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ABSTP~CT 

Resource sharing problems can be described 
in three basically independent components. 

• The constraints the resource places upon 
sharing because of physical limitations 
and consistency requirements. 

• The desired ordering of resource requests 
to achieve efficiency -- either efficiency 
of resource utilization or efficiency for 
processes making the requests. 

• Modifications to the ordering, to prevent 
starvation of processes waiting for 
requests which might otherwise never 
receive service. 

A high level description language to specify 
these components of resource sharing problems is 
introduced. An implementation that lends itself 
to mechanical synthesis is described. Synthesis 
of the scheduler code by-passes the long and error- 
prone process of someone doing the coding them- 
selves. Proof techniques at the high level 
description level are introduced to show how to 
prove schedulers, synthesized from their des- 
cription, are or are not deadlock and starvation 
free. Solutions to the classical resource 
sharing problems of producer/consumer, reader/ 
writer, and disk scheduler (to the sector level) 
are shown to illustrate the expressiveness of this 
description language. 

Key Words: Resource sharing, resource scheduling, 
protected resource, process synchronization, 
specification language, nonprocedural 
language, and process starvation. 

INTRODUCTION 

An important activity in any multiple user 
system is resource sharing. Many schemes have 
been proposed and developed to aid in resource 
sharing. Monitors [HOAR74] and serializers 
[HEWI79] were designed primarily to enforce 
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cooperation among users sharing resources. These 
schemes provide primitives and language structures 
which make it relatively easy to write code to 
enforce the necessary rules and desired policies 
upon resource sharing. 

This work describes how to directly specify 
the resource sharing rules needed and policies 
wanted for resource sharing problems. The code 
to enforce these rules and policies can then 
be automatically generated (synthesized) from the 
high level description provided. The advantages 
are clear. Since the rules and policies are 
specified directly, it is known exactly what 
they are and that they are enforced. Finally, 
proof techniques are shown to determine if 
solutions are deadlock and starvation free. 

Ramamritham and Keller [RAI~80] attacked 
the same problem [LEIN81]. The specification 
language they describe for synchronizers is at 
a lower level than that described here and conse- 
quently may not be as easy to read or write. 
Synchronizers do not allow concurrency of opera- 
tions which modify the same state variable, 
whereas the schedulers described here allow 
as much concurrency as the resource does. 

Proof techniques for monitors [HOWA76] and 
serializers [HEWI79] involve program proving 
because these schemes use synchronization proce- 
dures. Synchronizers use predicate calculus with 
temporal operators [RAHA81]. Proofs with both 
these techniques can be long and complicated 
because of the low level upon which they are 
based. The structure and high level description 
of schedulers, on the other hand, make it possible 
to do proofs directly at that level. 

The specification of resource sharing 
consists of three major independent components. 
First, the resource invariant to determine if an 
additional request can be accepted by the resource 
and still maintain resource consistency and 
correct servicing of requests. Second, the 
request ordering policy to determine which of 
several acceptable requests will be next serviced. 
Third, modifications to the ordering policy to 
avoid endless waits by some requests and hence 
avoid starvation of the processes waiting on the 
completion of these requests. 

The ability to specify resource sharing in 
independent components has great advantages. It 
reduces the problem of resource sharing into 
simpler components, making it easier to correctly 
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specify each. These are natural divisions in 
the sharing problem and allow a person to more 
clearly deal with each separately. 

HIGH LEVEL DESCRIPTION OF RESOURCE SHARING 

A resource is viewed as a collection of opera- 
tions upon an object. A scheduler for that 
resource is a process that has exclusive use of 
the object. The scheduler receiw~s operation 
requests from other processes and forwards them 
to the resource in accordance with the descrip- 
tion of resource sharing. A response message 
is sent to the requesting process after the 
scheduler receives the completion response from 
the operation (see Figure 1). 
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Figure i: Structure and Scheduling Strategy of Schedulers 

The description language allows specification 
of six modular components to solve resource 
sharing problems: 

• Definition of request messages, 
• Declaration and modification of resource 

state variables, 
• The resource invariant, 
• The ordering policy, 
• The postponement policy, and 
o The expedite policy. 

