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ABSTRACT 

Algorithms for dynamically maintaining and 
utilizing binary search trees are empirically com- 
pared and evaluated. The evaluation is based on 
the performance of the algorithms using simulated 
search requests. Search keys are generated using 
weights which are unknown and in general unequal. 
The algorithms provide for inserting new nodes, 
searching for existing nodes, and in some cases 
dynamically modifying the tree in an attempt to 
reduce its weighted path length or search time. 
Included in the evaluation are algorithms for 
height-balanced trees, weight-balanced trees, and 
trees of bounded balance, as well as some combin- 
ation algorithms. Also included are a basic 
search algorithm which performs no rebalancing, 
and an optimizing algorithm. In addition to the 
standard data, unweighted search keys, specially 
weighted search keys, and partially ordered key 
sequences are also considered. The evaluation 
is based primarily on the execution times of the 
algorithms, although weighted path lengths are 
also given. A combination algorithm gives the 
fastest speeds, although the basic search 
algorithm is shown to be the best for most 
purposes. 
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balanced trees, dynamic trees, weighted trees, 
AVL trees, BB trees, optimal trees, weighted 
path length. 
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I. Introduction 

A binary search tree can be a very efficient 
structure for maintaining an ordered table, re- 
quiring a relatively small amount of data movement 
during insertions, a small amount of searching 
during accesses, and a small amount of time during 
sequential processing. Nievergelt [18] has com- 
pared this structure with sequential linear lists, 
linked linear lists, and scatter tables, and shown 
that the binary search tree is generally optimal 
(for largen) for applications requiring good 
performance in all three areas. 

One measure of the time required to search a 
tree is its weighted path length or WPL, which is 
basically the sum over all nodes in the tree, of 
the probability (weight) of the node times the 
number of nodes in the path from the root to the 
given node. A more precise definition is given in 
Nievergelt [18]. For trees containing n nodes 
which are all equally likely, Hibbard [8] has 
shown that WPL is approximately log2n for large n, 

assuming the trees are balanced, or 1.386 log2n if 

they are not necessarily balanced but instead ran- 
domly formed. An algorithm for searching and up- 
dating such trees is presented in Knuth [12], and 
will be referred to here as the Basic Algorithm 
or Algorithm B. 

Knuth [14] has also presented an algorithm for 
finding the optimum binary search tree (i.e., 
minimizing WPL) assuming general probabilities of 
occurences of the keys, and general probabilities 
for searches that end between two adjacent nodes. 

His algorithm requires 0(n 2) time and space. Hu 
and Tucker [9] had earlier developed and validated 
an optimizing algorithm requiring 0(n) space and 
0(n log n) time, but for the special case in which 
only the "between-nodes" weights were positive. 

There are two significant properties of 
Knuth's optimizing algorithm, apart from time and 
space requirements, which make it unsuitable for 
many applications. First, it operates on the 
entire tree and is hence inefficient for maintain- 
ing trees in the presence of dynamic change. 
Second, it requires known probabilities for the 
nodes of the tree, plus the between-nodes proba- 
bilities, thus making it inapplicable for those 
cases in which the search key references are 
unpredictable. Nievergelt [18] makes an interest- 
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ing categorization of tree maintenance algorithms 
into a binary tree structure, based on the pres- 
ence or absence of these two properties plus a 
third property concerning single-level versus 
two-level storage. Baer and Schwab [4] also cate- 
gorize algorithms in the form of a tree structure. 

The purpose of this paper is to compare the 
performances of algorithms for dynamically main- 
taining binary search trees, with no prior knowl- 
edge of search key probabilities. The emphasis 
is on randomly weighted search keys, although 
results are also given for unweighted keys and 
some special kinds of weighting. The central 
question to be answered is which tree maintenance 
algorithm is the best for this situation. Per- 
formance is evaluated initially in terms of WPL, 
but ultimately in terms of execution time. 

