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I. Theorem Provers as Logic Machines 

Exactly i00 years ago, the 
first-order predicate calculus was created 
and defined by Gottlob Frege. In the 
ensuing century his system was studied and 
refined by such logicians as Bertrand 
Russell, David Hilbert, Kurt Godel, 
Jacques Herbrand, Alonzo Church, and Alan 
Turing. In the 1950's and 60's attempts 
were made to use the results of these 
studies (especially those of Herbrand) in 
order to program computers to prove 
theorems automatically. These attempts 
introduced a new demon to the study of 
logic: ferocious computational 
complexity. The investigations of methods 
to avoid this demon led to the development 
of new systems of logic which are 
equivalent to the traditional systems, but 
are more suited to the efficient 
mechanical construction of proofs. The 
most notable among these is the resolution 
system of J. Alan Robinson [1965],[1979]. 
Cordell Green [1969] proposed the use of 
resolution systems in the construction of 
deductive question-answering systems, and 
this proposal eventually led Robert 
Kowalski [1974] to propose the so-called 
procedural interpretation of logiq which 
forms the basis for the use of logic as a 
programming language. 

Consider a formula 

Vxl,...,xn~yl,...,ym A(xl,...,ymS, (i) 

where A may be an arbitrary formula. It 
is built up from various primitive atomic 
formulas, for example "less than(x,y)," or 
"tree(t)," or "zip(x,y,z)?" The atomic 
formulas are abstract symbol strings 
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having no intrinsic meaning apart from 
what a user imparts to them. Given a 
choice of meanings for the atomic 
formulas, the meaning of a compound such 
as (i) is determined in a standard and 
fixed way, as given in any of hundreds of 
logic textbooks. Suppose that with such a 
choice of meanings, formula (i) turns out 
to be true. Then it can be regarded as 
describing the input-output relation for 
an abstract machine or program, taking x's 
as input and yielding y's as output. If 
the y's are not uniquely determined by the 
x's, the machine is non-deterministic. 

Virtually all automatic 
theorem-proving systems are constructive 
in the sense that when faced with a 
formula of the form (15, and given terms 
sl,...,sm, the system will attempt to find 
terms tl,...,tm such that it can prove 

A(sl,...,sn,tl,...,tm) (2) 

is a true formula. Since the terms 
tl,...,tm are built up from xl,...,xn 
using the available symbols of the 
language at hand, this substitution 
(yl,...)-->(tl,...) can be regarded as a 
computation procedure: given particular 
terms sl,...,sn for the x's, construct the 
appropriate tl',...,tm' out of the 
sl,...,sn. One view of this process is 
that in searching for a proof of (15, the 
theorem-prover constructs the expression 

A(xl .... ,xn, ~i, .... ~mS, (3) 

where ~i .... , ~m are metavariables 
ranging over expressions of the language, 
and attempts to find values (expressions) 
for these variables so that the resulting 
formula (2) is provable. Resolution 
systems, as well as other systems, will 
carry out this search in a 
pattern-directed way so that if the 
xl,...,xn are replaced by sl,...,sn, 
yielding 

A(sl ..... sn, ~i ..... ~m), (4) 

the resulting search will produce 
appropriate instances tl',...,tm'. 
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Thus the formula A(xl,...,ym) together 
with the automatic theorem-prover 
constitute a program~machine pair which, 
given particular inputs sl,...,sn, 
computes outputs tl',...,tm'. 

Seen this way, any automatic 
theorem-prover which behaves in such a 
pattern-directed constructive manner can 
be used as an interpreter or logic machine 
which will run logic formulas as programs. 
The fly in the ointment (or if you like, 
the sand in the gears) is the demon of 
computational complexity: most 
theorem-provers run much too slowly to be 
of practical use as logic machines. 
However, since a few very efficient 
practical logic machines do exist, the 
logic programming programme is both viable 
and exciting. The general programme has 
these two constituents: 

(i) to devise systems of logic 
suitable for easily expressing real 
computational problems; 

(ii) to construct suitable theorem 
provers for these logics which can be used 
as practical logic machines. 

