
DREAM - An Approach to Designing
Large Scale, Concurrent Software Systems

Jack C. Wileden
Department of Computer and Information Science

University of Massachusetts, Amherst

Introduction

The Design Realization, Evaluation And Model-
ling (DREAM) system is an automated support system
for designers of large-scale, concurrent software
systems. DREAM is intended to facilitate the or-
derly development of such software systems by sup-
porting high-level, abstract design descriptions
and the successive modification and elaboration of
incomplete descriptions. DREAM also provides a
basis for formulating arguments regarding the cor-
rectness of an evolving design at any stage during
its development.

We begin this paper by presenting a viewpoint
which has served to motivate our work in develop-
ing the DREAM system. Next we will describe DREAM
itself, and its associated design language (the
DREAM Design Notation or DDN). This discussion
will highlight the major features of DREAM and the
approach to software system design which DREAM
supports. Finally, we will present a simple exam-
ple of a DREAM design description. This should
serve to illustrate both the specifics of the
DREAM Design Notation and also the application of
DDN to the description of concurrent software sys-
tem designs.

A Viewpoint on Software Development

Our work on the DREAM system is predicated
upon the fundamental observation that software
development consists of the production of a suc-
cession of descriptions of the proposed system.
Generally speaking, each description in this pro-
gression is more detailed than its predecessor.
In particular, the final description in this pro-
gression should be fully detailed, since it is
normally a piece of software intended for execu-
tion on some piece of computing hardware.

The various descriptions in the progression
offer a succession of differing orientations,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

©1979 ACM 0-897914)08-7/79/1000/0088 $00.75

vocabularies and concerns in the representation of
the proposed system. For instance, the final de-
scription in the progression is typically a collec-
tion of computer programs. This description may
be considered to be oriented toward some particu-
lar (perhaps virtual) machine, is generally ex-
pressed in the vocabulary of one or more computer
languages and is concerned with details of the
manipulation of (virtual) machine-level data ob-
jects by functional units (e.g., words by regis-
ters, variables by arithmetic expressions).

It is both convenient and common practice to
group the various descriptions which comprise soft-
ware development into categories based upon their
major orientation. We normally distinguish three
such categories and designate them requirements
specifications, design specifications and program
>pecificati0ns.

Requirements specifications are characterized
as user-oriented. That is, descriptions in this
category are essentially oriented toward the prob-
lem domain of interest to the eventual user of the
software system. These descriptions are phrased
in the vocabulary of the problem domain and are
principally concerned with the overall functional-
ity of the system, although performance and econo-
mic constraints are frequently also addressed.

Design specifications are referred to as
implementation-oriented. That is, descriptions in
this category are basically oriented toward the
implementation domain of conceptual processing
units. Such descriptions are formulated using the
vocabulary of implementation, being expressed in
terms of modules, their functions and their inter-
actions. The central concerns of descriptions in
this category are the modularity, module function-
ality and module interactions of the proposed sys-
tem, although here, too, performance issues may be
of interest.

Descriptions in the program specifications
category may be considered execution-oriented. As
was mentioned previously, these descriptions are
oriented toward a specific (possibly virtual) ma-
chine, stated in the vocabulary of one or more
programming languages and concerned with the de-
tailed manipulations which embody computational
algorithms.

88

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800177.810036&domain=pdf&date_stamp=1979-01-01

Given that software development consists of
producing a succession of descriptions, it is evi-
dently desirable that those descriptions be pro-
duced in as orderly a manner as possible. Ideally,
the generation of descriptions should proceed
through a step-by-step progression with a clearly
discernible, perferably formal, relationship be-
tween successive descriptions. In any case, order-
liness can be maintained only if each succeeding
description is thoroughly comprehensible. This
demands that the descriptions be expressed using
a representation which is precise and unambiguous,
although possibly abstract and lacking some degree
of detail.

Equally important to high-quality software de-
velopment is continual assessment of the evolving
description of the proposed system. At each step
in the progression it is desirable to be able to
rigorously inspect the current description for er-
rors and inconsistencies. This makes possible the
timely correction of mistakes and can prevent their
propagation through to later stages of development
where their repair may be significantly more diffi-
cult and costly.