The case of static trees utilizing known 
weights has been considered by Bruno and Coffman 
[6], Nievergelt and Wong [20,21], Mehlhorn [15, 
16], Walker and Gottlieb [22], and Weiner [23], in 
addition to Knuth and Hu and Tucker as mentioned 
previously. The case of dynamic, unweighted trees 
(i.e., weights assumed to be equal) has been con- 
sidered by Baer [3], Baer and Schwab [4], and 
Nievergelt and Reingold [19]. The case of dynam- 
ic, weighted trees has been considered by Baer 
[3], Allan and Munro [2], and Mehlhorn [17]. Baer 
restricted his attention to WPL. Baer 'and Schwab 
compared the performance of several algorithms 
with regard to execution time, but only for non- 
weighted trees. Karlton et. al. [ll] have 
studied both theoretically and empirically the 
properties of a certain class of algorithms called 
height-balancing algorithms. These latter two 
papers will be discussed further in Section IX. 

II. Algorithms Studied 

The following algorithms and corresponding 
tree structures are compared and evaluated in 
this study: 

a. Algorithm B. 

b. Algorithm AVL for maintaining AVL trees, 
as described by Adel'son-Vel'skii and 
Landis [i]. Briefly, each node in an 
AVL tree satisfies the property that 
the height of its left subtree and 
the height of its right subtree differ 
by at most i. 

c. Algorithm BB for maintaining trees of 
bounded balance, as described by 
Nievergelt and Reinhold [19], with 
parameter ~ = 1 - ~2/2. Briefly, each 
node in a BB tree satisfies the prop- 
erty that the number of nodes in the 
subtree for which it is the root, 
divided into the number of nodes in its 
left subtree, lies between ~ and 1 - ~. 

d. Algorithm W for maintaining trees with 
an approximately descending weight, as 
described in this paper. 

e. Algorithm A for maintaining trees with an 
approximately descending "access", as 
described in this paper. 

f. Algorithm R as described by Allan and Munro 
[2], which simply rotates a node (other than 
the root) uo in the tree each time it is 
referenced. 

g. Algorithm AB, a combination of Algorithms A 
and B, described later. 

h. Algorithm AVLB, a combination of Algorithms 
AVL and B, described later. 

i. Algorithm O, Knuth's optimizing algorithm. 

The comparison is based on the empirical ob- 
servation of the performance of the algorithms on 
a given sequence of key searches. Each input key 
causes a normal tree search, and an insertion if 
the key is not in the tree. Deletions are not 
considered in this paper, Each algorithm in 
addition carries out its own logic for rebalancing 
the tree if necessary. Both WPL and total pro- 
cessing time are recorded. Processing time in- 
cludes only the time for the search algorithm 
itself, i.e., the time for searching and main- 
taining the tree. It excludes the time for 
generating the search keys, calling the algorithm, 
computing averages, printing results, etc. It of 
course reflects any reduction in WPL made by the 
algorithm, and any overhead time spent in carry- 
ing out the algorithm. 

III. Nature of the Sample Data 

As noted earlier, this study is concerned with 
those applications in which there is no prior 
knowledge of search key probabilities (dynamic 
trees), and in which there is no tacit assumption 
that the probabilities are equal (weighted trees). 
This application is considered to be very realis- 
tic for many situations. 

Each algorithm was tested over several trials. 
For each trial there was specified a certain 
number of distinct keys (NDK) and a certain number 
of key references (NKR). Raw weights were gener- 
ated for each distinct key from the Uniform [0,i] 
distribution, and then normalized to probabili- 
ties. These probabilies were then used to ran- 
domly generate key references. Twenty sets of 
weights were generated for each trial, and the 
results appeared to be sufficiently smooth to be 
quite reliable. They were also very consistent 
with several simulations in which i00 sample 
sequences were run for each trial. 

Four variations to this generating procedure 
were also considered. One variation was to 
generate the raw weights exponentially instead of 
uniformly. This change did not significantly 
alter the relative performances of the algorithms, 
and the results are not included here. 

A second variation was to generate equal 
weights, so that all distinct keys were equally 
likely to be referenced. This distribution is 
the one assumed implicitely for nonweighted trees, 
and will be referred to here as unweighted data, 

A third variation was to generate weights 
according to Zipf's Law [13], which has been shown 
to be a reasonable approximation for words in a 
natural language. This distribution uses the 
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~, c 
probabilities 2' "''' n' where c is the normal- 

izing constant i/( + 2 + "'" + n = i/H n. The 

probabilities were assigned to the search keys in 
a random fashion. This data will be referred to 
as Zipf's Law data. 

