
An Empirical Evaluation of Algorithms for
Dynamically Maintaining Binary Search Trees

William E. Wright

Department of Computer Science
Southern Illinois University at Carbondale

Carbondale, Illinois

ABSTRACT

Algorithms for dynamically maintaining and
utilizing binary search trees are empirically com-
pared and evaluated. The evaluation is based on
the performance of the algorithms using simulated
search requests. Search keys are generated using
weights which are unknown and in general unequal.
The algorithms provide for inserting new nodes,
searching for existing nodes, and in some cases
dynamically modifying the tree in an attempt to
reduce its weighted path length or search time.
Included in the evaluation are algorithms for
height-balanced trees, weight-balanced trees, and
trees of bounded balance, as well as some combin-
ation algorithms. Also included are a basic
search algorithm which performs no rebalancing,
and an optimizing algorithm. In addition to the
standard data, unweighted search keys, specially
weighted search keys, and partially ordered key
sequences are also considered. The evaluation
is based primarily on the execution times of the
algorithms, although weighted path lengths are
also given. A combination algorithm gives the
fastest speeds, although the basic search
algorithm is shown to be the best for most
purposes.

KEYWORDS AND PHRASES: binary search trees,
balanced trees, dynamic trees, weighted trees,
AVL trees, BB trees, optimal trees, weighted
path length.

CR CATEGORIES: 3.74, 3.72, 4.34.

Permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@1980 ACM 0-89791-028-1/80/1000/0505 $00.75

I. Introduction

A binary search tree can be a very efficient
structure for maintaining an ordered table, re-
quiring a relatively small amount of data movement
during insertions, a small amount of searching
during accesses, and a small amount of time during
sequential processing. Nievergelt [18] has com-
pared this structure with sequential linear lists,
linked linear lists, and scatter tables, and shown
that the binary search tree is generally optimal
(for largen) for applications requiring good
performance in all three areas.

One measure of the time required to search a
tree is its weighted path length or WPL, which is
basically the sum over all nodes in the tree, of
the probability (weight) of the node times the
number of nodes in the path from the root to the
given node. A more precise definition is given in
Nievergelt [18]. For trees containing n nodes
which are all equally likely, Hibbard [8] has
shown that WPL is approximately log2n for large n,

assuming the trees are balanced, or 1.386 log2n if

they are not necessarily balanced but instead ran-
domly formed. An algorithm for searching and up-
dating such trees is presented in Knuth [12], and
will be referred to here as the Basic Algorithm
or Algorithm B.

Knuth [14] has also presented an algorithm for
finding the optimum binary search tree (i.e.,
minimizing WPL) assuming general probabilities of
occurences of the keys, and general probabilities
for searches that end between two adjacent nodes.

His algorithm requires 0(n 2) time and space. Hu
and Tucker [9] had earlier developed and validated
an optimizing algorithm requiring 0(n) space and
0(n log n) time, but for the special case in which
only the "between-nodes" weights were positive.

There are two significant properties of
Knuth's optimizing algorithm, apart from time and
space requirements, which make it unsuitable for
many applications. First, it operates on the
entire tree and is hence inefficient for maintain-
ing trees in the presence of dynamic change.
Second, it requires known probabilities for the
nodes of the tree, plus the between-nodes proba-
bilities, thus making it inapplicable for those
cases in which the search key references are
unpredictable. Nievergelt [18] makes an interest-

5 0 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800176.810007&domain=pdf&date_stamp=1980-01-01

ing categorization of tree maintenance algorithms
into a binary tree structure, based on the pres-
ence or absence of these two properties plus a
third property concerning single-level versus
two-level storage. Baer and Schwab [4] also cate-
gorize algorithms in the form of a tree structure.

The purpose of this paper is to compare the
performances of algorithms for dynamically main-
taining binary search trees, with no prior knowl-
edge of search key probabilities. The emphasis
is on randomly weighted search keys, although
results are also given for unweighted keys and
some special kinds of weighting. The central
question to be answered is which tree maintenance
algorithm is the best for this situation. Per-
formance is evaluated initially in terms of WPL,
but ultimately in terms of execution time.

The case of static trees utilizing known
weights has been considered by Bruno and Coffman
[6], Nievergelt and Wong [20,21], Mehlhorn [15,
16], Walker and Gottlieb [22], and Weiner [23], in
addition to Knuth and Hu and Tucker as mentioned
previously. The case of dynamic, unweighted trees
(i.e., weights assumed to be equal) has been con-
sidered by Baer [3], Baer and Schwab [4], and
Nievergelt and Reingold [19]. The case of dynam-
ic, weighted trees has been considered by Baer
[3], Allan and Munro [2], and Mehlhorn [17]. Baer
restricted his attention to WPL. Baer 'and Schwab
compared the performance of several algorithms
with regard to execution time, but only for non-
weighted trees. Karlton et. al. [ll] have
studied both theoretically and empirically the
properties of a certain class of algorithms called
height-balancing algorithms. These latter two
papers will be discussed further in Section IX.