The remainder of this section is a brief 
overview of the syntax and semantics of the des- 
cription language. A complete syntax and semantics 
can be found in [LEIN81], although that syntax 
as well as that used here is intended to be only 
suggestive. The syntax is verbose to enhance 
understandability in reading the examples in this 

paper without first studying the syntax and 
semantics. Abstract resource types could easily 
be defined, just as some languages allow user 
defined abstract data types, but is omitted for 
brevity. While reading this section, Figures 2 
through 4 can be examined for examples of the 
language features described. 

Definition of Request Messages 

The REQUEST DECLARATIONS section defines the 
fields of the request messages that make up the 
requests. A request is a record of fields. A 
request's type is identified by values in one or 
more of those fields. 

Scheduler Variables 

Variables are used in the remaining scheduler 
components so are described prior to those compo- 
nents. There are three categories of variables. 

• Set Counting Variables: WAITING.request~pe, 
EXPEDITED.request~pe, and ACTIVE.requesttype 
keep track of the numbers of requests of 
type, requesttype, residing in the Waiting 
Set, Expedited Set, and Active Set, respec- 
tively. The number of requests postponed 
is not available, to be consistent with the 
concept that postponed requests are ignored. 

e History Variables: LASTACTIVE.request~pe. 
fieldncyne keeps track of the value in the 
field, fieldnc~ze, of the last request of type, 
requesttype, that has been sent to the 
resource for service. 

• Resource State Variables: Resource state 
variables are the only category of variables 
that are not built-in. State variables are 
to reflect the known state of the resource. 
The state of the resource changes as a con- 
sequence of operations performed upon it. 

Declaration and Modification of Resource State 
Variables 

Resource state variables are defined and 
assigned initial values. The PROCESSING section 
describes what operation each request type will 
perform and how the state of the resource will 
change UPON SERVICE of the request. However, the 
exact time of the change is not known; both 
because there are delays in sending requests to 
the resource and receiving replies and because 
even within the performance of the operation it- 
self there will usually be a transitional 
period during which the resource state changes 
from the old value to the new value. The value 
of each state variable is therefore kept as an 
uncertainty range of the possible values it could 
be. This uncertainty is increased whenever a 
request is sent to the resource and decreased 
whenever a reply is received back from the re- 
source. There should be no uncertainty in the 
value of a state variable when the resource is 
idle. This uncertainty reflects exactly the in- 
formation the scheduler can know about the 
resource and greatly simplifies specifying 
schedulers that allow concurrency of operations. 

Resource Invariant 

The resource invariant describes the legal 
operating range of the resource. The only 
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consideration is that a request not be sent to the 
resource if it causes an inconsistency or other 
illegal action. To enforce this concept, only 
information about the resource itself is allowed 
in the resource invariant. This means WAITING 
and EXPEDITED counts are not allowed. A request 
fits the resource invariant if its entering the 
resource leaves the resource invariant true (for 
all values of state variables within their 
uncertainty ranges). 

Ordering Policies 

In addition to maintaining proper operation 
of the resource, it is often desired to impose 
an ordering between those requests that fit the 
resource invariant. This ordering is probably 

to achieve efficiency -- either efficiency in 
resource operation or efficiency in the response 
time to requesting processes. In the absence of 
any other ordering specifications, the default 
ordering is always first in first out. There 
are two types of ordering that can be specified. 

• Ordering between different types of requests. 
• Ordering between different requests of the 

same type. 

Ordering between types is easily specified 
by defining the priority (weak priority) between 
the different types. Ordering between requests 
of the same type is determined by field values 
within the requests and information about the 
resource. This type of ordering could be achieved 
with built-in ordering algorithms; however, 

greater flexibility can be achieved by using a 
high level description to specify the needed 
ordering algorithms. 

Specification of Ordering Algorithms 

An ordering algorithm is nonprocedurally 
defined in three components. 

• Declaration of sets to hold requests, 
• Conditions to determine which set a request 

enters, and 
• Search techniques for locating the next 

request for service. 

