

If there are expedited requests, then the
request that was earliest expedited is the only
candidate for service. Otherwise, the ordering
rules determine which of the serviceable
requests will next be serviced. An ordered
request will join the expedited requests if there
is an expedite condition for it that evaluates
true.

A request is postponed if a postpone condi-
tion for it evaluates true at the time the request
arrives at the scheduler. A request remains
postponed either until the postpone condition
for it evaluates false, at which time it join6
the ordered requests; or until the ordered set
becomes empty, at which time all postponed requests
join the ordered requests.

Requests are considered for postponement
only upon entry to the scheduler for two reasons.
It is difficult for the person describing the
scheduling to visualize the cycling that can
occur if postponement is allowed anytime. Not
only that, but this cycling can introduce starva-
tion of the very requests that are postponed to
prevent starvation of other requests. All post-
poned requests join the ordered set if the ordered
set becomes empty because otherwise the postponed
set would itself need a postponed set to
avoid starvation of requests in the postponed set.

Order of Condition Testin~

Conceptually the conditions are checked in
the following order and rechecked after each
action taken.

i. check for request to expedite,
2. check for postponed request to lose

postponed status,
3. check for request to enter service,
4. check for request to complete service,

and
5. check for new arrival and whether it

should join postponed requests or
ordered requests.

Most solutions do not involve both expedite
and postpone, but since they are usually included
to help prevent starvation it is more important to
recognize a request to expedite than a request to
postpone. This is because we are expediting the
request that is (potentially) being starved
rather than the more indirect approach of post-
poning one that may be starving another. It is
important that both expedite and postpone be
checked before checking for other actions to
insure that the condition for expedite or post-
pone does not become true but is changed before
it can be checked.

Next in importance is to check for request
completions and for requests that can enter service.
It does not make much difference but is more
orderly if one first checks for a request to
enter service. Normally the scheduler is
thought of as performing its functions in a short
period of time in relation to length of service of
requests; otherwise less energy should be spent
in the scheduling by using a simpler scheduling
policy. Consequently, most of the time a request

will not complete while the scheduler is still
working. By starting new requests before recogniz-
ing the completion of requests it is simply made
uniform that requests never complete while the
scheduler is working.

Finally, new arrivals are checked. This
strategy enables the scheduler to "take care of old
business" prior to starting new business.

Efficiency of Condition Testing

For efficiency it is necessary that re-evalua-
tion of conditions not be done excessively.
This is accomplished in two ways. First, a
request needs to be re-examined only when an event
described above occurs and then only if that
event may have altered the conditions associated
with the request. Second, requests can be
organized so only a few requests (often only one)
need be examined each time an event occurs. The
remainder of this section describes this organiza-
tion, but a more thorough explanation is in
[LEIN81].

Postponed requests can be partitioned into
subsets of requests where the postpone condition
for all requests in each subset evaluates
identically. To determine if any request should
no longer be postponed, only a representative from
each subset (the oldest request) need be examined.
Usually the number of subsets will be small --
the disk example has only one postponed subset.

Ordered requests need to be organized two
ways. The order/resource-invariant organization
first partitions requests according to the ordering
and then partitions each of those partitions
according to the resource invariant. The ordering
partitions are either the request types involved
if the ordering is between types or the partitions
defined by the ordering algorithm used. If
more than one level of ordering is specified,
then the partitions are themselves partitioned.
The partitions imposed by the resource invariant
are determined by using the preconditions
derived from them. The precondition for a certain
type of request is that condition that when
true and then a request of that type is started
then the resource invariant remains true.

The ordered requests are also separately
organized according to the expedite conditions.
Often this expedite organization is contained in
the order/resource-invariant organization thus
necessitating only one organization on the
ordered set.

Code synthesis from a high level solution
can be done mechanically to produce an implementa-
tion of that solution as described above. Such
a synthesizer is being developed for this des-
cription language.

RESOURCE SCHEDULING PROBLEMS

Three examples are given to illustrate
important aspects of the description language.

Producer/Consumer Problem with Bounded Buffer

This solution (Figure 2) to the Producer/
Consumer problem [HOAR74] illustrates the use of
the resource invariant and state variables.
Assume operations are written to allow an insert
and a remove operation to be performed concurrently.