A final modification was to sort the gener- 
ated key accesses from smallest to largest, thus 
yielding an ascending sequence of keys. Then the 
sequence was partially randomized by exchanging 
a certain number of randomly selected pairs of 
keys references. The number of exchanges was 
specified as a fraction of the total number of 
key references, e.g., 20%. This sample data will 
be referred to as partially ordered. 

IV. Algorithms W and A 

Algorithm W is based on the rather obvious 
principle of moving a node up in the tree if its 
weight becomes greater than its father's weight. 
This move can be performed by a single rotation 
as described by Baer [3]. The algorithm insures 
that nodes with higher weights will appear above 
nodes with lower weight (in the limit), but it 
does not consider the balance of the tree. This 
algorithm is a dynamic extension of a criterion 
referred to as "Rule i" by Mehlhorn [15]. 

Algorithm A is based on a more sophisticated 
criterion utilizing a field for each node called 
its "access". The access of a node is the number 
of times it has appeared in a search path, i.e., 
the number of times it has been referenced plus 
the number of times it has been passed through 
in referencing a node below it, i.e., the sum 
of the weights of all the nodes in the subtree 
having it as the root. This field is referred 
to as TOTAL by Baer [3] and SIZE by Nievergelt 
and Reingold [19] (with reference to unweighted 
trees). The algorithm is one possible dynamic 
extension of the "Rule 2" criterion described 
by Mehlhorn [15]. 

The algorithm performs a single rotation on 
a referenced node if and only if the rotation 
would reduce the WPL. The specific criterion 
for this rotation is given in [3]. In words, a 
referenced node will be rotated up if and only if 
2 times its access is greater than the access of 
its father plus the access of its son on the 
same side as the father. The algorithm is a 
special case of Algorithm WB presented in [3], 
which considers both single and double rota- 
tions on every node in the search path. Even 
further extensions would consider triple, qua- 
druple, etc. rotations for every node in the 
search path. 

The tendency of Algorithm A is to move up in 
the tree nodes which are referenced more often or 
which are passed through more often in referencing 
nodes below them in the tree. The former consid- 
eration tends to reduce the WPL by shortening the 
path length for nodes which are referenced more 
often. The latter consideration tends to reduce 
the WPL by giving the tree more balance. Iverson 
[10] discussed the importance of these two 

criteria in minimizing WPL, but he did not 
formally associate them with optimality. 

The algorithm is very efficient compared with 
reoptimizing the entire tree each time it is 
searched. It utilizes the accesses of just 3 
nodes to determine whether or not the tree is to 
be modified. If a modification is made, only 3 
links and 2 accesses need to be changed. While 
the resulting tree is not necessarily optimal 
under the assumed weights, it is in general very 
nearly optimal and is much closer to optimality 
in general than the tree produced by Algorithm B. 

It will be interesting at this point to show 
that the WPL of a tree can be computed as a 
simple function of the accesses of the nodes. In 
particular, for a tree containing n nodes with 

accesses AI, ..., An, the WPL is equal to 

n 
A.. This relationship can be seen fairly 
i 

i=l 
easily by noting that the access of a node is 
equal to the sum of the weights of every node in 
the subtree having the given node as the root. 
Thus for any node i having level L i > 0, its 

weight W i will appear once in its own access at 

level Li, once in its father's access at level 

L.-i, once in its grandfather's access at level 
i 

L.-2, and so on up to level i. In other words 
i 

it will appear L. times in the summation 
i 

n n n 
E A.. Therefore ~ A. = E LiW i = WPL. 

i 1 
i=l i=l i=l 

Algorithm A is formally given as follows: 

Introduction 
This algorithm provides for building, search- 

ing, and maintaining a binary search tree in 
which every node P contains the following fields: 

KEY(P) - the key or name or identification of 
node P 

LLINK(P) - a pointer to the left subtree of 
node P 

RLINK(P) - a pointer to the right subtree of 
node P 

ACCESS(P) - the access of node P 
INFO(P) - the information content of node P 

The tree has a special node called the head, whose 
only significant field is the right link, which 
points to the root of the tree. This pointer is 
initialized to null (X) to signSfy an empty tree. 