Since the examples given later utilize only 
one set, managing additional sets is not discussed. 
The set declaration specifies an expression, 
based upon the fields in each request, to deter- 
mine the request's position within the set. The 
search techniques consist of one or more modes 
of search. Each mode is defined in three parts. 

• Initial positioning within the set to begin 
the search. 

• For what condition the search position 
should be updated and to what. 

• At the end of the search, what mode to 
switch to or how to re-initialize the 
search within the same mode. 

This description is sketchy but adequate to 
understand the examples. 

Ordering specifications, while they may 
improve efficiency, can easily introduce starva- 
tion of some requests. The resource invariant 
itself can make starvation possible. Starva- 
tion of a request is defined as the condition 
where that request, under possible circumstances, 
simply never gets serviced but Under different 

circumstances of request arrivals and service 
completions could be serviced. Rather than 
complicate the ordering policy, modifications to 
the ordering are made to avoid starvation. Two 
types of modifications are possible. 

• Postpone requests from consideration. 
• Expedite requests to be next for service. 

Postpone Policies 

The main reason that some requests starve 
is that other later arriving requests keep being 
serviced before them. One method to avoid this 
starvation is to identify what arriving requests 
may be responsible for this starvation and ignore 
them (temporarily). The POSTPONE statement 
attaches a condition to each type of request to 
be postponed. The postponement conditions may 
involve the current resource state and a considera- 
tion of other waiting requests. A request can 
only be postponed when it initially arrives and 
then only until its postpone condition becomes 
false or until the ordered set becomes empty. 

Expedite Policies 

Another method to avoid starvation is to 
identify the requests that may otherwise starve 
and make sure they are serviced. The EXPEDITE 
statement attaches a condition to each type of 
request that can be expedited. If that condition 
ever becomes true while the request is waiting for 
service, it is expedited -- making it next in 
line for service ahead of any requests still 
waiting in the ordered set. 

In the absence of other measures, one very 
useful measure of how unfairly a request is being 
treated (and hence possibly being starved) is 
a count of how many times the oldest request of 
one type has been passed over in preference to 
giving service to later arriving requests of 
another type. This measure is expressed as 

TIMES requesttypel HAS PASSED requesttype2. 

A postpone or expedite condition is considered 
true if it evaluates true for some value of 
each state variable within its uncertainty 
range. The resource may actually be in that 
state. Also, it is better to postpone or 
expedite an extra request than to miss one. 

IMPLEIIENTATION STRATEGY 

The overall scheduling strategy is illus- 
trated in Figure i. A process issues a request 
for service by sending a request message to the 
Scheduling Module. The Scheduling Module imple- 
ments the high level resource sharing specifica- 
tions, and forwards a request to the Protected 
Resource Module when it is to be performed. 
When a request completes service, the Scheduling 
Module is notified and the process receives a 
response message. 

Requests sent to the scheduling module can 
only reside as postponed requests, ordered 
requests, expedited requests, or requests being 
serviced. 0nly a request that leaves the 
resource invariant true when it starts service is 
accepted into the resource. As a request joins 
the requests being serviced, the uncertainty of 
the resource state is increased. When the 
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resource replies to tb@ request, the resource has 
been updated so the uncertainty of the resource 
state is decreased. 

If there are expedited requests, then the 
request that was earliest expedited is the only 
candidate for service. Otherwise, the ordering 
rules determine which of the serviceable 
requests will next be serviced. An ordered 
request will join the expedited requests if there 
is an expedite condition for it that evaluates 
true. 

A request is postponed if a postpone condi- 
tion for it evaluates true at the time the request 
arrives at the scheduler. A request remains 
postponed either until the postpone condition 
for it evaluates false, at which time it join6 
the ordered requests; or until the ordered set 
becomes empty, at which time all postponed requests 
join the ordered requests. 

Requests are considered for postponement 
only upon entry to the scheduler for two reasons. 
It is difficult for the person describing the 
scheduling to visualize the cycling that can 
occur if postponement is allowed anytime. Not 
only that, but this cycling can introduce starva- 
tion of the very requests that are postponed to 
prevent starvation of other requests. All post- 
poned requests join the ordered set if the ordered 
set becomes empty because otherwise the postponed 
set would itself need a postponed set to 
avoid starvation of requests in the postponed set. 