II. PROLOG Systems 

The most completely engineered logic 
programming systems to date are the PROLOG 
systems (cf. P. Roussel [1975], G. 
Roberts[1977], D. Warren et ai.[1977],), 
which are based on ideas of Kowalski, 
Colmerauer, Roussel, Hayes, and Boyer and 
Moore (cf. Kowalski [1974], p.573). With 
minor variations, the syntax of these 
systems runs as follows. Both integers 
and identifiers are atomic terms. 
Identifiers preceeded by ' ' are 
variables. One can optionally ~hoose to 
take all identifiers beginning with an 
uppercase letter as variables; this 
option will be exercised here. Compound 
terms are expressions of the form 
a(bl,...bn) , where a is an identifier and 
bl,...bn are terms. An expression of the 
form 

B. (5) 

is a (unit) clause (or unconditional 
assertion) profit-- that B is a term. 
When B and Ci,...Cn are all terms, 

B <-- Cl ..... Cn (6) 

is a clause (or conditional assertion). 
Collect~y, Conditional and 
unconditional assertions are referred to 
as Horn clauses. A program is a list of 
clauses. The terms appearing at top-level 
in clauses are regarded as atomic formulas 
in the usual systems of predicate logic. 
Clause (5) is treated logically as 

~xl ..... xn B (7) 

where xl,...,xn are all the variables 

occurring in B, and clause (6) is 
understood logically as 

~xl,...,xn[Cl & ... & Cn => B], (8) 

where => indicates logical implication. 
Programs are treated logically as the 
conjunction of the clauses of which they 
are composed. Consider the following 
examples: 

sum(X,0,X). 
sum(X,s(Y),s(Z)) <-- sum(X,Y,Z). (9) 

prod(X,0,0). 
prod(X,s(Y),Z) <-- (i0) 

prod(X,Y,W),sum(W,X,Z). 

fact(0,s(0)) . 
fact(s(X),Z) <-- 

fact(X, Y) , 
prod (S (X) ,Y,Z) . 

(ii) 

Here sum(X,Y,Z) means that X + Y = Z, 
prod(X,Y,Z) means that X*Y = Z, and 
fact(X,Y) means that Y is the factorial of 
X. These are easily recognizable as the 
familiar inductive definitions of the 
addition, multiplication, and factorial 
functions. (While arithmetic can be done 
this way, PROLOG systems provide direct 
access to machine arithmetic as will be 
shown later.) Let SUM be the ordinary 
logical correspondent of (9): 

SUM = VX sum(X, 0,X) & (12) 
~/X,Y,Z[sum(X,Y,Z) 

=> sum(X,S(Y) ,s(Z) ) ] . 

Similarly, let PROD and FACT be the 
logical correspondents of (i0) and (ii), 
respectively. Consider the formula 

SUM & PROD & FACT (13) 
=> fact(s(s(s(0))),Y). 

A suitable prover attacking this formula 
would find the satisfying substitution: 

Y = s(s(s(s(s(s(0)))))). 

III. The Procedural Interpretation of 
Logic 

The PROLOG processor does not make 
use of (13), however. Instead, it 
maintains the clauses (9) - (ii) as an 
internal database, and accomplishes its 
searches by: 

(a) utilizing the notion of goal 
clause; 

(b) utilizing the procedural 
interpretation of non-goal clauses; 

(c) utilizing the unification process 
for its pattern-matching. 

A goal clause is an expression of the form 

<-- Cl,...,Cn. (14) 

This is treated logically as 
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k~/xl,...,xk not-(Cl & ...& Cn), (15) 

where xl,...,xk are all the variables 
occurring in any of Cl,...,Cn. If DB is 
the collection of (non-goal) clauses in 
the processor's database, the logical 
effect of submitting a goal clause (14) is 
to cause the processor to attempt to 
determine whether or not (15) is 
inconsistent with DB. The processor 
succeeds if and only if it proves (15) to 
be inconsistent with DB, and hence that 
~xl...xk(Cl&...&Cn) is a logical 
consequence of DB. 