II. Algorithms Studied

The following algorithms and corresponding
tree structures are compared and evaluated in
this study:

a. Algorithm B.

b. Algorithm AVL for maintaining AVL trees,
as described by Adel'son-Vel'skii and
Landis [i]. Briefly, each node in an
AVL tree satisfies the property that
the height of its left subtree and
the height of its right subtree differ
by at most i.

c. Algorithm BB for maintaining trees of
bounded balance, as described by
Nievergelt and Reinhold [19], with
parameter ~ = 1 - ~2/2. Briefly, each
node in a BB tree satisfies the prop-
erty that the number of nodes in the
subtree for which it is the root,
divided into the number of nodes in its
left subtree, lies between ~ and 1 - ~.

d. Algorithm W for maintaining trees with
an approximately descending weight, as
described in this paper.

e. Algorithm A for maintaining trees with an
approximately descending "access", as
described in this paper.

f. Algorithm R as described by Allan and Munro
[2], which simply rotates a node (other than
the root) uo in the tree each time it is
referenced.

g. Algorithm AB, a combination of Algorithms A
and B, described later.

h. Algorithm AVLB, a combination of Algorithms
AVL and B, described later.

i. Algorithm O, Knuth's optimizing algorithm.

The comparison is based on the empirical ob-
servation of the performance of the algorithms on
a given sequence of key searches. Each input key
causes a normal tree search, and an insertion if
the key is not in the tree. Deletions are not
considered in this paper, Each algorithm in
addition carries out its own logic for rebalancing
the tree if necessary. Both WPL and total pro-
cessing time are recorded. Processing time in-
cludes only the time for the search algorithm
itself, i.e., the time for searching and main-
taining the tree. It excludes the time for
generating the search keys, calling the algorithm,
computing averages, printing results, etc. It of
course reflects any reduction in WPL made by the
algorithm, and any overhead time spent in carry-
ing out the algorithm.

III. Nature of the Sample Data

As noted earlier, this study is concerned with
those applications in which there is no prior
knowledge of search key probabilities (dynamic
trees), and in which there is no tacit assumption
that the probabilities are equal (weighted trees).
This application is considered to be very realis-
tic for many situations.

Each algorithm was tested over several trials.
For each trial there was specified a certain
number of distinct keys (NDK) and a certain number
of key references (NKR). Raw weights were gener-
ated for each distinct key from the Uniform [0,i]
distribution, and then normalized to probabili-
ties. These probabilies were then used to ran-
domly generate key references. Twenty sets of
weights were generated for each trial, and the
results appeared to be sufficiently smooth to be
quite reliable. They were also very consistent
with several simulations in which i00 sample
sequences were run for each trial.

Four variations to this generating procedure
were also considered. One variation was to
generate the raw weights exponentially instead of
uniformly. This change did not significantly
alter the relative performances of the algorithms,
and the results are not included here.

A second variation was to generate equal
weights, so that all distinct keys were equally
likely to be referenced. This distribution is
the one assumed implicitely for nonweighted trees,
and will be referred to here as unweighted data,

A third variation was to generate weights
according to Zipf's Law [13], which has been shown
to be a reasonable approximation for words in a
natural language. This distribution uses the

5 0 6

~, c
probabilities 2' "''' n' where c is the normal-

izing constant i/(+ 2 + "'" + n = i/H n. The

probabilities were assigned to the search keys in
a random fashion. This data will be referred to
as Zipf's Law data.

A final modification was to sort the gener-
ated key accesses from smallest to largest, thus
yielding an ascending sequence of keys. Then the
sequence was partially randomized by exchanging
a certain number of randomly selected pairs of
keys references. The number of exchanges was
specified as a fraction of the total number of
key references, e.g., 20%. This sample data will
be referred to as partially ordered.

IV. Algorithms W and A

Algorithm W is based on the rather obvious
principle of moving a node up in the tree if its
weight becomes greater than its father's weight.
This move can be performed by a single rotation
as described by Baer [3]. The algorithm insures
that nodes with higher weights will appear above
nodes with lower weight (in the limit), but it
does not consider the balance of the tree. This
algorithm is a dynamic extension of a criterion
referred to as "Rule i" by Mehlhorn [15].

