
PROLOG

Kenneth A. Bowen
Syracuse University

I. Theorem Provers as Logic Machines

Exactly i00 years ago, the
first-order predicate calculus was created
and defined by Gottlob Frege. In the
ensuing century his system was studied and
refined by such logicians as Bertrand
Russell, David Hilbert, Kurt Godel,
Jacques Herbrand, Alonzo Church, and Alan
Turing. In the 1950's and 60's attempts
were made to use the results of these
studies (especially those of Herbrand) in
order to program computers to prove
theorems automatically. These attempts
introduced a new demon to the study of
logic: ferocious computational
complexity. The investigations of methods
to avoid this demon led to the development
of new systems of logic which are
equivalent to the traditional systems, but
are more suited to the efficient
mechanical construction of proofs. The
most notable among these is the resolution
system of J. Alan Robinson [1965],[1979].
Cordell Green [1969] proposed the use of
resolution systems in the construction of
deductive question-answering systems, and
this proposal eventually led Robert
Kowalski [1974] to propose the so-called
procedural interpretation of logiq which
forms the basis for the use of logic as a
programming language.

Consider a formula

Vxl,...,xn~yl,...,ym A(xl,...,ymS, (i)

where A may be an arbitrary formula. It
is built up from various primitive atomic
formulas, for example "less than(x,y)," or
"tree(t)," or "zip(x,y,z)?" The atomic
formulas are abstract symbol strings

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
.advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

©1979 ACM 0-89791-008-7/79/1000/0014 $00.75

having no intrinsic meaning apart from
what a user imparts to them. Given a
choice of meanings for the atomic
formulas, the meaning of a compound such
as (i) is determined in a standard and
fixed way, as given in any of hundreds of
logic textbooks. Suppose that with such a
choice of meanings, formula (i) turns out
to be true. Then it can be regarded as
describing the input-output relation for
an abstract machine or program, taking x's
as input and yielding y's as output. If
the y's are not uniquely determined by the
x's, the machine is non-deterministic.

Virtually all automatic
theorem-proving systems are constructive
in the sense that when faced with a
formula of the form (15, and given terms
sl,...,sm, the system will attempt to find
terms tl,...,tm such that it can prove

A(sl,...,sn,tl,...,tm) (2)

is a true formula. Since the terms
tl,...,tm are built up from xl,...,xn
using the available symbols of the
language at hand, this substitution
(yl,...)-->(tl,...) can be regarded as a
computation procedure: given particular
terms sl,...,sn for the x's, construct the
appropriate tl',...,tm' out of the
sl,...,sn. One view of this process is
that in searching for a proof of (15, the
theorem-prover constructs the expression

A(xl ,xn, ~i, ~mS, (3)

where ~i , ~m are metavariables
ranging over expressions of the language,
and attempts to find values (expressions)
for these variables so that the resulting
formula (2) is provable. Resolution
systems, as well as other systems, will
carry out this search in a
pattern-directed way so that if the
xl,...,xn are replaced by sl,...,sn,
yielding

A(sl sn, ~i ~m), (4)

the resulting search will produce
appropriate instances tl',...,tm'.

14

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800177.810020&domain=pdf&date_stamp=1979-01-01

Thus the formula A(xl,...,ym) together
with the automatic theorem-prover
constitute a program~machine pair which,
given particular inputs sl,...,sn,
computes outputs tl',...,tm'.

Seen this way, any automatic
theorem-prover which behaves in such a
pattern-directed constructive manner can
be used as an interpreter or logic machine
which will run logic formulas as programs.
The fly in the ointment (or if you like,
the sand in the gears) is the demon of
computational complexity: most
theorem-provers run much too slowly to be
of practical use as logic machines.
However, since a few very efficient
practical logic machines do exist, the
logic programming programme is both viable
and exciting. The general programme has
these two constituents:

(i) to devise systems of logic
suitable for easily expressing real
computational problems;

(ii) to construct suitable theorem
provers for these logics which can be used
as practical logic machines.