The procedural interpretation 
clauses runs as follows. A clause 

of 

f(al,...,an) <-- Cl,..., Cm (16) 

is treated as part of the definition of a 
procedure named f; the head of this part 
of the definition of f is f(al,...,an), 
and the body is the set 

Cl,...,Cm, (17) 

where the CI,...,Cm are themselves 
procedure calls. Each invocation of a 
procedure which terminates is regarded as 
being either successful or unsuccessful. 
The sense of (16) is then that in order to 
successfully run f on an input vector 
whose pattern matches (al,...,an) it 
suffices to successfully execute the calls 
in (17), using as values for variables 
which occur in al,...,an any values 
obtained when the actual input vector to f 
was matched against (al,...,an). 
Variables occurring in any of al,...,an 
are the formal parameters of the procedure 
f; variables occurring in any of 
Ci,...,Cm but not in al,...,an are the 
local variables of the procedure. For 
example, the procedure call 
sum(s(s(0)) ,s(0),W) will not match the 
head of the first clause in (9), but will 
match the second clause using the 
substitution 

~i = (x/s(s(0)), Y/0,W/s(z)). (18) 

(In general, if ~ is a substitution which 
replaces the variable X by the term a, the 
variable Y by the term b, etc., then 
will be written as ~= (X/a, Y/b .... ).) 
Consequently the sense of (9) is that in 
order to execute the given call of sum, it 
suffices to execute the call 
sum(s(s(0)) ,0,Z). A unit clause is 
regarded as a procedure definition with an 
empty body which immediately succeeds 
whenever the given input vector pattern is 
matched. Since the call sum(s(s(0)),0,Z) 
matches the first clause of (9) using the 
substitution 

~2 = (X/s(s(0)) , Z/s(s(0)) ) , (19) 

this call immediately succeeds yielding 
the substitution 82. The PROLOG 
processor returns from the original call 

t~atmportion of the composed substitutions 
~I [~2 applying to the variables appearing 
in the original call. So our original 
call returns the substitution 

~3 = (W / s(s(s(0))) ). 

As noted above, any clause C (whether unit 
or not) is treated logically as 
universally quantified formula with all 
(apparently) free variables being 
quantified. Moreover, logic programming 
systems operate so as to preserve the 
standard semantics of the predicate 
calculus. Since one of the standard rules 
is "change of bound variable" (or 
ok-conversion in the lambda calculus), 
this is preserved by logic programming 
systems. Two consequences of this are 
immediate. First, that the scope of (the 
implicit declaration of) an identifier is 
simply the clause in which it occurs. And 
second, that variable binding is static, 
rather than dynamic. Finally, it is 
obvious that the calling mechanism is 
call-by-name, since the system acts at all 
times as if it had actually substituted 
the computed values of variables for any 
occurrences of those variables. 

PROLOG'S pattern-matchlng is carried 
out by means of the unification process. 
First some notation and terminology. 
Application of a substitution ~ to a term 
t is indicated by t~ . A substitution ~9" 
is a unifier for terms a and b if a~ and 
b 6~ are identical. If ~i and ~2 are 
both substitutions, ~I is more general 
than ~2 provided there exists a 
substitution ~ such that a ~i~L = a~2 
for any a. There exist almost linear 
algorithms which given two terms a and b 
will compute a most general unifier for 
them if such exists, and indicate the 
non-existence otherwise. As the computed 
substitution 81 in (18) indicates, the 
process treats the input terms a and b 
symmetrically. The pattern matching 
afforded by uniification is similar to 
that found in CONNIVER and QLISP using 
"open segment" variables (cf. Bobrow and 
Raphel[1974]). Since use of unification 
and terms allows abstract (or axiomatic) 
data type manipulation (see the example 
for trees below), and since logical 
variables can occur at any point in term 
structures, it can be said that pattern 
matching by means of unification is more 
powerful than that in QLISP or CONNIVER. 
Unification algorithms (for string 
representations of terms) can be easily 
programmed in SNOBOL (cf. 
griswold[1968]), so pattern matching in 
SNOBOL is as strong as that of 
unification. On the other hand, PROLOG 
systems provide primitive representations 
of strings, and using these, it is easy to 
program SNOBOL-type pattern matches. So 
from the point of view of pattern matching 
in strings, PROLOG and SNOBOL provide 
equivalent facilities. However, as is the 
case vis a vie CONNIVER and QLISP, PROLOG 
allows pattern matching at all levels in 
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user defined data types other than 
strings, and so in this important sense 
provides more powerful pattern matching 
facilities than SNOBOL. 