Algorithm A is based on a more sophisticated
criterion utilizing a field for each node called
its "access". The access of a node is the number
of times it has appeared in a search path, i.e.,
the number of times it has been referenced plus
the number of times it has been passed through
in referencing a node below it, i.e., the sum
of the weights of all the nodes in the subtree
having it as the root. This field is referred
to as TOTAL by Baer [3] and SIZE by Nievergelt
and Reingold [19] (with reference to unweighted
trees). The algorithm is one possible dynamic
extension of the "Rule 2" criterion described
by Mehlhorn [15].

The algorithm performs a single rotation on
a referenced node if and only if the rotation
would reduce the WPL. The specific criterion
for this rotation is given in [3]. In words, a
referenced node will be rotated up if and only if
2 times its access is greater than the access of
its father plus the access of its son on the
same side as the father. The algorithm is a
special case of Algorithm WB presented in [3],
which considers both single and double rota-
tions on every node in the search path. Even
further extensions would consider triple, qua-
druple, etc. rotations for every node in the
search path.

The tendency of Algorithm A is to move up in
the tree nodes which are referenced more often or
which are passed through more often in referencing
nodes below them in the tree. The former consid-
eration tends to reduce the WPL by shortening the
path length for nodes which are referenced more
often. The latter consideration tends to reduce
the WPL by giving the tree more balance. Iverson
[10] discussed the importance of these two

criteria in minimizing WPL, but he did not
formally associate them with optimality.

The algorithm is very efficient compared with
reoptimizing the entire tree each time it is
searched. It utilizes the accesses of just 3
nodes to determine whether or not the tree is to
be modified. If a modification is made, only 3
links and 2 accesses need to be changed. While
the resulting tree is not necessarily optimal
under the assumed weights, it is in general very
nearly optimal and is much closer to optimality
in general than the tree produced by Algorithm B.

It will be interesting at this point to show
that the WPL of a tree can be computed as a
simple function of the accesses of the nodes. In
particular, for a tree containing n nodes with

accesses AI, ..., An, the WPL is equal to

n
A.. This relationship can be seen fairly
i

i=l
easily by noting that the access of a node is
equal to the sum of the weights of every node in
the subtree having the given node as the root.
Thus for any node i having level L i > 0, its

weight W i will appear once in its own access at

level Li, once in its father's access at level

L.-i, once in its grandfather's access at level
i

L.-2, and so on up to level i. In other words
i

it will appear L. times in the summation
i

n n n
E A.. Therefore ~ A. = E LiW i = WPL.

i 1
i=l i=l i=l

Algorithm A is formally given as follows:

Introduction
This algorithm provides for building, search-

ing, and maintaining a binary search tree in
which every node P contains the following fields:

KEY(P) - the key or name or identification of
node P

LLINK(P) - a pointer to the left subtree of
node P

RLINK(P) - a pointer to the right subtree of
node P

ACCESS(P) - the access of node P
INFO(P) - the information content of node P

The tree has a special node called the head, whose
only significant field is the right link, which
points to the root of the tree. This pointer is
initialized to null (X) to signSfy an empty tree.

The algorithm is given an argument with key
K, and with information INF if it is a new key.
It searches the tree using the pointer P and
returns with P pointing to the node requested,
having inserted a new node if the key was not
already in the tree. The algorithm uses the
following pointers in addition to P:

Jl = pointer to father of P
J2 = LLINK or RLINK depending on whether P

is a left son or right son
J3 = pointer to grandfather of P

5 0 7

Algorithm (the underlined steps correspond to
Algorithm B).

I. (Initialize) Set P ÷ pointer to head,
J2 ÷ RLINK~Ji + ~.

2. (Search node P) Set J3 + Jl, Jl ÷ P~ P ÷
J2(Jl). If P = ~ go to Step 3. Set
ACCESS(P) ÷ ACCESS(P) + i. If K < KEY(P),
set J2 ÷ LLINK and go to Step 2. If K >
KEY(P)~ set J2 ÷ RLINK and go to Step 2.
Otherwise go to Step 4.

3. (Insert new node) Obtain an available
cell and set P ÷ pointer to available
cell. Set KEY(P) ÷ K~LLINK(P) ÷ %,
RLINK(P) ÷ %~ ACCESS(P) + i , INFO(P) +
INF~J2(Ji) ÷ P. Return.

4. (Check for P pointing to root) If J3 = 4,
return (no rotation possible).

5. (Get direction and pointer to son of P on
same side as father of P) If J2 = LLINK,
then set J4÷ RLINK, else set J4 ÷ LLINK.
Set J5 ÷ J4(P).