II. PROLOG Systems

The most completely engineered logic
programming systems to date are the PROLOG
systems (cf. P. Roussel [1975], G.
Roberts[1977], D. Warren et ai.[1977],),
which are based on ideas of Kowalski,
Colmerauer, Roussel, Hayes, and Boyer and
Moore (cf. Kowalski [1974], p.573). With
minor variations, the syntax of these
systems runs as follows. Both integers
and identifiers are atomic terms.
Identifiers preceeded by ' ' are
variables. One can optionally ~hoose to
take all identifiers beginning with an
uppercase letter as variables; this
option will be exercised here. Compound
terms are expressions of the form
a(bl,...bn) , where a is an identifier and
bl,...bn are terms. An expression of the
form

B. (5)

is a (unit) clause (or unconditional
assertion) profit-- that B is a term.
When B and Ci,...Cn are all terms,

B <-- Cl Cn (6)

is a clause (or conditional assertion).
Collect~y, Conditional and
unconditional assertions are referred to
as Horn clauses. A program is a list of
clauses. The terms appearing at top-level
in clauses are regarded as atomic formulas
in the usual systems of predicate logic.
Clause (5) is treated logically as

~xl xn B (7)

where xl,...,xn are all the variables

occurring in B, and clause (6) is
understood logically as

~xl,...,xn[Cl & ... & Cn => B], (8)

where => indicates logical implication.
Programs are treated logically as the
conjunction of the clauses of which they
are composed. Consider the following
examples:

sum(X,0,X).
sum(X,s(Y),s(Z)) <-- sum(X,Y,Z). (9)

prod(X,0,0).
prod(X,s(Y),Z) <-- (i0)

prod(X,Y,W),sum(W,X,Z).

fact(0,s(0)) .
fact(s(X),Z) <--

fact(X, Y) ,
prod (S (X) ,Y,Z) .

(ii)

Here sum(X,Y,Z) means that X + Y = Z,
prod(X,Y,Z) means that X*Y = Z, and
fact(X,Y) means that Y is the factorial of
X. These are easily recognizable as the
familiar inductive definitions of the
addition, multiplication, and factorial
functions. (While arithmetic can be done
this way, PROLOG systems provide direct
access to machine arithmetic as will be
shown later.) Let SUM be the ordinary
logical correspondent of (9):

SUM = VX sum(X, 0,X) & (12)
~/X,Y,Z[sum(X,Y,Z)

=> sum(X,S(Y) ,s(Z))] .

Similarly, let PROD and FACT be the
logical correspondents of (i0) and (ii),
respectively. Consider the formula

SUM & PROD & FACT (13)
=> fact(s(s(s(0))),Y).

A suitable prover attacking this formula
would find the satisfying substitution:

Y = s(s(s(s(s(s(0)))))).

III. The Procedural Interpretation of
Logic

The PROLOG processor does not make
use of (13), however. Instead, it
maintains the clauses (9) - (ii) as an
internal database, and accomplishes its
searches by:

(a) utilizing the notion of goal
clause;

(b) utilizing the procedural
interpretation of non-goal clauses;

(c) utilizing the unification process
for its pattern-matching.

A goal clause is an expression of the form

<-- Cl,...,Cn. (14)

This is treated logically as

15

k~/xl,...,xk not-(Cl & ...& Cn), (15)

where xl,...,xk are all the variables
occurring in any of Cl,...,Cn. If DB is
the collection of (non-goal) clauses in
the processor's database, the logical
effect of submitting a goal clause (14) is
to cause the processor to attempt to
determine whether or not (15) is
inconsistent with DB. The processor
succeeds if and only if it proves (15) to
be inconsistent with DB, and hence that
~xl...xk(Cl&...&Cn) is a logical
consequence of DB.

The procedural interpretation
clauses runs as follows. A clause

of

f(al,...,an) <-- Cl,..., Cm (16)

is treated as part of the definition of a
procedure named f; the head of this part
of the definition of f is f(al,...,an),
and the body is the set

Cl,...,Cm, (17)

where the CI,...,Cm are themselves
procedure calls. Each invocation of a
procedure which terminates is regarded as
being either successful or unsuccessful.
The sense of (16) is then that in order to
successfully run f on an input vector
whose pattern matches (al,...,an) it
suffices to successfully execute the calls
in (17), using as values for variables
which occur in al,...,an any values
obtained when the actual input vector to f
was matched against (al,...,an).
Variables occurring in any of al,...,an
are the formal parameters of the procedure
f; variables occurring in any of
Ci,...,Cm but not in al,...,an are the
local variables of the procedure. For
example, the procedure call
sum(s(s(0)) ,s(0),W) will not match the
head of the first clause in (9), but will
match the second clause using the
substitution

~i = (x/s(s(0)), Y/0,W/s(z)). (18)

(In general, if ~ is a substitution which
replaces the variable X by the term a, the
variable Y by the term b, etc., then
will be written as ~= (X/a, Y/b).)
Consequently the sense of (9) is that in
order to execute the given call of sum, it
suffices to execute the call
sum(s(s(0)) ,0,Z). A unit clause is
regarded as a procedure definition with an
empty body which immediately succeeds
whenever the given input vector pattern is
matched. Since the call sum(s(s(0)),0,Z)
matches the first clause of (9) using the
substitution

~2 = (X/s(s(0)) , Z/s(s(0))) , (19)

this call immediately succeeds yielding
the substitution 82. The PROLOG
processor returns from the original call

t~atmportion of the composed substitutions
~I [~2 applying to the variables appearing
in the original call. So our original
call returns the substitution

~3 = (W / s(s(s(0)))).