The overall action of the PROLOG 
processor can now be described as follows. 
The user presents the processor with a 
database of procedure definitions together 
with a goal clause (14) to be solved. The 
processor transforms the goal clause, in a 
manner to be described, until it is 
reduced to the empty clause <-- , if such 
a reduction is at all possible; if and 
when the empty clause is produced, the 
computed substitution is returned to the 
user. 

The processing of non-empty goal 
clauses (14) proceeds as follows. At each 
cycle, one Ci is selected. Any selection 
function will do (cf. Kowalski and 
Kuehner [1971] and Hill [1974]); PROLOG 
systems choose the left-most. The 
processor searches through its database 
seeking to match Ci against some procedure 
head by means of unification. If 

D <-- Ei,...EK (20) 

is such a procedure and ~ is the computed 
unifier of Ci and D, the previous goal 
(14) is replaced by the new goal 

<--(Cl,..,Ci-l,El,..,Ek,Ci+l,..,Cn)~. 
(21) 

Just as in ordinary procedural languages, 
infinite computations are possible. Note 
that it is allowable that the selected Ci 
be matchable against more than one 
procedure head in the database, thus 
permitting non-deterministic computations. 
PROLOG deals with this non-determinism by 
use of backtracking search strategies. If 
after a match of one part of the procedure 
definition (as above) the resulting 
computation (21) fails, then the processor 
attempts to find alternative matches with 
other parts of the procedure definition. 
In a word, in one match fails, it tries to 
find alternative matches. The order in 
which it attempts the matches is usually 
the order in which the parts of the 
procedure definition were entered into the 
database. Different logic programming 
systems allow the user varying degrees of 
control as to whether only one successful 
computation is sought or all are sought, 
etc. 

The extreme generality of the 
pattern-matching process provided by 
unification makes possible the use of any 
data type which can be abstractly defined 
in first-order logic. Thus logic 
programming permits both the style of 
programming with abstract data types and 
also the style of programming with 
input~output (verification) conditions 
(cf. van Emden [1976]). 

IV. An Example 

Consider the problem of insertion of 
labels in a binary search tree. The 
verification condition is: 

tree(T) & label(L) & insert(T,L,T') 
=> tree(T'), (22) 

where tree(T) is to indicate that T is a 
binary search tree and insert(T,L,T') is 
to indicate that the tree T' results from 
the tree T by insertion of the label L. 
Let < be a previously defined linear 
relation on labels, let emp denote the 
empty tree, and let tr be a tree 
constructor: if X and Y are binary search 
trees and L is a label, tr(X,L,Y) is to be 
the binary search tree with X as its left 
subtree, L its label, and Y as its right 
subtree : 

L 

The natural way to give an inductive 
definition of tree is to specify that emp 
is a (binary search) tree, and that if X 
and Y are (binary search) trees and L is a 
label which follows all the labels in X 
with respect to < and preceeds all the 
labels in Y with respect to <, then 
tr(X,L,Y) is also a (binary search) tree. 
The logical definition of tree can now be 
given by (cf. Clark and Tarn!und [1977]): 

tree(emp) & 
X,Y,L [tree(tr(X,L,Y) <=> (23) 
label(L) & tree(X) & tree(Y) & 

M [labelof(X,M) => M < L] & 
M [labelof(Y,M) => L < M ] ]. 

Labelof is given the definition: 

labelof(tr(X,L,Y),M) <=> (24) 
(L = M) V labelof(X,M) 

V labelof(Y,M). 

(Here V indicates logical disjunction: 
inclusive or). Using these as a basis for 
analysis, the insert predicate can be 
given the followin~ formal definition: 

insert(emp,L,tr(emp,L,emp)) & (25) 
X,Y, .... [ insert(tr(X,M,Y) ,L,tr(W,N,Z) ) 

<=> M = N & 
JIM = L & X = W & Y = Z] 
V[L < M & insert(X,L,W) & Y = Z] 
V[L > M & X = W & insert(Y,L,Z) ]]]. 