6. (Compute change in WPL due to potential
rotation. Return if change is not
negative) Set DEL ÷ ACCESS(J1) +
ACCESS(J5) - 2 • ACCESS(P). If DEL > 0,
return.

7. (Set new access of P and father of P)
Set TEMP ÷ ACCESS(J1), ACCESS(J1)
TEMP - ACCESS(P) + ACCESS(J5), ACCESS(P)
÷ TEMP.

8. (Set new links for P and father of P) Set
' J4(P) + Jl, J2(Jl) ÷ J5.
9. (Compute direction to grandfather of P and

set new link for grandfather) Set J2 ÷
LLINK. If LLINK(J3) # Jl, set J2 + RLINK.
Set J2(J3) ÷ P. Return.

As can be seen, the most important loop in
the algorithm is Step 2. The extra processing
needed for Algorithm A (over Algorithm B) is to
update the access and to keep the pointer to the
grandfather. If a new node is inserted (Step 3),
the only extra processing is to initialize its
access.

Steps 4-6 are, of course, extra steps required
by the algorithm. They are not in an internal
loop, however, thus they are executed at most once
for each call of the algorithm. Steps 7-9 must
in addition be executed once if a rotation is
to be made.

The extra storage required by the algorithm
for the representation of the tree consists of
the ACCESS field for each node. If the INFO
field is relatively large, then this extra
storage is less significant.

Algorithm W will not be given explicitly since
it is similar in many respects to Algorithm A,
and can easily be described as a modification to
the latter. The ACCESS field becomes a WEIGHT
field with probably the same storage requirement.
The maintenance and use of the pointers and links
is the same, and the rotations are the same except
that the accesses (weights) are not changed. The
main differences are that the incrementation of
the ACCESS(WEIGHT) field is moved outside of the
loop in Step 2, and the determination of whether
or not to make a rotation involves only a compari-

son between the weight of node P and the weight
of its father.

V. Insufficiency of Search Path for Maintaining
Optimality

An obvious question arising from this dis-
cussion is concerned with whether or not it is
possible to maintain an optimal tree utilizing
only information along the search path of a key
reference. Specifically, assuming that a binary
search tree is originally optimal and that an
additional reference has just been made to a node
in the tree (or to a new node), is it possible
to determine whether or not the updated tree is
still optimal considering only the accesses of
the nodes in the search path from the root to
the referenced node? As we shall see, the answer
to the question is "no", and hence none of
Algorithms W, A, WB, or the suggested extensions
to WB can guarantee the maintenance of an optimal

tree.

Consider the trees illustrated in Figure i.
The letters A, B, C, D are the keys for the nodes,
the letter X is a variable name for a Subtree, and
the numbers above the nodes are the accesses.
Part (a) illustrates the portion of the tree that
would be in the search path if node D were
referenced, namely C and D. The subtree X would
not be in the path. Parts (b) and (c) illustrate
two possible configurations for the subtree.
Both of these trees are optimal for the weights
(or accesses) given, as can be seen by inspection.

If an additional reference is now made to
node D, then the trees resulting are given in
parts (d) and (e), respectively. It can be seen
by inspection that the latter tree is optimal
for the weights given, but the former tree is not
optimal. Instead the tree in part (f) is optimal
for the weights given in part (d). This illustra-
tion proves the assertion made earlier. Thus if
we restrict ourselves to information along the
search path of a node reference, then we cannot
guarantee the maintenance of optimality.

25

WPL = 44

Ca) Cb)

25

WPL = 47 WPL = 46

(c) (d)

5 0 8

26

WPL = 49

(e)

26 <'
WPL = 45

(f)

Counterexample

Figure 1,

VI. Combination Algorithms

Algorithms A and W have a kind of dual rela-
tionship with Algorithms AVL and BB with regard
to the criteria for performing rotations.
Algorithms AVL and BB perform rotations only when
a new node is inserted, whereas A and W perform
rotations only on old nodes. Thus the complicated
rotation logic will not need to be executed for
AVL and BB for duplicate key requests, and in
general after all distinct keys have been insert-
ed. On the other hand, A and W will continue to
test for rotations on every search, and carry
out rotations when the test so dictates.

Most of the rotations in a tree maintained
by Algorithm A would occur early with fewer and
fewer changes as the tree becomes stablized.
Thus it seems desirable to consider modifying
A so that its balancing overhead is reduced or
even eliminated after an initial volatile period.
An obvious possibility is to use a combination
of A and B, with A being used initially and
then switching over to B when the tree has
become relatively stable. This algorithm (call
it AB) would combine the advantages of A
(reduced WPL) and B (low overhead). Moreover,
A would be used when it was most productive,
i.e., at the beginning.