The algorithm is given an argument with key 
K, and with information INF if it is a new key. 
It searches the tree using the pointer P and 
returns with P pointing to the node requested, 
having inserted a new node if the key was not 
already in the tree. The algorithm uses the 
following pointers in addition to P: 

Jl = pointer to father of P 
J2 = LLINK or RLINK depending on whether P 

is a left son or right son 
J3 = pointer to grandfather of P 
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Algorithm (the underlined steps correspond to 
Algorithm B). 

I. (Initialize) Set P ÷ pointer to head, 
J2 ÷ RLINK~Ji + ~. 

2. (Search node P) Set J3 + Jl, Jl ÷ P~ P ÷ 
J2(Jl). If P = ~ go to Step 3. Set 
ACCESS(P) ÷ ACCESS(P) + i. If K < KEY(P), 
set J2 ÷ LLINK and go to Step 2. If K > 
KEY(P)~ set J2 ÷ RLINK and go to Step 2. 
Otherwise go to Step 4. 

3. (Insert new node) Obtain an available 
cell and set P ÷ pointer to available 
cell. Set KEY(P) ÷ K~LLINK(P) ÷ %, 
RLINK(P) ÷ %~ ACCESS(P) + i ,  INFO(P) + 
INF~J2(Ji) ÷ P. Return. 

4. (Check for P pointing to root) If J3 = 4, 
return (no rotation possible). 

5. (Get direction and pointer to son of P on 
same side as father of P) If J2 = LLINK, 
then set J4÷ RLINK, else set J4 ÷ LLINK. 
Set J5 ÷ J4(P). 

6. (Compute change in WPL due to potential 
rotation. Return if change is not 
negative) Set DEL ÷ ACCESS(J1) + 
ACCESS(J5) - 2 • ACCESS(P). If DEL > 0, 
return. 

7. (Set new access of P and father of P) 
Set TEMP ÷ ACCESS(J1), ACCESS(J1) 
TEMP - ACCESS(P) + ACCESS(J5), ACCESS(P) 
÷ TEMP. 

8. (Set new links for P and father of P) Set 
' J4(P) + Jl, J2(Jl) ÷ J5. 
9. (Compute direction to grandfather of P and 

set new link for grandfather) Set J2 ÷ 
LLINK. If LLINK(J3) # Jl, set J2 + RLINK. 
Set J2(J3) ÷ P. Return. 

As can be seen, the most important loop in 
the algorithm is Step 2. The extra processing 
needed for Algorithm A (over Algorithm B) is to 
update the access and to keep the pointer to the 
grandfather. If a new node is inserted (Step 3), 
the only extra processing is to initialize its 
access. 

Steps 4-6 are, of course, extra steps required 
by the algorithm. They are not in an internal 
loop, however, thus they are executed at most once 
for each call of the algorithm. Steps 7-9 must 
in addition be executed once if a rotation is 
to be made. 

The extra storage required by the algorithm 
for the representation of the tree consists of 
the ACCESS field for each node. If the INFO 
field is relatively large, then this extra 
storage is less significant. 

Algorithm W will not be given explicitly since 
it is similar in many respects to Algorithm A, 
and can easily be described as a modification to 
the latter. The ACCESS field becomes a WEIGHT 
field with probably the same storage requirement. 
The maintenance and use of the pointers and links 
is the same, and the rotations are the same except 
that the accesses (weights) are not changed. The 
main differences are that the incrementation of 
the ACCESS(WEIGHT) field is moved outside of the 
loop in Step 2, and the determination of whether 
or not to make a rotation involves only a compari- 

son between the weight of node P and the weight 
of its father. 