For to insert a label L in the empty tree 
is simply to build the tree tr(emp,L,emp). 
On the other hand, to insert L in the tree 
tr(X,M,Y) we proceed recursively as 
follows: if L < M, insert L in the 
subtree X, and if M < L, insert L in the 
subtree Y; if L = M, do nothing since L 
is already in the tree. From (25) we 
extract the following logic program, which 
is easily seen to be an analysis by cases: 
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insert(emp,L,tr(emp,L,emp)). 
insert(tr(X,L,Y),L,tr(X,L,Y)). 
insert(tr(X,M,Y),L,tr(W,M,Y) 

<-- L < M, insert(X,L,W). 
insert(tr(X,M,Y),L,tr(X,M,Z)) 

<-- M < L, insert(Y,L,Z). 

(26) 

Program (26) essentially consists of the 
"if" directions of the "if and only if" 
clauses in (25). (Cf. Clark and Tarnlund 
[1977] for proofs of termination and 
correctness for this program.) To further 
suggest the flavor of PROLOG programming, 
the addition of the following clauses to 
(26) results in a program to read a file 
LABELS of labels, construct the binary 
search tree for these labels, and print 
out a representation of the tree on the 
terminal: 

process(FILE)<-- see(FILE), 
doinserts(emp,TREE), 
close(FILE), 
display(TREE,l). 

doinserts(Ti,T2)<-- read(LABEL) , 
integer (LABEL) , 
insert(Ti,LABEL,T3), 
doinserts(T3,T2) . 

doinserts(Ti,Tl) . 

display(emp,TB). 
display(tr(U,L,V),TB)<--nl, 

tab(TB),write(L), 
TBi is TB+3, 
display(U,TBl), 
display(V,TBl). 

(27) 

Here the procedures see and close handle 
the opening and closing of--Ms on the 
current channel, integer is the obvious 
built-in predicate, nl starts a new line 
on the output channel,--~ead and write do 
as their names imply, and tab outputs the 
indicated number of spaces. The "is" 
construction, which permits access to 
machine arithmetic, is explained below. 
The program is invoked by submitting the 
goal clause 

<--process(LABELS). (28) 

to the processor. Given the input FILE 
consisting of the integers 3, 45, -44, 13, 
134, -99, 33, and 435 (in that order), the 
program will produce the following output 
on the terminal: 

3 
-44 

-99 
45 

13 
33 

134 
435 

The term generated looks like: 

tr(tr(tr(emp,-99,emp),-44,emp),3,tr(tr(e.. 

Both of these are representations of the 
tree which is most naturally displayed as: 

-44 45 
-99 13 134 

33 435 

This last output was also generated 
(slightly more complicated) 
program. 

by a 
PROLOG 

Tab could have been defined by the 
clauses: 

tab(0). (29) 
tab(s(X)) <-- write(' '), tab(X). 

Then the clauses (9) defining sum would 
have been added, and the expression 

TBi is TB + 3 (30) 

would have been replaced by 

sum(TB, s(s(s(0))), TBi). (31) 

The "is" construction in ((27) and (30) 
allows access to arithmetic on the 
underlying machine. On the left it 
expects a variable. On the right it 
expects an arithmetic expression which it 
evaluates and binds to the variable on its 
left. 

On the other hand, (29) illustrates 
the use of unification and sequencing as 
control structures. On any given call to 
tab, unification is used to test whether 
the actual parameter is identical with 0. 
If it is, the call immediately succeeds. 
If it isn't, unification is used to test 
whether the actual argument is of the form 
s(X). If so, the unification process will 
have indicated the necessary value for X 
in order to achieve the match; this value 
is used in executing the body of the 
second clause of (29). If by chance the 
actual argument is not of the form s(X), 
the call fails. 

Another (controversial) control 
mechanism present in the PROLOG systems is 
the cut determiner, symbolized by !. As a 
procedure, any call on this expression 
immediately succeeds. However, if later 
calls to other procedures fail, causing an 
attempt to backtrack, the backtracking 
cannot be propagated back across the cut. 
Thus crossing a cut definitely commits the 
program/processor to the computation 
produced thus far. To illustrate its 
power, here is a way of defining an 
operator which functions like negation: 

not(P) <-- P, !, fail. 
not(P). (32) 