As noted above, any clause C (whether unit
or not) is treated logically as
universally quantified formula with all
(apparently) free variables being
quantified. Moreover, logic programming
systems operate so as to preserve the
standard semantics of the predicate
calculus. Since one of the standard rules
is "change of bound variable" (or
ok-conversion in the lambda calculus),
this is preserved by logic programming
systems. Two consequences of this are
immediate. First, that the scope of (the
implicit declaration of) an identifier is
simply the clause in which it occurs. And
second, that variable binding is static,
rather than dynamic. Finally, it is
obvious that the calling mechanism is
call-by-name, since the system acts at all
times as if it had actually substituted
the computed values of variables for any
occurrences of those variables.

PROLOG'S pattern-matchlng is carried
out by means of the unification process.
First some notation and terminology.
Application of a substitution ~ to a term
t is indicated by t~ . A substitution ~9"
is a unifier for terms a and b if a~ and
b 6~ are identical. If ~i and ~2 are
both substitutions, ~I is more general
than ~2 provided there exists a
substitution ~ such that a ~i~L = a~2
for any a. There exist almost linear
algorithms which given two terms a and b
will compute a most general unifier for
them if such exists, and indicate the
non-existence otherwise. As the computed
substitution 81 in (18) indicates, the
process treats the input terms a and b
symmetrically. The pattern matching
afforded by uniification is similar to
that found in CONNIVER and QLISP using
"open segment" variables (cf. Bobrow and
Raphel[1974]). Since use of unification
and terms allows abstract (or axiomatic)
data type manipulation (see the example
for trees below), and since logical
variables can occur at any point in term
structures, it can be said that pattern
matching by means of unification is more
powerful than that in QLISP or CONNIVER.
Unification algorithms (for string
representations of terms) can be easily
programmed in SNOBOL (cf.
griswold[1968]), so pattern matching in
SNOBOL is as strong as that of
unification. On the other hand, PROLOG
systems provide primitive representations
of strings, and using these, it is easy to
program SNOBOL-type pattern matches. So
from the point of view of pattern matching
in strings, PROLOG and SNOBOL provide
equivalent facilities. However, as is the
case vis a vie CONNIVER and QLISP, PROLOG
allows pattern matching at all levels in

16

user defined data types other than
strings, and so in this important sense
provides more powerful pattern matching
facilities than SNOBOL.

The overall action of the PROLOG
processor can now be described as follows.
The user presents the processor with a
database of procedure definitions together
with a goal clause (14) to be solved. The
processor transforms the goal clause, in a
manner to be described, until it is
reduced to the empty clause <-- , if such
a reduction is at all possible; if and
when the empty clause is produced, the
computed substitution is returned to the
user.

The processing of non-empty goal
clauses (14) proceeds as follows. At each
cycle, one Ci is selected. Any selection
function will do (cf. Kowalski and
Kuehner [1971] and Hill [1974]); PROLOG
systems choose the left-most. The
processor searches through its database
seeking to match Ci against some procedure
head by means of unification. If

D <-- Ei,...EK (20)

is such a procedure and ~ is the computed
unifier of Ci and D, the previous goal
(14) is replaced by the new goal

<--(Cl,..,Ci-l,El,..,Ek,Ci+l,..,Cn)~.
(21)

Just as in ordinary procedural languages,
infinite computations are possible. Note
that it is allowable that the selected Ci
be matchable against more than one
procedure head in the database, thus
permitting non-deterministic computations.
PROLOG deals with this non-determinism by
use of backtracking search strategies. If
after a match of one part of the procedure
definition (as above) the resulting
computation (21) fails, then the processor
attempts to find alternative matches with
other parts of the procedure definition.
In a word, in one match fails, it tries to
find alternative matches. The order in
which it attempts the matches is usually
the order in which the parts of the
procedure definition were entered into the
database. Different logic programming
systems allow the user varying degrees of
control as to whether only one successful
computation is sought or all are sought,
etc.

The extreme generality of the
pattern-matching process provided by
unification makes possible the use of any
data type which can be abstractly defined
in first-order logic. Thus logic
programming permits both the style of
programming with abstract data types and
also the style of programming with
input~output (verification) conditions
(cf. van Emden [1976]).