A number of criteria could be used for
making the switch from A to B. The switch
could be made after a specified number of
searches or after a specified number of searches
with no rotation. Another possibility would
be to use B initially, but also maintaining
the access field. Then switch to A for a
period of time, performing any indicated rota-
tions. Finally switch to a straight Algorithm
B. The purpose of this scheme is to use
Algorithm A only when it is most likely to
yield the greatest reduction in WPL.

The most effective of these criteria according
to the test results was the one based on a speci-
fied number (the "inactive count") of searches
with no rotation, and it will be assumed hence-
forth that Algorithm AB is based on this switching
criterion. The obvious rationale for the crite-
rion is that several searches with no rotation
indicates that the tree is rather stable, and
that is would probably be more efficient to fore-
go the extra overhead of A in favor of the speed

of B. This criterion is more sensitive to differ-
ent kinds of input data than the criterion based
on number of searches alone, and hence seems more
generally suitable.

The specification of the inactive count para-
meter permits an adjustment of the algorithm in
terms of WPL and overhead. As the inactive count
goes from 0 to infinity, both WPL and execution
time go from that of Algorithm B to that of
Algorithm A. While WPL is an approximately
decreasing function of the inactive count,
execution time is approximately unimodal. This
adjustment feature is comparable to the adjust-
ment of BB trees by varying the parameter e, and
the adjustment of general height-balanced trees
by varying the permitted level of imbalance.

The value minimizing the unimodal function
should be used to set the inactive count para-
meter. This value may not be predictable, of
course, and may vary with the nature of the data.
Nevertheless, it seems generally reasonable that
several searches in a row with no rebalancing
required indicates the probable benefit of switch-
ing to Algorithm B. The execution time curve is
relatively flat in'the vicinity of the minimum,
hence a rather wide range of values would give
near optimal results. The results given here are
for a parameter of i0.

It is clearly possible to combine Algorithm
B with algorithms other than A, and achieve
similar effects. A combination of W and B was
tried, for example, with less success than AB.
A combination of AVL and B gave good results, and
will be reported on here as Algorithm AVLB. Even
though AVL had less overhead to begin with than
A, it still benefitted from a switch to B since
the balancing and testing logic was no longer
used after stability was attained. The switching
criterion was the same as for AB, and a parameter
value of i0 was also used.

Vll. Results in Terms of WPL

The relative performance of the algorithms
was basically independent of NDK and NKR. Values
were used for NDK ranging from 5 to 300, and for
NKR ranging from 50 to 5000. Ratios of NDK to
NKR ranged from .01 to 1.00. WPL and execution
time were approximately linear as a function of
NKR and logarithmic as a function of NDK. Be-
cause of its insensitivity to NDK and NKR, the
relative performance of the algorithms is
accurately represented by thei~ performance for
the specific case of NDK = 200 and NKR = i000,
and most of the results are given for this case.

Two useful measures of algorithm performance
are absolute improvement (AI) and fractional
improvement (FI). AI gives the fraction by which
an algorithm reduces the WPL over what it would
be using Algorithm B, i.e.,

WPL B - WPLalgorithm

Alalgorithm = WPLB

5 0 9

FI gives the ratio of the reduction in WPL to the
total possible reduction, i.e., the reduction
yielded by Algorithm 0. In other words,

Alalgorithm
Flalgorithm = Ai 0

WPL B - WPLalgorithm

WPL B - WPL 0

Table I presents the most important results
from the simulations. The subscripts R, U, and Z
denote random, unweighted, and Zipf's Law data,
respectively. The subscript P denotes partially
ordered data, with a 10% randomization from com-
pletely ordered. The subscript 25 denotes a
simulation using NDK = 25 and NKR = i000. All
the other results are for NDK = 200 and NKR =
i000. Additional values of AI and FI, and for
algorithm O, are not given because of our primary
interest in execution time as opposed to WPL.

Algorithm 0 is not included in the execution
time results because of its nondynamic nature
and obvious high overhead if it were executed
after every search. It would be possible to
design a combination algorithm in which algorithm
0 was activated only on occasion, when some
balancing criterion was met. Many such criteria
are possible, and Baer and Schwab [4] give some
performance measures for one. No such results
are included here. It would appear to be quite
difficult to determine such an algorithm that

would be as good as the combination algorithms
used here, and also reasonably independent of
the nature of the data.