V. Insufficiency of Search Path for Maintaining 
Optimality 

An obvious question arising from this dis- 
cussion is concerned with whether or not it is 
possible to maintain an optimal tree utilizing 
only information along the search path of a key 
reference. Specifically, assuming that a binary 
search tree is originally optimal and that an 
additional reference has just been made to a node 
in the tree (or to a new node), is it possible 
to determine whether or not the updated tree is 
still optimal considering only the accesses of 
the nodes in the search path from the root to 
the referenced node? As we shall see, the answer 
to the question is "no", and hence none of 
Algorithms W, A, WB, or the suggested extensions 
to WB can guarantee the maintenance of an optimal 

tree. 

Consider the trees illustrated in Figure i. 
The letters A, B, C, D are the keys for the nodes, 
the letter X is a variable name for a Subtree, and 
the numbers above the nodes are the accesses. 
Part (a) illustrates the portion of the tree that 
would be in the search path if node D were 
referenced, namely C and D. The subtree X would 
not be in the path. Parts (b) and (c) illustrate 
two possible configurations for the subtree. 
Both of these trees are optimal for the weights 
(or accesses) given, as can be seen by inspection. 

If an additional reference is now made to 
node D, then the trees resulting are given in 
parts (d) and (e), respectively. It can be seen 
by inspection that the latter tree is optimal 
for the weights given, but the former tree is not 
optimal. Instead the tree in part (f) is optimal 
for the weights given in part (d). This illustra- 
tion proves the assertion made earlier. Thus if 
we restrict ourselves to information along the 
search path of a node reference, then we cannot 
guarantee the maintenance of optimality. 

25 

WPL = 44 

Ca) Cb) 

25 

WPL = 47 WPL = 46 

(c) (d) 
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26 

WPL = 49 

(e) 

26 <' 
WPL = 45 

(f) 

Counterexample 

Figure 1, 

VI. Combination Algorithms 

Algorithms A and W have a kind of dual rela- 
tionship with Algorithms AVL and BB with regard 
to the criteria for performing rotations. 
Algorithms AVL and BB perform rotations only when 
a new node is inserted, whereas A and W perform 
rotations only on old nodes. Thus the complicated 
rotation logic will not need to be executed for 
AVL and BB for duplicate key requests, and in 
general after all distinct keys have been insert- 
ed. On the other hand, A and W will continue to 
test for rotations on every search, and carry 
out rotations when the test so dictates. 

Most of the rotations in a tree maintained 
by Algorithm A would occur early with fewer and 
fewer changes as the tree becomes stablized. 
Thus it seems desirable to consider modifying 
A so that its balancing overhead is reduced or 
even eliminated after an initial volatile period. 
An obvious possibility is to use a combination 
of A and B, with A being used initially and 
then switching over to B when the tree has 
become relatively stable. This algorithm (call 
it AB) would combine the advantages of A 
(reduced WPL) and B (low overhead). Moreover, 
A would be used when it was most productive, 
i.e., at the beginning. 

A number of criteria could be used for 
making the switch from A to B. The switch 
could be made after a specified number of 
searches or after a specified number of searches 
with no rotation. Another possibility would 
be to use B initially, but also maintaining 
the access field. Then switch to A for a 
period of time, performing any indicated rota- 
tions. Finally switch to a straight Algorithm 
B. The purpose of this scheme is to use 
Algorithm A only when it is most likely to 
yield the greatest reduction in WPL. 

The most effective of these criteria according 
to the test results was the one based on a speci- 
fied number (the "inactive count") of searches 
with no rotation, and it will be assumed hence- 
forth that Algorithm AB is based on this switching 
criterion. The obvious rationale for the crite- 
rion is that several searches with no rotation 
indicates that the tree is rather stable, and 
that is would probably be more efficient to fore- 
go the extra overhead of A in favor of the speed 

of B. This criterion is more sensitive to differ- 
ent kinds of input data than the criterion based 
on number of searches alone, and hence seems more 
generally suitable. 

The specification of the inactive count para- 
meter permits an adjustment of the algorithm in 
terms of WPL and overhead. As the inactive count 
goes from 0 to infinity, both WPL and execution 
time go from that of Algorithm B to that of 
Algorithm A. While WPL is an approximately 
decreasing function of the inactive count, 
execution time is approximately unimodal. This 
adjustment feature is comparable to the adjust- 
ment of BB trees by varying the parameter e, and 
the adjustment of general height-balanced trees 
by varying the permitted level of imbalance. 