IV. An Example

Consider the problem of insertion of
labels in a binary search tree. The
verification condition is:

tree(T) & label(L) & insert(T,L,T')
=> tree(T'), (22)

where tree(T) is to indicate that T is a
binary search tree and insert(T,L,T') is
to indicate that the tree T' results from
the tree T by insertion of the label L.
Let < be a previously defined linear
relation on labels, let emp denote the
empty tree, and let tr be a tree
constructor: if X and Y are binary search
trees and L is a label, tr(X,L,Y) is to be
the binary search tree with X as its left
subtree, L its label, and Y as its right
subtree :

L

The natural way to give an inductive
definition of tree is to specify that emp
is a (binary search) tree, and that if X
and Y are (binary search) trees and L is a
label which follows all the labels in X
with respect to < and preceeds all the
labels in Y with respect to <, then
tr(X,L,Y) is also a (binary search) tree.
The logical definition of tree can now be
given by (cf. Clark and Tarn!und [1977]):

tree(emp) &
X,Y,L [tree(tr(X,L,Y) <=> (23)
label(L) & tree(X) & tree(Y) &

M [labelof(X,M) => M < L] &
M [labelof(Y,M) => L < M]].

Labelof is given the definition:

labelof(tr(X,L,Y),M) <=> (24)
(L = M) V labelof(X,M)

V labelof(Y,M).

(Here V indicates logical disjunction:
inclusive or). Using these as a basis for
analysis, the insert predicate can be
given the followin~ formal definition:

insert(emp,L,tr(emp,L,emp)) & (25)
X,Y, [insert(tr(X,M,Y) ,L,tr(W,N,Z))

<=> M = N &
JIM = L & X = W & Y = Z]
V[L < M & insert(X,L,W) & Y = Z]
V[L > M & X = W & insert(Y,L,Z)]]].

For to insert a label L in the empty tree
is simply to build the tree tr(emp,L,emp).
On the other hand, to insert L in the tree
tr(X,M,Y) we proceed recursively as
follows: if L < M, insert L in the
subtree X, and if M < L, insert L in the
subtree Y; if L = M, do nothing since L
is already in the tree. From (25) we
extract the following logic program, which
is easily seen to be an analysis by cases:

17

insert(emp,L,tr(emp,L,emp)).
insert(tr(X,L,Y),L,tr(X,L,Y)).
insert(tr(X,M,Y),L,tr(W,M,Y)

<-- L < M, insert(X,L,W).
insert(tr(X,M,Y),L,tr(X,M,Z))

<-- M < L, insert(Y,L,Z).

(26)

Program (26) essentially consists of the
"if" directions of the "if and only if"
clauses in (25). (Cf. Clark and Tarnlund
[1977] for proofs of termination and
correctness for this program.) To further
suggest the flavor of PROLOG programming,
the addition of the following clauses to
(26) results in a program to read a file
LABELS of labels, construct the binary
search tree for these labels, and print
out a representation of the tree on the
terminal:

process(FILE)<-- see(FILE),
doinserts(emp,TREE),
close(FILE),
display(TREE,l).

doinserts(Ti,T2)<-- read(LABEL) ,
integer (LABEL) ,
insert(Ti,LABEL,T3),
doinserts(T3,T2) .

doinserts(Ti,Tl) .

display(emp,TB).
display(tr(U,L,V),TB)<--nl,

tab(TB),write(L),
TBi is TB+3,
display(U,TBl),
display(V,TBl).

(27)

Here the procedures see and close handle
the opening and closing of--Ms on the
current channel, integer is the obvious
built-in predicate, nl starts a new line
on the output channel,--~ead and write do
as their names imply, and tab outputs the
indicated number of spaces. The "is"
construction, which permits access to
machine arithmetic, is explained below.
The program is invoked by submitting the
goal clause

<--process(LABELS). (28)

to the processor. Given the input FILE
consisting of the integers 3, 45, -44, 13,
134, -99, 33, and 435 (in that order), the
program will produce the following output
on the terminal:

3
-44

-99
45

13
33

134
435

The term generated looks like:

tr(tr(tr(emp,-99,emp),-44,emp),3,tr(tr(e..

Both of these are representations of the
tree which is most naturally displayed as:

-44 45
-99 13 134

33 435

This last output was also generated
(slightly more complicated)
program.

by a
PROLOG

Tab could have been defined by the
clauses:

tab(0). (29)
tab(s(X)) <-- write(' '), tab(X).

Then the clauses (9) defining sum would
have been added, and the expression

TBi is TB + 3 (30)

would have been replaced by

sum(TB, s(s(s(0))), TBi). (31)

The "is" construction in ((27) and (30)
allows access to arithmetic on the
underlying machine. On the left it
expects a variable. On the right it
expects an arithmetic expression which it
evaluates and binds to the variable on its
left.