The procedure fail simply always fails (by 
simply always being undefined) and does 
nothing else. Now suppose a given call of 
not has as a value for P a term (in this 
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context, an atomic formula!) which is in 
fact verifiable by the processor (i.e., 
running the procedure call to which P is 
bound will succeed). In attempting to run 
the first clause of (32), the processor 
first runs the procedure to which P is 
bound, which succeeds, next runs the cut 
procedure (!) which succeeds, and then 
runs the fail procedure, which fails. At 
this point the processor would normally 
unwind the previous computation in the 
clause, looking for decision points at 
which alternate computation paths could be 
followed. But this is prevented by the 
cut. Consequently its attempt to run the 
first clause of (32) fails; moreover, 
because it is prevented from backtracking, 
it cannot try any other clause defining 
not for the given procedure call of not. 
Consequently, this call of not(P) fails, 
as it ought to, since P succeeds. On the 
other hand, if P fails, the processor is 
allowed to backtrack out of the first 
clause since the failure of P occurs 
before the cut can be executed. But now 
the processor can run the second clause of 
(32), and this immediately succeeds. 
Hence the call of not(P) succeeds whenever 
P fails. It should be stressed that this 
negation is not true logical negation, but 
rather negation b_y failure: not(P) 
succeeds precisely when the processor 
fails to prove P. (None of the early 
PROLOG implementations incorporate a 
primitve negation, though all incorporate 
cut. IC-PROLOG (Clark and McCabe [1979]) 
does provide negation as a built-in 
primitive. ) The difficulty with negation 
by failure (and a fortiori, the cut 
determiner) is that at first glance it 
appears to destroy the natural 
denotational semantics of logic, since its 
apparent definition is stricly 
process-oriented. However, Clark [1978] 
has shown that such use of negation by 
failure can be logically interpreted as 
follows. A negative goal :-not(P) is 
failure-derivable over a database D of 
procedures if and only if not(P) is a 
logical theorem in the theory D + D', 
where D' consists of all the converses of 
the clauses (implications) in D. 

The cut determiner is analogous to 
the fence operator of SNOBOL (cf. 
Griswold[1968]). Both have the same 
control over their corresponding 
backtracking mechanisms, and both are 
quite primitve mechanisms for such 
control, as compared to the mechanisms of 
CONNIVER or truth-maintenance systems 
(Doyle[1978]). Yet careful use of these 
primitive mechanisms can have remarkable 
effects on the efficiency or even logical 
character of programs. The fundamental 
difference between these mechanisms and 
the more sophisticated backtracking 
algorithms of CONNIVER and truth 
maintenance systems is simply the extent 
of necessary explicit programmer concern 
for the backtracking. 

V. The Database Interpretation of Logic 

The action of a theorem prover can 
also be seen as the action of a database 
machine attempting to respond to queries 
over a database of assertions. This 
database is defined both by definite 
assertions and general laws. Consider a 
collection of unit clauses containing no 
variables: 

cost(bolt23,34). 

cost(bolt31,233). 

cost(bolt27,55). 
(33) 

cost(bolt41,09). 

These assertions can alternatively be 
viewed as part of an array "cost": 

cost ! 
bolt23 ! 34 
bolt27 ! 55 
bolt31 ! 233 
bolt41 ! 9 

(34) 

Such arrays are of course just relations 
in extension, and so the collection of 
such definite unit clauses can be viewed 
as defining the extensional portion of a 
relational data base(cf. Codd[1970]). 
Clauses containing variables can be taken 
as intensionally specifying relations. 
For example, if comp is to define the 
"component of" relation, the following 
provide both extensional and intensional 
aspects of comp: 

comp(bolt23,widget9). 
comp(bolt23,widgetll). 
comp(bolt31,widgetll). 
comp(bolt41,widget9). 

comp(X,X). 
comp(X,Z) <-- 

comp(X,Y), 
subassembly(Y,Z). 

(35) 

A query over such a database is then 
simply a goal clause (14) with the logical 
interpretation (15). The response of the 
machine to the query is to attempt to show 
the query inconsistent with the database, 
using the same processing technique as 
indicated in the procedural 
interpretation. If the machine succeeds, 
the query is given an answer. If the 
machine provides simply one substitution 
as indication of success, the tuple of 
values corresponding to the variables in 
the query is the answer. If the machine 
provides a collection of such 
substitutions, the set of all the 
corresponding tuples is a relation which 
constitutes the answer. The retrieval 
procedure is the action of the theorem 
prover; in the case of PROLOG systems, it 
is SL-resolution. (cf. van Emden[1978]). 