The value minimizing the unimodal function 
should be used to set the inactive count para- 
meter. This value may not be predictable, of 
course, and may vary with the nature of the data. 
Nevertheless, it seems generally reasonable that 
several searches in a row with no rebalancing 
required indicates the probable benefit of switch- 
ing to Algorithm B. The execution time curve is 
relatively flat in'the vicinity of the minimum, 
hence a rather wide range of values would give 
near optimal results. The results given here are 
for a parameter of i0. 

It is clearly possible to combine Algorithm 
B with algorithms other than A, and achieve 
similar effects. A combination of W and B was 
tried, for example, with less success than AB. 
A combination of AVL and B gave good results, and 
will be reported on here as Algorithm AVLB. Even 
though AVL had less overhead to begin with than 
A, it still benefitted from a switch to B since 
the balancing and testing logic was no longer 
used after stability was attained. The switching 
criterion was the same as for AB, and a parameter 
value of i0 was also used. 

Vll. Results in Terms of WPL 

The relative performance of the algorithms 
was basically independent of NDK and NKR. Values 
were used for NDK ranging from 5 to 300, and for 
NKR ranging from 50 to 5000. Ratios of NDK to 
NKR ranged from .01 to 1.00. WPL and execution 
time were approximately linear as a function of 
NKR and logarithmic as a function of NDK. Be- 
cause of its insensitivity to NDK and NKR, the 
relative performance of the algorithms is 
accurately represented by thei~ performance for 
the specific case of NDK = 200 and NKR = i000, 
and most of the results are given for this case. 

Two useful measures of algorithm performance 
are absolute improvement (AI) and fractional 
improvement (FI). AI gives the fraction by which 
an algorithm reduces the WPL over what it would 
be using Algorithm B, i.e., 

WPL B - WPLalgorithm 

Alalgorithm = WPLB 
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FI gives the ratio of the reduction in WPL to the 
total possible reduction, i.e., the reduction 
yielded by Algorithm 0. In other words, 

Alalgorithm 
Flalgorithm = Ai 0 

WPL B - WPLalgorithm 

WPL B - WPL 0 

Table I presents the most important results 
from the simulations. The subscripts R, U, and Z 
denote random, unweighted, and Zipf's Law data, 
respectively. The subscript P denotes partially 
ordered data, with a 10% randomization from com- 
pletely ordered. The subscript 25 denotes a 
simulation using NDK = 25 and NKR = i000. All 
the other results are for NDK = 200 and NKR = 
i000. Additional values of AI and FI, and for 
algorithm O, are not given because of our primary 
interest in execution time as opposed to WPL. 

Algorithm 0 is not included in the execution 
time results because of its nondynamic nature 
and obvious high overhead if it were executed 
after every search. It would be possible to 
design a combination algorithm in which algorithm 
0 was activated only on occasion, when some 
balancing criterion was met. Many such criteria 
are possible, and Baer and Schwab [4] give some 
performance measures for one. No such results 
are included here. It would appear to be quite 
difficult to determine such an algorithm that 

would be as good as the combination algorithms 
used here, and also reasonably independent of 
the nature of the data. 

With regard to WPL, there are several signif- 
icant patterns and specific results. Algorithm 0 
gives an approximately 30% reduction in WPL (AI R 

(0) = .295) for the random data. Algorithm A is 
consistently the best of the remaining algorithms 
except for the partially ordered data. Its AI 
was .231 for random data, .215 for unweighted 
data, .258 for Zipf's Law data, .353 for partial- 
ly ordered data, and .194 for NDK = 25. For 
random data, it produced approximately 78% of the 
total possible reduction in WPL (FI R (A) = .781). 

Algorithms AVL and BB yielded very similar WPL's 
for the different trials. Algorithm R produced 
very poor WPL's which were in fact much worse 
than B's. Algorithm W was sometimes worse than 
B and sometimes better. As would be expected, 
AB and AVLB were in between B and A or AVL. 