With regard to WPL, there are several signif-
icant patterns and specific results. Algorithm 0
gives an approximately 30% reduction in WPL (AI R

(0) = .295) for the random data. Algorithm A is
consistently the best of the remaining algorithms
except for the partially ordered data. Its AI
was .231 for random data, .215 for unweighted
data, .258 for Zipf's Law data, .353 for partial-
ly ordered data, and .194 for NDK = 25. For
random data, it produced approximately 78% of the
total possible reduction in WPL (FI R (A) = .781).

Algorithms AVL and BB yielded very similar WPL's
for the different trials. Algorithm R produced
very poor WPL's which were in fact much worse
than B's. Algorithm W was sometimes worse than
B and sometimes better. As would be expected,
AB and AVLB were in between B and A or AVL.

For the algorithms in general, WPL (and
execution time) was higher for unweighted data
and lower for Zipf's Law data, as compared to
random data. This result is consistent with
theoretical results of Mehlhorn [16], which show
that for an optimal binary search tree, WPL is
close to the entropy of the distribution of
search key probabilities.

Figures 2, 3, and 4 provide a reasonably good
summary of these results by illustrating WPL, AI,
and FI, respectively, for the case of random data
(negative AI and FI values are drawn as 0).

Performance
Measure B AVL BB

ALGORITHM
W A R AB AVLB 0

WPL R 8314 6465 6490

AI R .000 .222 .219

FI R .000 .753 .743

Time R 5.67 8.94 15.69

WPL U 8202 6517 6519

Time U 5.58 9.01 15.81

WPL Z 6320 5613 5599

Time Z 4.48 7.71 13.24

WPLp I1867 6640 6584

Timep 8.10 9.47 16.38

WPL25 4468 3800 3803

Time25 3.35 5.02 8.85

Algori

8316 6397 12350 8285 6851

.000 .231 -.485 .003 .176

.000 .781 -I.643 .012 .596

14.21 12.48 17.41 5.76 5.49

9744 6440 15441 8202 6921

15.20 12.51 19.06 5.66 5.57

5143 4692 6079 5995 5539

8.90 9.32 I0.26 4.44 4.37

I0800 7674 32500 I1291 9803

18.53 16.88 lO.O0 8.46 7.06

4119 3599 4245 3802

7.32 7.49 3.40 3.10

thm Performance Measures

Table I.

5858

.295

1 . 000

, 5 1 0

X

t n

& Fm'L && N R ~ R~a I:~/L~ []

Weighted Path Length (Random Data)

Figure 2.

m,

m.

R W ~ G R ~ ~ S

Absolute Improvement (Random Data)

Figure 3.

m.

B. !

Fractional Improvement (Random Data)

Figure 4.

VIII. Results in Terms of Execution Time

Table 1 also includes execuflion time figures
for the various algorithms being compared and
the various types of data. As noted earlier,
execution time is generally a more complete and
hence valuable measure of algorithm performance,
since it encompasses algorithm overhead as well
as reduction in WPL. The time unit was 1 second.

The implementation consisted of a machine
language program on a Cal Data 135 minicomputer.
The computer contains a firmware emulation of a
PDP 11/40 computer, and runs essentially like a
PDP 11/40. Every effort was made to write code
for the different algorithms in the same style
and with equivalent high efficiency. Most of the
algorithms were also implemented and executed
in FORTRAN. The results were very similar to the
results for the machine language implementation,
and hence are not included here.

As for WPL, many important results and pat-
terns are apparent. What might be surprising to
some is that the relative algorithm performance
is quite different, in fact closer to opposite,
when measured in terms of execution time as
opposed to WPL. Obviously the extra overhead
required in reducing the WPL generally outweighed
the benefits of reduced WPL.

As can be seen, AVLB has the fastest time for
every data type, with B a close second and AB a
close third for every type except Zipf's Law data,
for which they are reversed. The improvement
which AVLB makes over B is 3.2%, 0.2%, 2.5%,
12.8%, 87.5% for the 5 different data types,
respectively. The inactive count (i0) used for
AVLB and AB is not optimal for the given data,
and in fact slightly improved results could be
obtained if it were optimized. However, in most
practical situations it would not be pDssible

5 1 1

to do such an optimization.

None of the straight algorithms AVL, BB, W, A,
or R give a very good performance in terms of
speed, with AVL being easily the best and R being
generally the worst. Algorithm R does show espe-
cially good performance for the partially ordered
data, which would seem reasonable. AVLB and AB
obviously make a nice improvement over AVL and A,
respectively.