Order of Condition Testin~ 

Conceptually the conditions are checked in 
the following order and rechecked after each 
action taken. 

i. check for request to expedite, 
2. check for postponed request to lose 

postponed status, 
3. check for request to enter service, 
4. check for request to complete service, 

and 
5. check for new arrival and whether it 

should join postponed requests or 
ordered requests. 

Most solutions do not involve both expedite 
and postpone, but since they are usually included 
to help prevent starvation it is more important to 
recognize a request to expedite than a request to 
postpone. This is because we are expediting the 
request that is (potentially) being starved 
rather than the more indirect approach of post- 
poning one that may be starving another. It is 
important that both expedite and postpone be 
checked before checking for other actions to 
insure that the condition for expedite or post- 
pone does not become true but is changed before 
it can be checked. 

Next in importance is to check for request 
completions and for requests that can enter service. 
It does not make much difference but is more 
orderly if one first checks for a request to 
enter service. Normally the scheduler is 
thought of as performing its functions in a short 
period of time in relation to length of service of 
requests; otherwise less energy should be spent 
in the scheduling by using a simpler scheduling 
policy. Consequently, most of the time a request 

will not complete while the scheduler is still 
working. By starting new requests before recogniz- 
ing the completion of requests it is simply made 
uniform that requests never complete while the 
scheduler is working. 

Finally, new arrivals are checked. This 
strategy enables the scheduler to "take care of old 
business" prior to starting new business. 

Efficiency of Condition Testing 

For efficiency it is necessary that re-evalua- 
tion of conditions not be done excessively. 
This is accomplished in two ways. First, a 
request needs to be re-examined only when an event 
described above occurs and then only if that 
event may have altered the conditions associated 
with the request. Second, requests can be 
organized so only a few requests (often only one) 
need be examined each time an event occurs. The 
remainder of this section describes this organiza- 
tion, but a more thorough explanation is in 
[LEIN81]. 

Postponed requests can be partitioned into 
subsets of requests where the postpone condition 
for all requests in each subset evaluates 
identically. To determine if any request should 
no longer be postponed, only a representative from 
each subset (the oldest request) need be examined. 
Usually the number of subsets will be small -- 
the disk example has only one postponed subset. 

Ordered requests need to be organized two 
ways. The order/resource-invariant organization 
first partitions requests according to the ordering 
and then partitions each of those partitions 
according to the resource invariant. The ordering 
partitions are either the request types involved 
if the ordering is between types or the partitions 
defined by the ordering algorithm used. If 
more than one level of ordering is specified, 
then the partitions are themselves partitioned. 
The partitions imposed by the resource invariant 
are determined by using the preconditions 
derived from them. The precondition for a certain 
type of request is that condition that when 
true and then a request of that type is started 
then the resource invariant remains true. 

The ordered requests are also separately 
organized according to the expedite conditions. 
Often this expedite organization is contained in 
the order/resource-invariant organization thus 
necessitating only one organization on the 
ordered set. 

Code synthesis from a high level solution 
can be done mechanically to produce an implementa- 
tion of that solution as described above. Such 
a synthesizer is being developed for this des- 
cription language. 

RESOURCE SCHEDULING PROBLEMS 

Three examples are given to illustrate 
important aspects of the description language. 

Producer/Consumer Problem with Bounded Buffer 

This solution (Figure 2) to the Producer/ 
Consumer problem [HOAR74] illustrates the use of 
the resource invariant and state variables. 
Assume operations are written to allow an insert 
and a remove operation to be performed concurrently. 
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REQUEST DECLARATIONS 
REQUEST FIELDS 

REQUEST TYPES 

DECLARE STATE VARIABLES 

PROCESSING 

type CHARACTER(I) 
item CHARACTER (99) 

in~ertitem HAS type = 'I' 
removeitem HAS type - 'R' 

#items INITIALLY 0 

insertitem PROCESSED BY inaertrouti~e 
UPON SERVICE #/terns := #items +i 

removeitem PROCESSED BY re~Toveroutine 
UPON SERVICE #items :- #items -i 

RESOURCE INVAR IANT 
ACTIVE. insertitem _< i AND ACTlVE.remoueitem _< 1 

AND 0 -< #items AND #items _< i0 

Figure 2. Pro~cer/Cons~er Probl~ with 
Capability to Save i0 Produced Items 

Consequently the resource invariant specifies that 
at most one insert request and one remove request 
can be active in the resource at once. 