1 7 2

REQUEST DECLARATIONS
REQUEST FIELDS

REQUEST TYPES

DECLARE STATE VARIABLES

PROCESSING

type CHARACTER(I)
item CHARACTER (99)

in~ertitem HAS type = 'I'
removeitem HAS type - 'R'

#items INITIALLY 0

insertitem PROCESSED BY inaertrouti~e
UPON SERVICE #/terns := #items +i

removeitem PROCESSED BY re~Toveroutine
UPON SERVICE #items :- #items -i

RESOURCE INVAR IANT
ACTIVE. insertitem _< i AND ACTlVE.remoueitem _< 1

AND 0 -< #items AND #items _< i0

Figure 2. Pro~cer/Cons~er Probl~ with
Capability to Save i0 Produced Items

Consequently the resource invariant specifies that
at most one insert request and one remove request
can be active in the resource at once.

The state variable #items is used to keep
track of the number of items in the resource
buffer. The insert routine adds another item to
the buffer; thus it is specified that upon service
#items is increased by one. Likewise, upon per-
forming the remove routine, #items decreases by
one. Since the resource uses a i0 slot buffer,
the resource limit 0 ~ #items ~ i0 is necessary to
prevent overfilling or overemptying the buffer.

This looks (and is) straightforward; however,
this is only because uncertainty-range state
variables are used. Solutions with previous
techniques, if they allowed concurrency, would
require two state varaibles -- one to reflect
the number of positions known to be empty and
the second to reflect the number of positions
known to be full. An insert in such a solution
tests and decrements the known-empty variable
before beginning the insert operation and incre-
ments the known-full variable when done. This
is unnecessary here because the uncertainty-
range variable, #items, reflects exactly what is
known of the resource. Any request that might
take #items' uncertainty outside the range 0 to
i0 is forced to wait.

For example, if no requests are active and
there are 9 items in the buffer, then the un-
certainty range is [9,9] -- the possible values
for #items is only 9. A remove request can
start, making the uncertainty range [8,9], and
an insert request can start, making the range
[8,10]. This means there are anywhere from 8
to i0 items in the buffer. If the insert
finishes first, the range is reduced to [9,10]
and another insert will not be allowed to
start. When the remove completes, however,
the range becomes [9,9] and another insert
request could be started.

Reader/Writer Problem, Reader Priority with
Designated Writer

This solution (Figure 3) to the Reader/
Writer problem [COUR71] illustrates the use of
ordering for reader priority and the use of
expedite to avoid starvation of write requests.
It uses set counting variables to determine
when to expedite.

REQUEST DECLARATIONS

REQUEST FIELDS ~pe ~,ACTER (1)
directions CHARACTER (63)

REQUEST TYPES r e a d r e q u e e t HAS t y p e - 'R'
~iterequeet HAS type - 'W'

PROCESSING
readreq~eet PROCESSED BY read~outine
writerequeet PROCESSED BY writeroutine

RESOURCE INVAR IANT
ACTIVE.wr~terequeet _~ i AND ACTlVE.reuch, eque8t - 0
OR
ACTIVE.~r~te~eq~est - 0

ORDERING reu , d r r e q ' u e e t BEFORE ~n~iterequest

EXPEDITE ~n~terequest IF EXPEDITED.~n~itereqaest = 0
AND ACTIVE.~I~it6Teq~est - 0
AND WAITING.reuci~equeet - 0

Fi~re 3: Reader/Writer Problem: Reader Priority
and Designated Writer

The resource invariant specifies that either
one write request can be active or any number of
read requests may be active in the resource at
once.

Ordering specifies that read requests are to
come before write requests. This means that if
either type can use the resource, then a read
request becomes active next. This ordering
could result in starvation of write requests if
there were enough read requests continually
desiring service. Expedite therefore is used to
select a write request which is potentially
starving and designate it to be next. In this
solution, a write request is expedited if
currently none are expedited or active and if
there are no read requests waiting to be serviced.
A later section proves that this solution is
deadlock and starvation free.

Disk Scheduler

This disk scheduler solution (Figure 4)
illustrates postponement and ordering algorithms.
It schedules requests to the disk such that the
elevator algorithm is used for cylinder head
positioning [HOAR74]. Within the same cylinder,
the requests are ordered by sector address to
service as many requests as possible per disk
revolution. Writes to the same sector are
selected before reads to insure the most up-to-
date information is read. Finally, starvation of
requests is prevented by insuring that the disk
cannot remain at the same cylinder forever.