A number of interesting relations and 
retrieval operations can now be defined. 
The first will retrieve the list of 
components of a given entity. These 
definitions will make use of the built-in 

19 



list facilities of PROLOG. The list with 
elements A,B, and C is denoted [A,B,C]; 
the empty list is []. The list with head 
(first element) A and tail T is denoted 
[A,..T]. The relation append(L,M,N) which 
holds when N is the result of appending M 
to L is defined: 

append([],M,M). 
append([H,..L],M,[H,..N])<-- 
append(L,M,N). 

(36) 

As expected, the query 
<--append([a,b],[c,d],N) will produce the 
result N = [a,b,c,d]. It is, however, 
interesting and useful to note that the 
symmetry and generality of unification 
make a great many other uses of this 
definition possible. For example, the 
query <--append([a,b],M,[a,b,c,d]) will 
produce the response M = [c,d], while the 
query <--append(L,[c,d],[a,b,c,d]) will 
produce the response L = [a,b]. Any 
successful computation of the query 
<--append(L,M,[a,b,c,d]) produces a pair 
(L,M) which is a partition of [a,b,c,d]; 
the set of all such successful 
computations yields the set of all 
partitions of this list. It is also 
interesting that the use of unification 
for matching allows the number of 
arguments of procedures to vary. The 
following clause may be added to the 
definition of append: 

append(Li,L2,L3,N)<--append(Li,L2,M) , 
append(M,L3,N). (37) 

Then a query <--append([l],[2],[3],R) will 
produce the response R = [1,2,3]. 

The membership relation is defined in 
the natural recursive way: 

on(X,[X,..T]). 
on(X,[Y,..T]) <-- on(X,T). 

(38) 

Using these, we can now retrieve the list 
of components of a given item: 

getComponents(A,L) <-- 
compList(A,[],L). 

compList(A,L,N) <-- comp(X,A), 
not(on(X,L)), 
append(L,[X],M), 
compList(A,M,N). 

compList(A,L,L). 

(39) 

The relation compList(A,L,M) holds 
whenever L is a partial list of components 
of A, and M is the extension of L to the 
complete list of components of A. The 
definition given constructs these lists in 
the order the components are retrieved 
from the database. If the order of the 
lists is immaterial, the first clause of 
compList can be replaced by the more 
efficient: 

compList(A,L,N) <-- comp(X,A) , 
not(on(X, L)) , (40) 

compList(A, [X,..L] ,N) . 

Now the definition of cost (which here is 
simply material cost) can be extended to 
all items: 

cost(A,C) <-- getComponents(A,L), 
sumCosts(L,C) . 

(41) 
sumCosts([],0). 
sumCosts([H,..T],S) <-- sumCosts(T,ST), 

cost(H,CH), 
S is ST+CH. 

Various schemes have been studied for 
integrating the action of the logic 
processor with a database management 
system for retrieval of tuples from the 
extensional part of the database. Some 
approaches process a query against the 
intensional part of the database to 
construct a set of atomic queries which 
are then handed to the database management 
system. This style of approach is used by 
Kellog et al. [1978], Minker [1978], and 
Reiter [1978]. Another approach 
integrates the extensional database 
retrieval operations with the indexing 
methods of the logic processor so that 
intensional and extensional processing are 
integrated. 

VI. Natural Language Processing 

Computational approaches to natural 
language processing are of great current 
interest, especially in the database 
community. Indeed, Alain Colmerauer's 
principal motivation in working on the 
development of PROLOG was to devise a 
suitable vehicle for his investigations in 
natural language processing (cf. 
Colmerauer et al [1973] and Colmerauer 
[1978]). The present implementations of 
PROLOG incorporate grammar rules in their 
syntax; these make possible a quite 
direct expression of Colmerauer's 
metamorphosis grammars. Here we will 
sketch an alternate approach inspired by 
the work of Richard Montague [1970]. As 
with Colmerauer's work, PROLOG provides an 
especially suitable vehicle for expressing 
the requirements of Montague grammars. 

A system which allows natural 
language queries to a database would be 
expected tQ process the natural language 
into an internal logical form, respond to 
this form with another loglc~ form, and 
then process its response back into 
natural language, as the following 
top-level relations suggest: 

cycle <-- input(Expression), (42) 
internalForm(Expression,Formulal), 
respond(Formulal,Formula2), 
internalForm(Response,Formula2), 
output(Response), 
cycle. 