The state variable #items is used to keep 
track of the number of items in the resource 
buffer. The insert routine adds another item to 
the buffer; thus it is specified that upon service 
#items is increased by one. Likewise, upon per- 
forming the remove routine, #items decreases by 
one. Since the resource uses a i0 slot buffer, 
the resource limit 0 ~ #items ~ i0 is necessary to 
prevent overfilling or overemptying the buffer. 

This looks (and is) straightforward; however, 
this is only because uncertainty-range state 
variables are used. Solutions with previous 
techniques, if they allowed concurrency, would 
require two state varaibles -- one to reflect 
the number of positions known to be empty and 
the second to reflect the number of positions 
known to be full. An insert in such a solution 
tests and decrements the known-empty variable 
before beginning the insert operation and incre- 
ments the known-full variable when done. This 
is unnecessary here because the uncertainty- 
range variable, #items, reflects exactly what is 
known of the resource. Any request that might 
take #items' uncertainty outside the range 0 to 
i0 is forced to wait. 

For example, if no requests are active and 
there are 9 items in the buffer, then the un- 
certainty range is [9,9] -- the possible values 
for #items is only 9. A remove request can 
start, making the uncertainty range [8,9], and 
an insert request can start, making the range 
[8,10]. This means there are anywhere from 8 
to i0 items in the buffer. If the insert 
finishes first, the range is reduced to [9,10] 
and another insert will not be allowed to 
start. When the remove completes, however, 
the range becomes [9,9] and another insert 
request could be started. 

Reader/Writer Problem, Reader Priority with 
Designated Writer 

This solution (Figure 3) to the Reader/ 
Writer problem [COUR71] illustrates the use of 
ordering for reader priority and the use of 
expedite to avoid starvation of write requests. 
It uses set counting variables to determine 
when to expedite. 

REQUEST DECLARATIONS 

REQUEST FIELDS ~pe ~,ACTER (1) 
directions CHARACTER (63) 

REQUEST TYPES r e a d r e q u e e t  HAS t y p e  - 'R' 
~iterequeet HAS type - 'W' 

PROCESSING 
readreq~eet PROCESSED BY read~outine 
writerequeet PROCESSED BY writeroutine 

RESOURCE INVAR IANT 
ACTIVE.wr~terequeet _~ i AND ACTlVE.reuch, eque8t - 0 
OR 
ACTIVE.~r~te~eq~est - 0 

ORDERING reu ,  d r r e q ' u e e t  BEFORE ~n~iterequest 

EXPEDITE ~n~terequest IF EXPEDITED.~n~itereqaest = 0 
AND ACTIVE.~I~it6Teq~est - 0 
AND WAITING.reuci~equeet - 0 

Fi~re 3: Reader/Writer Problem: Reader Priority 
and Designated Writer 

The resource invariant specifies that either 
one write request can be active or any number of 
read requests may be active in the resource at 
once. 

Ordering specifies that read requests are to 
come before write requests. This means that if 
either type can use the resource, then a read 
request becomes active next. This ordering 
could result in starvation of write requests if 
there were enough read requests continually 
desiring service. Expedite therefore is used to 
select a write request which is potentially 
starving and designate it to be next. In this 
solution, a write request is expedited if 
currently none are expedited or active and if 
there are no read requests waiting to be serviced. 
A later section proves that this solution is 
deadlock and starvation free. 