On the other hand, (29) illustrates
the use of unification and sequencing as
control structures. On any given call to
tab, unification is used to test whether
the actual parameter is identical with 0.
If it is, the call immediately succeeds.
If it isn't, unification is used to test
whether the actual argument is of the form
s(X). If so, the unification process will
have indicated the necessary value for X
in order to achieve the match; this value
is used in executing the body of the
second clause of (29). If by chance the
actual argument is not of the form s(X),
the call fails.

Another (controversial) control
mechanism present in the PROLOG systems is
the cut determiner, symbolized by !. As a
procedure, any call on this expression
immediately succeeds. However, if later
calls to other procedures fail, causing an
attempt to backtrack, the backtracking
cannot be propagated back across the cut.
Thus crossing a cut definitely commits the
program/processor to the computation
produced thus far. To illustrate its
power, here is a way of defining an
operator which functions like negation:

not(P) <-- P, !, fail.
not(P). (32)

The procedure fail simply always fails (by
simply always being undefined) and does
nothing else. Now suppose a given call of
not has as a value for P a term (in this

18

context, an atomic formula!) which is in
fact verifiable by the processor (i.e.,
running the procedure call to which P is
bound will succeed). In attempting to run
the first clause of (32), the processor
first runs the procedure to which P is
bound, which succeeds, next runs the cut
procedure (!) which succeeds, and then
runs the fail procedure, which fails. At
this point the processor would normally
unwind the previous computation in the
clause, looking for decision points at
which alternate computation paths could be
followed. But this is prevented by the
cut. Consequently its attempt to run the
first clause of (32) fails; moreover,
because it is prevented from backtracking,
it cannot try any other clause defining
not for the given procedure call of not.
Consequently, this call of not(P) fails,
as it ought to, since P succeeds. On the
other hand, if P fails, the processor is
allowed to backtrack out of the first
clause since the failure of P occurs
before the cut can be executed. But now
the processor can run the second clause of
(32), and this immediately succeeds.
Hence the call of not(P) succeeds whenever
P fails. It should be stressed that this
negation is not true logical negation, but
rather negation b_y failure: not(P)
succeeds precisely when the processor
fails to prove P. (None of the early
PROLOG implementations incorporate a
primitve negation, though all incorporate
cut. IC-PROLOG (Clark and McCabe [1979])
does provide negation as a built-in
primitive.) The difficulty with negation
by failure (and a fortiori, the cut
determiner) is that at first glance it
appears to destroy the natural
denotational semantics of logic, since its
apparent definition is stricly
process-oriented. However, Clark [1978]
has shown that such use of negation by
failure can be logically interpreted as
follows. A negative goal :-not(P) is
failure-derivable over a database D of
procedures if and only if not(P) is a
logical theorem in the theory D + D',
where D' consists of all the converses of
the clauses (implications) in D.

The cut determiner is analogous to
the fence operator of SNOBOL (cf.
Griswold[1968]). Both have the same
control over their corresponding
backtracking mechanisms, and both are
quite primitve mechanisms for such
control, as compared to the mechanisms of
CONNIVER or truth-maintenance systems
(Doyle[1978]). Yet careful use of these
primitive mechanisms can have remarkable
effects on the efficiency or even logical
character of programs. The fundamental
difference between these mechanisms and
the more sophisticated backtracking
algorithms of CONNIVER and truth
maintenance systems is simply the extent
of necessary explicit programmer concern
for the backtracking.

V. The Database Interpretation of Logic

The action of a theorem prover can
also be seen as the action of a database
machine attempting to respond to queries
over a database of assertions. This
database is defined both by definite
assertions and general laws. Consider a
collection of unit clauses containing no
variables:

cost(bolt23,34).

cost(bolt31,233).

cost(bolt27,55).
(33)

cost(bolt41,09).

These assertions can alternatively be
viewed as part of an array "cost":

cost !
bolt23 ! 34
bolt27 ! 55
bolt31 ! 233
bolt41 ! 9

(34)

Such arrays are of course just relations
in extension, and so the collection of
such definite unit clauses can be viewed
as defining the extensional portion of a
relational data base(cf. Codd[1970]).
Clauses containing variables can be taken
as intensionally specifying relations.
For example, if comp is to define the
"component of" relation, the following
provide both extensional and intensional
aspects of comp:

comp(bolt23,widget9).
comp(bolt23,widgetll).
comp(bolt31,widgetll).
comp(bolt41,widget9).

comp(X,X).
comp(X,Z) <--

comp(X,Y),
subassembly(Y,Z).