Ordering is achieved by making the elevator
algorithm on cylinder addresses the primary
ordering.

The secondary ordering is the scan algorithm
which, within the same cylinder, selects one
request per sector. The tertiary ordering, within
the same cylinder and sector, is write requests
before read requests,

The ordering algorithms, rather than being
built-ln, are also defined. Both specify a single
set in which requests can reside in address order.
The scan algorithm has a single extraction mode of
first selecting the request with lowest (sector)
address, then working through the sectors selecting
one request per sector, and finally resetting to
the lowest address again after the end of the sec-
tors is reached. The elevator algorithm has two

1 7 3

REQUEST DECLARATIONS
REQUEST FIELDS type CHARACTER(i)

ay Z-addr CHARACTER (3)
sector-addr CEAEACTER(2)
data CHARACTER(256)

REQUEST TYPES
readrequest HAS type = 'R'
writerequest HAS type = 'W'

PROCESS ING
readrequeet PROCESSED BY diskdriver
writerequest PROCESSED BY diekdriver

RESOURCE CONSTRAINTS
ACTIVE.readi~equeet + ACTIVE.writerequeet < 1

ORDERING
FIRST BY elevator ALGORITHM ON cyl-addr
THEN BY 8Can ALGORITHM ON eector-addr
THEN BY writerequest BEFORE readrequest

POSTPONE

readrequest IF THIS-REQUEST.cyl-addr = LAST-ACTIVE.cyl-addr
writerequest IF THIS-REQUEST.~I-addr = LAST-ACTIVE.cy/-addr

8ccrn ON address
DECLARE feet ORDERED BY address
ENTER rset
SEARCH TECHNIQUE

INITIALIZE TO MINDIUM

UPDATE TO NEXT HIGHER POSITION AFTER EACH REQUEST
AT END INITIALIZE TO MINIMUM

elevator ON address
DELCARE rset ORDERED BY ~dre88
ENTER rset
SEARCH TECHNIQUE
upmode: INITIALIZE TO MINIMUM

UPDATE TO NEXT HIGHER POSITION WHEN POSITION EMPTY
AT END SELECT downmode

downmode: INITIALIZE TO MAXIMUM

UPDATE TO NEXT LOWER POSITION WHEN POSITION EMPTY
AT END SELECT upmode

Figure 4. Disk Scheduler

extraction modes: up-mode to go from low (cylinder)
addresses to high addresses and down-mode to go
back from high to low addresses. The algorithm
stays on the same cylinder until all requests
at that cylinder are serviced.

Notice, that when the ordering is combined as
it is here, there is one set of requests as
defined by the elevator algorithm with one parti-
tion per cylinder address. Each of these parti-
tions is considered a set by the scan algorithm
and subdivided one partition per sector
address. Finally, each of these (sub)partitions
is organized into a write subset and a read
subset.

Starvation would be possible if not for the
postpone statement because, if more requests for
the same cylinder arrive often enough, the
elevator algorithm could remain "stuck" at the
same cylinder address forever and starve requests
for all other cylinders. Also, if enough of
these were write requests to the same sector,
then any reads for that sector would also starve.
Starvation is prevented by postponing newly
arrived requests if they are to the cylinder
currently being serviced. Consequently, all
requests already outstanding for that cylinder
will be handled. The elevator algorithm will
then proceed to the next cylinder and those
postponed requests will then join the other ordered
requests to be handled on the next sweep of the
elevator algorithm.

PROOF TECIINIQUES FOR SCIIEDULERS

The ability to easily express the solution
to a resource sharing problem and to synthesize
its enforcement from that description is
important because that makes it easier to write,
easier to understand, easier to change, and
less error-prone. Also important is the ability
to prove properties about a solution. Only in
this way can one be sure that the solution has
the properties intended.

The structure and high level description of
schedulers makes it possible to do proofs
directly at that level. The reader/write
problem of Figure 2 is shown to be deadlock and
starvation free to illustrate the technique.
Any request sent to the resource is assumed to
complete eventually.

Deadlock Free

A request is deadlocked only if there is no
future sequence of events which would result in
the request being serviced.

This is trivial for this problem since
the resource invariant consists only of concur-
rency limitations. Assume that some requests
deadlock and also that requests quit arriving.
Evenutally the resource will go idle and only the
deadlocked requests will remain. However, since
any request can be serviced when the resource is
idle, no requests can be left waiting while the
resource sits idle. Consequently, there is no
deadlock.