DREAM

The Design Realization, Evaluation And Model-
ling system is intended to support software system
development carried out within the framework out-
lined above. As its name implies, DREAM has been
created primarily for use during the design speci-
fication phase of development, with the provision
of evaluation (i.e., assessment) capabilities as a
central goal and with modelling employed as the
fundamental technique for design description.

DREAM focuses upon supporting design specifi-
cation, particularly the specification of designs
for large, complex, concurrent software systems.
Especially for systems of this kind, the issues of
primary importance during the design phase of soft-
ware development are modularization, component
functionality and component interaction. Thus
DREAM is geared toward descriptions which highlight
the delineation of system components (i.e., modu-
larization), provide specifications of individual
components' intended functions and contain a repre-
sentation of the interaction patterns which those
components will utilize in cooperating to achieve
the system's overall function.

While offering bookkeeping ai__dby allowing a
designer to store, retrieve or modify descriptions,
supervisory aid by automatically enforcing design
principles or practices considered beneficial by
project supervisors I and management aid by support-
ing the automated generation of progress reports,
DREAM is primarily intended to provide designers
with analysis aid. Evaluation of even a partial,
incomplete design specification can uncover errors
at a sufficiently early point in development to

iFor instance, documentation standards and prac-
tices such as information hiding [6] can be en-
forced through imposition of appropriate restric-
tions on the access and modifications which various
design team members are permitted to make to the
description database.

permit their relatively easy and inexpensive re-
pair. Thus DREAM seeks to help designers in as-
sessing the appropriateness of decisions which are
made and recorded in the descriptions produced dur-
ing the design phase of development. Of particular
interest during this phase are questions concerning
modularization (e.g., does the description repre-
sent a reasonable decomposition of the system?),
component functionality (e.g., are the descriptions
of the individual components' functions reasonable?
Will their coordinated, joint, concurrent operation
produce the intended overall system behavior?) and
component interactions (e.g., are the described in-
teraction patterns acceptable? Are there synchro-
nization problems inherent in this pattern of inter-
actions among concurrently operating components?).

The nature of these questions suggests that
feedback _analysis is the most appropriate approach
to design evaluation. Feedback analysis is not a
fully automated verification technique and hence
avoids the difficulties and complexities of veri-
fication. Rather, feedback analysis relies upon
the designer to make a final determination as to
the appropriateness of the decisions embodied in a
particular software system description or descrip-
tion fragment. The technique is based upon having
the system, in this case DREAM, first derive some
information from the current version of the design
specification. The derivation process consists of
providing an explicit representation for informa-
tion which was already implicit in the descrip-
tion. This may be done either through paraphras-
ing (i.e., generating a restatement of the de-
scription in other terms, such as a graphical re-
statement of a textual description) or animation
(i.e., a symbolic or simulated 'execution' of the
description). The derived information is then
presented to the designer for evaluation. The
designer can bring human insight and experience as
well as an understanding of the specific problem
domain to bear in assessing this feedback and
determining the appropriateness of the current de-
sign specification. Thus feedback analysis as
supported by DREAM attempts to automate only those
aspects of evaluation which are relatively routine
and mechanical to perform, leaving to the human
designer those aspects more amenable to the appli-
cation of such uniquely human (but little under-
stood) skills as insight and contextualized
reasoning.

Modelling is employed as the fundamental
technique for design description in DREAM. A
model provides an abstract, undetailed, but pre-
cise and unambiguous description and hence is
appropriate for use in the design phase of soft-
ware development. Moreover a model provides a
conceptual representation, one which is not neces-
sarily indicative of the details of a final imple-
mentation. This, too, is appropriate for design
specification and is in keeping with our view [7]
that a design description should be nonprescrip-
tive, capable of describing the designer's inten-
tions for system behavior without prescribing any
specific means for achieving those intentions. Of
course, to be useful during the design phase of
software development, a model must provide a
faithful representation of the modularity and
functionality of the proposed software system. It

89

must also provide a sufficient basis for evalua-
tion of a design specification, but only with re-
spect to issues of functionality and modularity,
not details of system composition. An appropriate
choice of modelling primitives can insure that
these desirable attributes are retained while
still achieving a model which is an appropriately
abstract representation of a software system
design.