(35)

A query over such a database is then
simply a goal clause (14) with the logical
interpretation (15). The response of the
machine to the query is to attempt to show
the query inconsistent with the database,
using the same processing technique as
indicated in the procedural
interpretation. If the machine succeeds,
the query is given an answer. If the
machine provides simply one substitution
as indication of success, the tuple of
values corresponding to the variables in
the query is the answer. If the machine
provides a collection of such
substitutions, the set of all the
corresponding tuples is a relation which
constitutes the answer. The retrieval
procedure is the action of the theorem
prover; in the case of PROLOG systems, it
is SL-resolution. (cf. van Emden[1978]).

A number of interesting relations and
retrieval operations can now be defined.
The first will retrieve the list of
components of a given entity. These
definitions will make use of the built-in

19

list facilities of PROLOG. The list with
elements A,B, and C is denoted [A,B,C];
the empty list is []. The list with head
(first element) A and tail T is denoted
[A,..T]. The relation append(L,M,N) which
holds when N is the result of appending M
to L is defined:

append([],M,M).
append([H,..L],M,[H,..N])<--
append(L,M,N).

(36)

As expected, the query
<--append([a,b],[c,d],N) will produce the
result N = [a,b,c,d]. It is, however,
interesting and useful to note that the
symmetry and generality of unification
make a great many other uses of this
definition possible. For example, the
query <--append([a,b],M,[a,b,c,d]) will
produce the response M = [c,d], while the
query <--append(L,[c,d],[a,b,c,d]) will
produce the response L = [a,b]. Any
successful computation of the query
<--append(L,M,[a,b,c,d]) produces a pair
(L,M) which is a partition of [a,b,c,d];
the set of all such successful
computations yields the set of all
partitions of this list. It is also
interesting that the use of unification
for matching allows the number of
arguments of procedures to vary. The
following clause may be added to the
definition of append:

append(Li,L2,L3,N)<--append(Li,L2,M) ,
append(M,L3,N). (37)

Then a query <--append([l],[2],[3],R) will
produce the response R = [1,2,3].

The membership relation is defined in
the natural recursive way:

on(X,[X,..T]).
on(X,[Y,..T]) <-- on(X,T).

(38)

Using these, we can now retrieve the list
of components of a given item:

getComponents(A,L) <--
compList(A,[],L).

compList(A,L,N) <-- comp(X,A),
not(on(X,L)),
append(L,[X],M),
compList(A,M,N).

compList(A,L,L).

(39)

The relation compList(A,L,M) holds
whenever L is a partial list of components
of A, and M is the extension of L to the
complete list of components of A. The
definition given constructs these lists in
the order the components are retrieved
from the database. If the order of the
lists is immaterial, the first clause of
compList can be replaced by the more
efficient:

compList(A,L,N) <-- comp(X,A) ,
not(on(X, L)) , (40)

compList(A, [X,..L] ,N) .

Now the definition of cost (which here is
simply material cost) can be extended to
all items:

cost(A,C) <-- getComponents(A,L),
sumCosts(L,C) .

(41)
sumCosts([],0).
sumCosts([H,..T],S) <-- sumCosts(T,ST),

cost(H,CH),
S is ST+CH.

Various schemes have been studied for
integrating the action of the logic
processor with a database management
system for retrieval of tuples from the
extensional part of the database. Some
approaches process a query against the
intensional part of the database to
construct a set of atomic queries which
are then handed to the database management
system. This style of approach is used by
Kellog et al. [1978], Minker [1978], and
Reiter [1978]. Another approach
integrates the extensional database
retrieval operations with the indexing
methods of the logic processor so that
intensional and extensional processing are
integrated.

VI. Natural Language Processing

Computational approaches to natural
language processing are of great current
interest, especially in the database
community. Indeed, Alain Colmerauer's
principal motivation in working on the
development of PROLOG was to devise a
suitable vehicle for his investigations in
natural language processing (cf.
Colmerauer et al [1973] and Colmerauer
[1978]). The present implementations of
PROLOG incorporate grammar rules in their
syntax; these make possible a quite
direct expression of Colmerauer's
metamorphosis grammars. Here we will
sketch an alternate approach inspired by
the work of Richard Montague [1970]. As
with Colmerauer's work, PROLOG provides an
especially suitable vehicle for expressing
the requirements of Montague grammars.

A system which allows natural
language queries to a database would be
expected tQ process the natural language
into an internal logical form, respond to
this form with another loglc~ form, and
then process its response back into
natural language, as the following
top-level relations suggest:

cycle <-- input(Expression), (42)
internalForm(Expression,Formulal),
respond(Formulal,Formula2),
internalForm(Response,Formula2),
output(Response),
cycle.

For simplicity, assume that input produces

20

a list consisting of the words, in order,
in the natural language expression. Then
the following clauses begin the definition
of internalForm (which we will abbreviate
as iF) :

iF(E, [NP,VP]) <-- append(NP,VP,E),
nounPhrase(NP) ,
intransitiveVerbPhrase(VP) .