For the algorithms in general, WPL (and 
execution time) was higher for unweighted data 
and lower for Zipf's Law data, as compared to 
random data. This result is consistent with 
theoretical results of Mehlhorn [16], which show 
that for an optimal binary search tree, WPL is 
close to the entropy of the distribution of 
search key probabilities. 

Figures 2, 3, and 4 provide a reasonably good 
summary of these results by illustrating WPL, AI, 
and FI, respectively, for the case of random data 
(negative AI and FI values are drawn as 0). 

Performance 
Measure B AVL BB 

ALGORITHM 
W A R AB AVLB 0 

WPL R 8314 6465 6490 

AI R .000 .222 .219 

FI R .000 .753 .743 

Time R 5.67 8.94 15.69 

WPL U 8202 6517 6519 

Time U 5.58 9.01 15.81 

WPL Z 6320 5613 5599 

Time Z 4.48 7.71 13.24 

WPLp I1867 6640 6584 

Timep 8.10 9.47 16.38 

WPL25 4468 3800 3803 

Time25 3.35 5.02 8.85 

Algori 

8316 6397 12350 8285 6851 

.000 .231 -.485 .003 .176 

.000 .781 -I.643 .012 .596 

14.21 12.48 17.41 5.76 5.49 

9744 6440 15441 8202 6921 

15.20 12.51 19.06 5.66 5.57 

5143 4692 6079 5995 5539 

8.90 9.32 I0.26 4.44 4.37 

I0800 7674 32500 I1291 9803 

18.53 16.88 lO.O0 8.46 7.06 

4119 3599 4245 3802 

7.32 7.49 3.40 3.10 

thm Performance Measures 

Table I.  
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Figure 2. 
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Figure 3. 
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Figure 4. 

VIII. Results in Terms of Execution Time 

Table 1 also includes execuflion time figures 
for the various algorithms being compared and 
the various types of data. As noted earlier, 
execution time is generally a more complete and 
hence valuable measure of algorithm performance, 
since it encompasses algorithm overhead as well 
as reduction in WPL. The time unit was 1 second. 

The implementation consisted of a machine 
language program on a Cal Data 135 minicomputer. 
The computer contains a firmware emulation of a 
PDP 11/40 computer, and runs essentially like a 
PDP 11/40. Every effort was made to write code 
for the different algorithms in the same style 
and with equivalent high efficiency. Most of the 
algorithms were also implemented and executed 
in FORTRAN. The results were very similar to the 
results for the machine language implementation, 
and hence are not included here. 

As for WPL, many important results and pat- 
terns are apparent. What might be surprising to 
some is that the relative algorithm performance 
is quite different, in fact closer to opposite, 
when measured in terms of execution time as 
opposed to WPL. Obviously the extra overhead 
required in reducing the WPL generally outweighed 
the benefits of reduced WPL. 

As can be seen, AVLB has the fastest time for 
every data type, with B a close second and AB a 
close third for every type except Zipf's Law data, 
for which they are reversed. The improvement 
which AVLB makes over B is 3.2%, 0.2%, 2.5%, 
12.8%, 87.5% for the 5 different data types, 
respectively. The inactive count (i0) used for 
AVLB and AB is not optimal for the given data, 
and in fact slightly improved results could be 
obtained if it were optimized. However, in most 
practical situations it would not be pDssible 
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to do such an optimization. 

None of the straight algorithms AVL, BB, W, A, 
or R give a very good performance in terms of 
speed, with AVL being easily the best and R being 
generally the worst. Algorithm R does show espe- 
cially good performance for the partially ordered 
data, which would seem reasonable. AVLB and AB 
obviously make a nice improvement over AVL and A, 
respectively. 

Figures 5, 6, 7, 8, and 9 provide a good 
illustration of the execution time results for 
the 5 different data types. Figures i0 and ii 
combine and summarize these results by giving 
execution time for the different data types (I0) 
and for the different algorithms (ii). 