Figures 5, 6, 7, 8, and 9 provide a good
illustration of the execution time results for
the 5 different data types. Figures i0 and ii
combine and summarize these results by giving
execution time for the different data types (I0)
and for the different algorithms (ii).

A final test of the algorithms was made using
partially ordered data as described in Section 3.
Eight trials were made, using fractional exchanges
of 0%, 1%, 5%, 10%, 20%, 50%, 200% and ~.
Algorithms tested were B, AVL, AB, and AVLB,
using NDK = 25 and NKR = I000. The results are
illustrated in Figure 12, and again show that
except in the most extreme case of partial order-
ing, AVLB is still the fastest algorithm and B
is a close second.

8

m.

&J

g
& B~L &&

Execution Time (Unweighted Data)

:=

==

H

==

IL

Figure 6.

Execution Time (Random Data) g
& ~ && 14 R I~ m, ~I.&

Figure 5, Execution Time (Zipf's Law Data)

Figure 7.

5 1 2

&&

I -

~r

B~
& BISI. M,. I,I B II BI, I~.#m

==

1 25V X~__ 2~

& BIlL Ell, 51 B R IRA~I~III..Is

Execution Time (Pa r t i a l l y Ordered Data) Execution Time (a l l Data)

Figure 8. Figure lO.

B, I
#: lWi..,i~, ~i

t

==

Id

i -
==
i I

BB

BB

W

A -------~

A V ~ - ~ \

AVL~ -~ ---

R U Z p 25

Execution Time (NDK = 25) Execution Time (a l l Algorithms)

Figure 9. Figure I I .

5 1 3

0
o

0
0

0
0

0
0

0
o

0
0

0

i • AVL

AB
B
AVLB

! ! | i l I !

0.00 0.01 0.05 0.I0 0.250.502.00

Execution Time for P a r t i a l l y Ordered Data

Figure 12.

IX. Earlier Results

As noted in Section l, Baer and Schwab [4]
and Karlton et. al. [ii] have given execution
time results for some of the cases considered
here. The former paper was restricted to a con-
sideration of nonweighted trees, and the latter
to a consideration of height-balanced trees.
Both papers include a common important conclusion:
for nonweighted data, algorithm AVL is the fast-
est of the algorithms considered. In particular,
AVL is faster than algorithm B. (Baer and Schwab
specify that the number of accesses after inser-
tion must be greater than 3.)

This conclusion clearly conflicts with the
results of this paper, which show algorithm B
to be substantially faster (approximately 35%)
than algorithm AVL for both weighted and unweight-
ed data. The conclusions in the other papers
were essentially based on the same oversight:
that the search time for algorithm AVL is longer
than for B even if the key being searched for
is already in the tree, i.e., if it is not a
new key. In other words, algorithm AVL has
extra overhead just for the searching, even if
no balancing is attempted.

In particular, the equation for QA in [4, p.
329] should be

QA = CA + qPl = CA + 1.5 qnl A

= C A + 1.5qn(.81 R)

= C A + 1.2 qnl R = C A + 1.2 q CR,

where I A and I R are the average path lengths for

algorithms AVL and B, respectively. Thus,
according to the figures of Baer and Schwab,
algorithm AVL provides a 20% reduction in WPL,
but with a 50% increase in overhead just for the

searching, and hence cannot be faster (on the
average) than algorithm B. This analysis is
quite consistent with the empirical results of
this paper, noted earlier.

A similar analysis, incidentally, led to the
decision not to test a second algorithm by Allan
and Munro [2]. The algorithm, described as "move
to root", is a modification of a technique for
self-organizing linear tables (Knuth [13]). It
is obvious that algorithm overhead would far
exceed the benefits of reduced WPL even if the
WPL became optimal. Thus the execution time
would not be improved even though a nice reduction
in WPL might be achieved, as shown by Allan and
Munro. The algorithm might be quite favorable
for clustered search key requests. Many types
of clustering are possible, and this data type
is not considered in this paper.

X. Conclusions

The most significant conclusion is that
Algorithm B is probably the best algorithm to use
in most cases. Although it generally yields the
highest WPL, its low overhead gives it a generally
faster execution time than all other algorithms
except AVLB and possibly AB. The extra size of
the latter two algorithms (AVLB is much longer
than AB, which is much longer than B), plus the
extra access or balance field in each node, would
usually not be justified by the small increase
in speed.

If speed is of the utmost importance, then
AVLB is the best algorithm to use based on the
results given here, with an improvement over B
ranging from 0% to 13% or more. The improvement
of AVLB over B would generally increase as the
ratio of NKR to NDK increased, since additional
references to a partially optimized tree would
take additional advantage of reduced WPL without
any increase in overhead. Note the 12.8% improve-
ment for NDK = 25, as compared to the 3.2% im-
provement for NDK = 200, for random data.