Disk Scheduler 

This disk scheduler solution (Figure 4) 
illustrates postponement and ordering algorithms. 
It schedules requests to the disk such that the 
elevator algorithm is used for cylinder head 
positioning [HOAR74]. Within the same cylinder, 
the requests are ordered by sector address to 
service as many requests as possible per disk 
revolution. Writes to the same sector are 
selected before reads to insure the most up-to- 
date information is read. Finally, starvation of 
requests is prevented by insuring that the disk 
cannot remain at the same cylinder forever. 

Ordering is achieved by making the elevator 
algorithm on cylinder addresses the primary 
ordering. 

The secondary ordering is the scan algorithm 
which, within the same cylinder, selects one 
request per sector. The tertiary ordering, within 
the same cylinder and sector, is write requests 
before read requests, 

The ordering algorithms, rather than being 
built-ln, are also defined. Both specify a single 
set in which requests can reside in address order. 
The scan algorithm has a single extraction mode of 
first selecting the request with lowest (sector) 
address, then working through the sectors selecting 
one request per sector, and finally resetting to 
the lowest address again after the end of the sec- 
tors is reached. The elevator algorithm has two 
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REQUEST DECLARATIONS 
REQUEST FIELDS type CHARACTER(i) 

ay Z-addr CHARACTER (3) 
sector-addr CEAEACTER(2 ) 
data CHARACTER(256) 

REQUEST TYPES 
readrequest HAS type = 'R' 
writerequest HAS type = 'W' 

PROCESS ING 
readrequeet PROCESSED BY diskdriver 
writerequest PROCESSED BY diekdriver 

RESOURCE CONSTRAINTS 
ACTIVE.readi~equeet + ACTIVE.writerequeet < 1 

ORDERING 
FIRST BY elevator ALGORITHM ON cyl-addr 
THEN BY 8Can ALGORITHM ON eector-addr 
THEN BY writerequest BEFORE readrequest 

POSTPONE 

readrequest IF THIS-REQUEST.cyl-addr = LAST-ACTIVE.cyl-addr 
writerequest IF THIS-REQUEST.~I-addr = LAST-ACTIVE.cy/-addr 

8ccrn ON address 
DECLARE feet ORDERED BY address 
ENTER rset 
SEARCH TECHNIQUE 

INITIALIZE TO MINDIUM 

UPDATE TO NEXT HIGHER POSITION AFTER EACH REQUEST 
AT END INITIALIZE TO MINIMUM 

elevator ON address 
DELCARE rset ORDERED BY ~dre88 
ENTER rset 
SEARCH TECHNIQUE 
upmode: INITIALIZE TO MINIMUM 

UPDATE TO NEXT HIGHER POSITION WHEN POSITION EMPTY 
AT END SELECT downmode 

downmode: INITIALIZE TO MAXIMUM 

UPDATE TO NEXT LOWER POSITION WHEN POSITION EMPTY 
AT END SELECT upmode 

Figure 4. Disk Scheduler 

extraction modes: up-mode to go from low (cylinder) 
addresses to high addresses and down-mode to go 
back from high to low addresses. The algorithm 
stays on the same cylinder until all requests 
at that cylinder are serviced. 

Notice, that when the ordering is combined as 
it is here, there is one set of requests as 
defined by the elevator algorithm with one parti- 
tion per cylinder address. Each of these parti- 
tions is considered a set by the scan algorithm 
and subdivided one partition per sector 
address. Finally, each of these (sub)partitions 
is organized into a write subset and a read 
subset. 

Starvation would be possible if not for the 
postpone statement because, if more requests for 
the same cylinder arrive often enough, the 
elevator algorithm could remain "stuck" at the 
same cylinder address forever and starve requests 
for all other cylinders. Also, if enough of 
these were write requests to the same sector, 
then any reads for that sector would also starve. 
Starvation is prevented by postponing newly 
arrived requests if they are to the cylinder 
currently being serviced. Consequently, all 
requests already outstanding for that cylinder 
will be handled. The elevator algorithm will 
then proceed to the next cylinder and those 
postponed requests will then join the other ordered 
requests to be handled on the next sweep of the 
elevator algorithm. 