A final test of the algorithms was made using 
partially ordered data as described in Section 3. 
Eight trials were made, using fractional exchanges 
of 0%, 1%, 5%, 10%, 20%, 50%, 200% and ~. 
Algorithms tested were B, AVL, AB, and AVLB, 
using NDK = 25 and NKR = I000. The results are 
illustrated in Figure 12, and again show that 
except in the most extreme case of partial order- 
ing, AVLB is still the fastest algorithm and B 
is a close second. 
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IX. Earlier Results 

As noted in Section l, Baer and Schwab [4] 
and Karlton et. al. [ii] have given execution 
time results for some of the cases considered 
here. The former paper was restricted to a con- 
sideration of nonweighted trees, and the latter 
to a consideration of height-balanced trees. 
Both papers include a common important conclusion: 
for nonweighted data, algorithm AVL is the fast- 
est of the algorithms considered. In particular, 
AVL is faster than algorithm B. (Baer and Schwab 
specify that the number of accesses after inser- 
tion must be greater than 3.) 

This conclusion clearly conflicts with the 
results of this paper, which show algorithm B 
to be substantially faster (approximately 35%) 
than algorithm AVL for both weighted and unweight- 
ed data. The conclusions in the other papers 
were essentially based on the same oversight: 
that the search time for algorithm AVL is longer 
than for B even if the key being searched for 
is already in the tree, i.e., if it is not a 
new key. In other words, algorithm AVL has 
extra overhead just for the searching, even if 
no balancing is attempted. 

In particular, the equation for QA in [4, p. 
329] should be 

QA = CA + qPl = CA + 1.5 qnl A 

= C A + 1.5qn(.81 R) 

= C A + 1.2 qnl R = C A + 1.2 q CR, 

where I A and I R are the average path lengths for 

algorithms AVL and B, respectively. Thus, 
according to the figures of Baer and Schwab, 
algorithm AVL provides a 20% reduction in WPL, 
but with a 50% increase in overhead just for the 

searching, and hence cannot be faster (on the 
average) than algorithm B. This analysis is 
quite consistent with the empirical results of 
this paper, noted earlier. 

A similar analysis, incidentally, led to the 
decision not to test a second algorithm by Allan 
and Munro [2]. The algorithm, described as "move 
to root", is a modification of a technique for 
self-organizing linear tables (Knuth [13]). It 
is obvious that algorithm overhead would far 
exceed the benefits of reduced WPL even if the 
WPL became optimal. Thus the execution time 
would not be improved even though a nice reduction 
in WPL might be achieved, as shown by Allan and 
Munro. The algorithm might be quite favorable 
for clustered search key requests. Many types 
of clustering are possible, and this data type 
is not considered in this paper. 

X. Conclusions 

The most significant conclusion is that 
Algorithm B is probably the best algorithm to use 
in most cases. Although it generally yields the 
highest WPL, its low overhead gives it a generally 
faster execution time than all other algorithms 
except AVLB and possibly AB. The extra size of 
the latter two algorithms (AVLB is much longer 
than AB, which is much longer than B), plus the 
extra access or balance field in each node, would 
usually not be justified by the small increase 
in speed. 

If speed is of the utmost importance, then 
AVLB is the best algorithm to use based on the 
results given here, with an improvement over B 
ranging from 0% to 13% or more. The improvement 
of AVLB over B would generally increase as the 
ratio of NKR to NDK increased, since additional 
references to a partially optimized tree would 
take additional advantage of reduced WPL without 
any increase in overhead. Note the 12.8% improve- 
ment for NDK = 25, as compared to the 3.2% im- 
provement for NDK = 200, for random data. 

None of the straight algorithms, AVL, BB, W, 
A, or R seem to be justified for the type of 
data considered here. Although they generally 
give a nice improvement in WPL, it is more than 
offset by the extra overhead. If an algorithm 
such as AVL is being used, a small extension 
(size-wise) to Algorithm AVLB would seem to be a 
reasonable consideration. 

The conclusions presented hold for random 
data, unweighted data, Zipf's Law data, and 
partially ordered data using varying levels of 
partial ordering. 

Certainly ' many other experiments could be 
carried out and analyzed. Different algorithms or 
versions of algorithms couid be considered, dif- 
ferent types of input data could be used and im- 
plementations could be made using other languages 
or other computers. The main conclusions of 
this study, however, seem to be quite reliable 
and general. 
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