None of the straight algorithms, AVL, BB, W,
A, or R seem to be justified for the type of
data considered here. Although they generally
give a nice improvement in WPL, it is more than
offset by the extra overhead. If an algorithm
such as AVL is being used, a small extension
(size-wise) to Algorithm AVLB would seem to be a
reasonable consideration.

The conclusions presented hold for random
data, unweighted data, Zipf's Law data, and
partially ordered data using varying levels of
partial ordering.

Certainly ' many other experiments could be
carried out and analyzed. Different algorithms or
versions of algorithms couid be considered, dif-
ferent types of input data could be used and im-
plementations could be made using other languages
or other computers. The main conclusions of
this study, however, seem to be quite reliable
and general.

5 1 4

I.

2.

3.

4.

5.

6.

7.

8.

9.

i0.

ii.

12.

13.

14.

15.

16.

17.

18.

REFERENCES

Adel'Son-Vel'skii, G.M. and Landis, Ye.M.,
"An Algorithm for the Organization of Infor-
mation", Soviet Math. 3 (1962), pp. 1259-
1263.

Allan, B. and Munro, P., "Self-Organizing
Binary Search Trees", 17th IEEE Symposium on
Foundations of Computer Science, 1976, pp.
166-172.

Baer, J.L., "Weight-Balanced Trees", Proc.
AFIPS 1975 NCC., Volume 44, AFIPS Press,
Montvale, N.J., pp. 467-472.

Baer, J.L. and Schwab, B., "A Comparison of
Tree-Balancing Algorithms", CACM 20, 5, (1977)
pp. 322-330.

Bertztiss, A.T., Data Structures Theory and
Practice, Second Edition, Academic Press,
New York, 1975, pp. 245-247.

Bruno, J. and Coffman, E.G., "Nearly Optimal
Binary Search Trees", IFIP Congress 1971,
North-Holland, pp. 99-103.

Foster, C.C., "A Generalization of AVL Trees",
CACM 16, 8 (1973), pp. 513-517.

Hibbard, T., "Some Combinatorial Properties
of Certain Trees", JACM 9, (1962), pp. 13-28.

Hu, T.C. and Tucker, A.C., "Optimal Computer
Search Trees and Variable-Length Alphabetical
Codes", SIAM J. Applied Math 21, (1974), pp.
514-532.

Iverson, K.E., A Programming Language, Wiley,
New York, 1962, pp. 142-144.

Karlton, P.L., Fuller, S.H., Scroggs, R.E.,
and Kaehler, E.B., "Performance of Height-
Balanced Trees", CACM 19, (1976), pp. 23-28.

Knuth, D.E., The Art of Computer Programming,
Volume 3, Addison-Wesley, Reading, Mass.,
1973, pp. 424-425.

Ibid, pp. 397-399.

Knuth, D.E., "Optimum Binary Search Trees",
Acta Informatica i, (1971), pp. 14-25.

Mehlhorn, K., "Nearly Optimal Binary Search
Trees", Acta Informatica 5, (1975), pp. 287-
295.

Mehlhorn, K., "Best Possible Bounds on the
Weighted Path Length of Optimum Binary Search
Trees", SIAM J. Comput. 6, 2 (1977).

Mehlhorn, K., "Dynamic Binary Search", 4th
JCALP, Springer Lecture Notes, Vol. 52, pp.
323-336.

Nievergelt, J., "Binary Search Trees and File
Organization", Computing Surveys~ 6, 3 (1974),
pp. 195-207.

19.

20.

21.

22.

23.

Nievergelt, J. and Reingold, E.M., "Binary
Search Trees of Bounded Balance", SIAM J.
Comput. 2, (1973), pp. 33-43.

Nievergelt, J. and Wong, C.K., "On Binary
Search Trees", IFIP Congress 1971, North-
Holland, 1972, pp. 91-98.

Nievergelt, J. and Wong, C.K., "Upper Bounds
for the Total Path Length of Binary Trees",
JACM 20, (1973), pp. 1-6.

Walker, W.A. and Gottlieb, C.C., "A Top Down
Algorithm for Constructing Nearly Optimal
Lexicographic Trees", Graph Theory and
Computing, R.C. Read (ed.), Academic Press,
pp. 302-323.

Weiner, P., "On the Heuristic Design of
Binary Search Trees", Proc. Fifth Annual
Princeton Conference, Princeton, New Jersey,
Mary 1971 (abstract only).

5 1 5