Starvation Free

The technique to show lack of starvation of
any request is to follow representative requests
and show that they make progress and are eventually
serviced.

In this reader/writer problem, different
read (write) requests are differentiated only by
arrival time. Hence, only the oldest read (write)
request need be examined because if the oldest is
not starved then none are because each in turn
becomes the oldest.

Assume that the oldest readrequest is being
starved. Then no readrequests are active but
readrequests are waiting.

Case R.I (writerequest active)
No readrequest can be started but writerequests
can not be expedited either, because
readrequests are waiting.

Case R.2 (writerequest finishing)
This makes the resource idle. No write-
requests can he expedited because read
requests are waiting. If any writerequests
are already expedited, then each of these
in turn is serviced. Eventually the last
expedited writerequest has been serviced
and the resource is idle. Now the oldest
readrequest is selected for service because
of ordering.

Therefore, readrequests cannot starve.

Assume the oldest writerequest being starved.
Then no writerequest is active, none are expedited,

1 7 4

but writerequests are waiting.

Case W.I (readrequest(s) active, none waiting)
The expedite condition is tested first and
consequently a writerequest is expedited.
No requests can get ahead of the expedited
one and eventually currently active
readrequests finish and the writerequest
begins service.

Case W.2 (readrequest(s) active, other read-
requests waiting)
The waiting writerequests can make no
progress but the waiting readrequests
can each enter service since allowed by
resource invariant. Eventually (soon) all
waiting readrequests have entered the
resource and no new readrequ~sts will have
been recognized since new requests is the
last condition tested for. Consequently,
when the last waiting readrequest enters
service, the expedite condition for write-
requests becomes true and the oldest write-
request is expedited. The expedited write-
request will be serviced.

Therefore, writerequests do not starve.

Notice that only the condition WAITING.read-
request = 0 in the expedite was actually needed
in this proof to show no starvation.

Knowing the deadlock and starvation properties
of individual schedulers does not resolve all
questions about the processes which use them. For
instance, if two schedulers are deadlock free
but have starvation potential, then processes
may use them in such a way that the processes
deadlock.

CONCLUSIONS

The specification of resource sharing can
be described modularity in components which are
easy and natural for people to deal with: the
resource invariant, ordering policy, expedite
policy, and postponement policy. Resource state
variables, kept as uncertainty ranges reflecting
what is known of the actual resource state, are
also responsible for straightforward specifica-
tions of schedulers. These specifications can
then be mechanically converted into code thus
synthesizing the scheduler specified. Any
errors in the scheduler are in the specification
itself. It is much easier to find errors at
this level than the code level. Deadlock and
starvation proofs for individual schedulers can
be carried out at this description level.

Additional features are needed to make the
language more complete such as allowing transfor-
mation of request messages from one format
into another and allowing the generation of more
than one resource operation from a single request
message. The language as presented, however, is
complete enough to demonstrate its power and the
ease with which one can write and understand
scheduling solutions.

[COUR71]

[lIEW179]

[ttOAR74]

[HOWA76]

[LEINSl]

[RA.MA80]

[P~A81]

REFERENCES

Courtois, P. J., Heymans, F., and
Parnas, D. L. Concurrent control with
"Readers" and "Writers", CACM 14,
i0, (Oct. 1971),667-668.

Hewitt, C. E. and Atkinson, R. R.
Specification and proof techniques for
Serializers, IEEE Transactions on
Software Engineering SE-5, i, (Jan. 1979),
I0-23.

Hoare, C. A. R. Honitors: an opera-
ting system structuring concept, CACM 17,
i0, (Oct. 1974), 549-557.

Iloward, J. II. Proving Monitors, CACM 19,
5, (>fay 1976), 273-279,

Leinbaugh, D. W. High level specifica-
tion and implementation of resource
sharing, The Ohio State University,
Technical Report OSU-CISRC-TR-81-3,
(Feb. 1981), 1-22.

Ramamritham, K. and Keller, R. M.
Specification and synthesis of Synchro-
nizers, Proc. 1980 International
Conference on Parallel Processing,
(Aug. 1980), 311-321.

Ramamritham, K. Specification and
synthesis of Synchronizers, Ph.D.
Thesis, The University of Utah, (June,
1981), 1-214.

1 7 5