For simplicity, assume that input produces 
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a list consisting of the words, in order, 
in the natural language expression. Then 
the following clauses begin the definition 
of internalForm (which we will abbreviate 
as iF) : 

iF(E, [NP,VP]) <-- append(NP,VP,E), 
nounPhrase(NP) , 
intransitiveVerbPhrase(VP) . 

(43) 
iF(E, [NP,VP,OBJ]) <-- 
append (NP,VPi, OBJ,ADV, E) , 

nounPhrase (NP) , nounPhrase(OBJ) , 
append (VPi,ADV,VP) , 
transitiveVerbPhrase(VPl) , 
adverb (ADV) . 

iF(E, [conj, Fi,F2]) <-- 
append (El, [and] , E2, E) , 
iF(E1, FI), IF(E2, F2). 

iF(E, [negation F]) <-- 
append (El, [not] , E2, E) , 
append(Ei,E2,E3) , iF(E3,F) . 

Notice that the backtracking facilities of 
PROLOG provide mechanisms for interaction 
between the syntactic and semantic 
components in (42). For should response 
fail (presumably because it cannot 
interpret Formulal), backtracking will 
lead internalForm to search for an 
alternate construal of the input 
expression. The same consideration can 
extend to response itself. After 
producing a response Formula2 in (42), the 
final action of the program is to 
recursively call itself. Should the user 
input some sentence such as "I don't 
understand(or accept) that," the program 
for response could react to the logical 
form of this by failing, which would 
eventually backtrack into an attempt to 
find a different response to the original 
input (and perhaps to reconstrue the 
original input). 

Vll. Final Remarks 

The point of view of logic 
programming is to decompose algorithms 
into a logic component and a control 
component. For a wide range of normal 
programming problems, the logic component 
can be specified in Horn clause logic and 
will run correctly under any choice of 
control component. A common procedure is 
to specify the problem in full first-order 
logic, and then derive the clausal program 
by standard logical transformations (cf. 
Clark and Tarnlund [1977] and Nilsson 
[1971], Chapter 6). On the other hand, in 
his forthcoming book [1979], Kowalski 
amply demonstrates that the clausal form 
is often an extremely natural medium for 
expression of problem solutions. A note 
about efficiency is in order here. The 
naturual methodology when working in 
PROLOG is to first express the problem 

(often its specifications) in as clear and 
direct form as possible in Horn clauses. 
Often these will run quite efficiently 
(cf. Warren et al. where the PROLOG's 
efficiency is favorably contrasted with 
that of LISP). When this is not the case, 
one then begins transforming the program 
into an equivilant, but more efficient 
one, by additions or alterations of the 
control structure (sequencing and use of 
the cut determiner). Programs of quite 
acceptable efficiency can be obtained in 
this way. Moreover, working in PROLOG has 
the advantange that in the transition from 
initial specification to final (efficient) 
program, one remains in the same language, 
avoiding the problems of transition from 
logical specifications to 
procedurally-oriented languages. 

A wide variety of semantics are 
available for logic programs. Any logic 
program automatically carries with it the 
usual Tarskian semantics. It is this 
semantics which is involved in both 
intuitive and formal specifications of 
programs (both logic programs and those of 
other languages). This standard semantics 
was connected with the fixed-point 
semantics in van Emden and Kowalski 
[1976]. Besides the procedural and 
database interpretations discussed above, 
it is possible to provide a flowchart 
semantics (cf. Clark and van 
Emden[1979]), and a parallel-process 
semantics (cf. van Emden and Lucena 
[1979]) in which a goal statement is 
interpreted as a network of stacks 
interconnected by channels. 

Some natural expressions of problems 
require extensions of Horn clause logic, 
as illustrated above. Negation is 
valuable (and problematic). Current 
research is studying both extensions to 
the logic components (to include more of 
full first-order logic and to study the 
merger of Horn clause logic and its 
metalanguage) and to the control component 
(especially to study the use of 
co-routining and parallel execution). 
Related work is also underway 
investigating the incorporation of logic 
programming constructs into existing 
high-level languages, notably LISP. 
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