(43)
iF(E, [NP,VP,OBJ]) <--
append (NP,VPi, OBJ,ADV, E) ,

nounPhrase (NP) , nounPhrase(OBJ) ,
append (VPi,ADV,VP) ,
transitiveVerbPhrase(VPl) ,
adverb (ADV) .

iF(E, [conj, Fi,F2]) <--
append (El, [and] , E2, E) ,
iF(E1, FI), IF(E2, F2).

iF(E, [negation F]) <--
append (El, [not] , E2, E) ,
append(Ei,E2,E3) , iF(E3,F) .

Notice that the backtracking facilities of
PROLOG provide mechanisms for interaction
between the syntactic and semantic
components in (42). For should response
fail (presumably because it cannot
interpret Formulal), backtracking will
lead internalForm to search for an
alternate construal of the input
expression. The same consideration can
extend to response itself. After
producing a response Formula2 in (42), the
final action of the program is to
recursively call itself. Should the user
input some sentence such as "I don't
understand(or accept) that," the program
for response could react to the logical
form of this by failing, which would
eventually backtrack into an attempt to
find a different response to the original
input (and perhaps to reconstrue the
original input).

Vll. Final Remarks

The point of view of logic
programming is to decompose algorithms
into a logic component and a control
component. For a wide range of normal
programming problems, the logic component
can be specified in Horn clause logic and
will run correctly under any choice of
control component. A common procedure is
to specify the problem in full first-order
logic, and then derive the clausal program
by standard logical transformations (cf.
Clark and Tarnlund [1977] and Nilsson
[1971], Chapter 6). On the other hand, in
his forthcoming book [1979], Kowalski
amply demonstrates that the clausal form
is often an extremely natural medium for
expression of problem solutions. A note
about efficiency is in order here. The
naturual methodology when working in
PROLOG is to first express the problem

(often its specifications) in as clear and
direct form as possible in Horn clauses.
Often these will run quite efficiently
(cf. Warren et al. where the PROLOG's
efficiency is favorably contrasted with
that of LISP). When this is not the case,
one then begins transforming the program
into an equivilant, but more efficient
one, by additions or alterations of the
control structure (sequencing and use of
the cut determiner). Programs of quite
acceptable efficiency can be obtained in
this way. Moreover, working in PROLOG has
the advantange that in the transition from
initial specification to final (efficient)
program, one remains in the same language,
avoiding the problems of transition from
logical specifications to
procedurally-oriented languages.

A wide variety of semantics are
available for logic programs. Any logic
program automatically carries with it the
usual Tarskian semantics. It is this
semantics which is involved in both
intuitive and formal specifications of
programs (both logic programs and those of
other languages). This standard semantics
was connected with the fixed-point
semantics in van Emden and Kowalski
[1976]. Besides the procedural and
database interpretations discussed above,
it is possible to provide a flowchart
semantics (cf. Clark and van
Emden[1979]), and a parallel-process
semantics (cf. van Emden and Lucena
[1979]) in which a goal statement is
interpreted as a network of stacks
interconnected by channels.

Some natural expressions of problems
require extensions of Horn clause logic,
as illustrated above. Negation is
valuable (and problematic). Current
research is studying both extensions to
the logic components (to include more of
full first-order logic and to study the
merger of Horn clause logic and its
metalanguage) and to the control component
(especially to study the use of
co-routining and parallel execution).
Related work is also underway
investigating the incorporation of logic
programming constructs into existing
high-level languages, notably LISP.

Bibliography

Bobrow, Daniel G., and Raphel, Bertram
[1974] New programming languages for
artificial intelligence research,
Computing Surveys, 6, pp 153-174.

Clark, Keith
[1978] Negation as failure, in Logic and
Data Bases, H. Gallaire and J. Minker
(eds.), New York: Plenum Press, 293-322.

Clark, Keith L. and van Emden, Maarten H.
[1979] Consequence verification of
flowcharts, Report CS-79-23, Department of

21

Computer Science, University of Waterloo,
Waterloo, Ontario, Canada.

Clark, Keith L. and McCabe, Frank
[1979] IC-PROLOG, Proc. AISB.

Clark, Keith L. and Tarnlund, Sten-ake
[1977] A First-order theory of data and
programs, in Information Processing 77, B.
Gilchrist (ed.), Amsterdam, North Holland,
939-944.

Codd, E. F.
[1970] A relational model of data for
large shared data banks, Comm. ACM ,13,
pp. 377 - 387.