PROOF TECIINIQUES FOR SCIIEDULERS 

The ability to easily express the solution 
to a resource sharing problem and to synthesize 
its enforcement from that description is 
important because that makes it easier to write, 
easier to understand, easier to change, and 
less error-prone. Also important is the ability 
to prove properties about a solution. Only in 
this way can one be sure that the solution has 
the properties intended. 

The structure and high level description of 
schedulers makes it possible to do proofs 
directly at that level. The reader/write 
problem of Figure 2 is shown to be deadlock and 
starvation free to illustrate the technique. 
Any request sent to the resource is assumed to 
complete eventually. 

Deadlock Free 

A request is deadlocked only if there is no 
future sequence of events which would result in 
the request being serviced. 

This is trivial for this problem since 
the resource invariant consists only of concur- 
rency limitations. Assume that some requests 
deadlock and also that requests quit arriving. 
Evenutally the resource will go idle and only the 
deadlocked requests will remain. However, since 
any request can be serviced when the resource is 
idle, no requests can be left waiting while the 
resource sits idle. Consequently, there is no 
deadlock. 

Starvation Free 

The technique to show lack of starvation of 
any request is to follow representative requests 
and show that they make progress and are eventually 
serviced. 

In this reader/writer problem, different 
read (write) requests are differentiated only by 
arrival time. Hence, only the oldest read (write) 
request need be examined because if the oldest is 
not starved then none are because each in turn 
becomes the oldest. 

Assume that the oldest readrequest is being 
starved. Then no readrequests are active but 
readrequests are waiting. 

Case R.I (writerequest active) 
No readrequest can be started but writerequests 
can not be expedited either, because 
readrequests are waiting. 

Case R.2 (writerequest finishing) 
This makes the resource idle. No write- 
requests can he expedited because read 
requests are waiting. If any writerequests 
are already expedited, then each of these 
in turn is serviced. Eventually the last 
expedited writerequest has been serviced 
and the resource is idle. Now the oldest 
readrequest is selected for service because 
of ordering. 

Therefore, readrequests cannot starve. 

Assume the oldest writerequest being starved. 
Then no writerequest is active, none are expedited, 
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but writerequests are waiting. 

Case W.I (readrequest(s) active, none waiting) 
The expedite condition is tested first and 
consequently a writerequest is expedited. 
No requests can get ahead of the expedited 
one and eventually currently active 
readrequests finish and the writerequest 
begins service. 

Case W.2 (readrequest(s) active, other read- 
requests waiting) 
The waiting writerequests can make no 
progress but the waiting readrequests 
can each enter service since allowed by 
resource invariant. Eventually (soon) all 
waiting readrequests have entered the 
resource and no new readrequ~sts will have 
been recognized since new requests is the 
last condition tested for. Consequently, 
when the last waiting readrequest enters 
service, the expedite condition for write- 
requests becomes true and the oldest write- 
request is expedited. The expedited write- 
request will be serviced. 

Therefore, writerequests do not starve. 

Notice that only the condition WAITING.read- 
request = 0 in the expedite was actually needed 
in this proof to show no starvation. 

Knowing the deadlock and starvation properties 
of individual schedulers does not resolve all 
questions about the processes which use them. For 
instance, if two schedulers are deadlock free 
but have starvation potential, then processes 
may use them in such a way that the processes 
deadlock. 

CONCLUSIONS 

The specification of resource sharing can 
be described modularity in components which are 
easy and natural for people to deal with: the 
resource invariant, ordering policy, expedite 
policy, and postponement policy. Resource state 
variables, kept as uncertainty ranges reflecting 
what is known of the actual resource state, are 
also responsible for straightforward specifica- 
tions of schedulers. These specifications can 
then be mechanically converted into code thus 
synthesizing the scheduler specified. Any 
errors in the scheduler are in the specification 
itself. It is much easier to find errors at 
this level than the code level. Deadlock and 
starvation proofs for individual schedulers can 
be carried out at this description level. 

Additional features are needed to make the 
language more complete such as allowing transfor- 
mation of request messages from one format 
into another and allowing the generation of more 
than one resource operation from a single request 
message. The language as presented, however, is 
complete enough to demonstrate its power and the 
ease with which one can write and understand 
scheduling solutions. 
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