Colmerauer, Alain
[1978] Metamorphosis grammars, in Natural
Language Communication with Computers.
Leonard Bloc led.), Lecture Notes ~n
Computer Science #63, Befit,:
Springer-Verlag, 133-189.

Colmerauer, A., Kanoui, H., Pasero, ~.,
Roussel, P.
[1973] Un Systeme de Comunication
Homme-machine en Francaies. Rapport
Groupe d'Intelligence Artificielle,
Universite d'Aix-Marseille, Luminy.

Doyle, Jon
[1978] Truth maintenance systems for
problem solving, Report AI-TR-419,
Artificial Intelligence Laboratory,
Massachusetts Institute of Technology.

Maarten H. van Emden
[1976] Verification conditions as
programs, in Automata, Languages, and
Programming, S. Michaelson and R. Milner
(eds.), Edinburgh: Edinburgh University
Press.
[1977] Programming in resolution logic,
in Machine Intelligence 8, E.W. Elcock
and D. Michie (eds.) , Edinburgh:
Edinburgh University Press.
[1978] Computation and Deductive
Information Retrieval, in Formal
Descriptions o__f programming Concepts, E.J.
Neuhold (ed.), Amsterdam: North Holland.

van Emden, Maarten H and Kowalski, Robert
A.
[1976] The semantics of predicate logic
as programming language, J. Assoc. Comp.
Mach., 23, 733 - 742.

van Emden, Maarten H. and de Lucena, G.J.
[1979] Predicate logic as a language for
parallel programming, Faculty of
Mathematics Report CS-79-15, University of
Waterloo.

Green, Cordell
[1969] Theorem-proving by resolution as a
basis for question answering systems, in
Machine Intelligence 4, B. Meltzer and D.
Michie (eds.), Edinburgh: Edinburgh
University Press.

Griswold, R.E., Poage, J.F., and Polonsky,

I.P.
[1968] The SNOBOL4 Programming Language,
Englewood Cliffs, New Jersey:
Prentice-Hall.

Hill, Robert
[1974] LUSH-resolution and its
completeness, DCL Memo 78, Department of
Computational Logic, University of
Edinburgh.

Kowalski, Robert
[1974] Predicate logic as a programming
language, Proc. IFIP 74, Amsterdam:
North Holland, 556-574.
[1978] Logic for data description, in
Logic and Data Bases, H. Gallaire and J.
Minker (eds.), New York: Plenum Press, 77
- 103.
[1979] Logic for Problem Solving, New
York: Elsevier- North Holland.

Kowalski, Robert, and Kuehner, Donald
[1971] Linear resolution with selection
function, Artificial Intelligence 2,
227-260.

Kellog, Charles, Klahr, Philip, and
Travis, Larry
[1978] Deductive planning and pathfinding
for relational data bases, in Logic and
Data Bases, H. Gallaire and J. Mi'nk~
(eds.), New York: Plenum Press, 179 -
200.

Montague, Richard
[1970] English as a formal language, in
Linguaggi nella Societa e nella Tecnica,
B. Visentini et al. (eds.), Milan:
Edizioni di Comunita, 189 - 224;
reprinted in: Formal Philosophy, Selected
Papers of Richard Montague, R.H. Thomason
(ed.), New Haven: Yale University Press,
1974, pp. 188 - 221.

Minker, Jack
[1978] An experimental relational data
base system based on logic, in Logic and
Data Bases, H. Gallaire and J. Minker
(eds.) , New York: Plenum Press, 107 -147.

Nilsson, Nils J.
[1971] Problem-Solving
Artificial Intelligence,
McGraw-Hill.

Methods in
New Yor~."

Reiter, Raymond
[1978] Deductive question-answering on
relational data bases, in Logic and Data
Bases, H. Gallaire and J. Minker (eds.),
New York: Plenum Press, 149 - 177.

Roberts, Grant M.
[1977] An implementation of PROLOG, M.Sc.
Thesis, Dept. of Computer Science,
University of Waterloo.

Roussel, P.

[1975] PROLOG: Manuel e Reference et
d'Utilisat~. Groupe d'Intelligence
Artificielle, U.E.R. de Luminy,
Universite d'Aix-Marseille.

22

Robinson, John Alan
[1965] A machine-oriented logic based on
the resolution principle, J. Assoc.
Comput. Mach. 12, 23-41.
[1979] Logic= Form and Function,
Edinburg :~inburg~Unive~ity ~6~?

Warren, David H. D., Pereira, Fernando,
and Pereira, Luis M.
[1977] PROLOG: The language and its
implementation compared with LISP, in
Proc. Symp. on Artifical Intelligence
and Programming Languages, Special Issue:
SIGPLAN Notices, vol. 12, no. 8 (SIGART
Newsletter, no. 64), 109-115.

23