DDN

The DREAM Design Notation (DDN) is the lan-
guage used for representing design specifications
in DREAM. DDN is not a programming language, nor
an extension of a programming language. Rather,
it was expressly developed to support DREAM's
focus on the design phase of software development,
its concern with evaluation and its modelling
approach to design description. The result is a
language which facilitates modelling and is well
suited to describing modularity, functionality and
interaction, but which intentionally inhibits the
description of algorithmic details so as to pre-
vent the premature appearance of program specifi-
cations in a software development.

All DDN descriptions are expressed in terms
of classes. Each class is a generic description
of a type of entity, one or more instances of
which might appear as components of the overall
system being described. A class description is
composed of textual units, fragments of descrip-
tive text which specify various individual aspects
of the description and which may be nested one
within another. A class description may, for in-
stance, be parameterized by a qualifiers textual
unit so that individual instances of the class may
differ from one another in minor details.

Three varieties of classes may be defined in
DDN. A subsystem class is a generic description
of a processing entity within a concurrent soft-
ware system. Each subsystem, which could be
thought of as a module, is conceptually a collec-
tion of sequential processes. Interaction among
subsystems is represented as message transmission.
This is, however, intended merely as a model for
interaction and does not necessarily imply a
message-based implementation, although message
transmission is becoming increasingly popular as a
basis for concurrent programming [1,4]. Function-
ality of subsystems is represented by abstract de-
scriptions of message movement through the subsys-
tem. Again, this description, which amounts to a
specification of the input/output behavior for a
subsystem, is a conceptual representation which
does not necessarily reflect the actual details of
an eventual implementation.

The second variety of DDN class is the moni-
tor class. DDN monitors, which are generic de-
scriptions of shared data repositories in a con-
current software system, are based on the monitor
concept of Hoare [5]. Interactions with a monitor
are represented by procedure calls, while a moni-
tor's functionality is described abstractly in
terms of states and the state transitions produced
by procedure executions. Here again, DDN's moni-
tor-based representation is purely a conceptual

model and is in no way intended to prescribe the
use of monitors as an implementation construct.

The final variety of DDN class is the event
class. Event classes are used in describing as-
pects of the proposed system's behavior without
reference to particular processing entities or
data repositories. Such descriptions may relate
to occurrences which are relevant to but not pro-
duced by the software system itself. Alterna-
tively, they may be associated with components of
th~ system which have not yet been described in
terms of subsystems and monitors or may relate to
occurrences not easily associated with any parti-
cular entity. Thus they enhance the flexibility
and descriptive power of DDN by permitting the re-
presentation of facets of system behavior not re-
presentable using classes of the other two varie-

ties.

Fully detailed presentations of the various
constructs and features of DDN have appeared else-
where [8,9,10,11,16]. Rather than replicate that
information here, we will proceed to illustrate a
variety of aspects of the language by means of a
simple example of its use. The example also
serves to demonstrate the DREAM approach to soft-
ware design description.

An Example

We present a DREAM description for part of a
simple airline ticket reservation system. The
components which we describe here may be consid-
ered to constitute some fraction of the overall
data processing system for an airline.

As the first step in designing our example
system, a designer might choose to focus upon the
interactions which will take place between the
system and the ticket sales agents who will be
using it. A possible result of considering this
aspect of the system's design is the [ticket
manager] subsystem class shown in figure i. The
[ticket manager] (DDN syntax requires that all
class names be enclosed in square brackets) repre-
sents an initial design for the controller of the
ticket reservation facet of the airline's data
processing operation and for the system's inter-
face to the various agents using the ticket reser-
vation system. As indicated by the qualifiers
textual unit, various instances of the ticket man-
ager might differ from one another according to
how many agents they were capable of serving.
Thus in a completed DDN description of the ticket
reservation system we might find several instanti-
ations of the [ticket manager], each serving a
different number of agents and all conceptually
operating concurrently.

The interfaces to the [ticket-manager] are
specified using port definition textual units. A
port may best be thought of as a hole through
which messages may flow into or out of a subsystem.
Thus the ~ent_req ports represent sources of
agent request messages to the [ticketmanager]
while the agent_resp ports provide the interface
through which the [ticket manager] may send re-
sponse messages back to the agents, (Arrays are
used here and elsewhere in DDN descriptions, just

90

[ticket~nanager]: SUBSYSTEM CLASS;
QUALIFIERS; number of agents END QUALIFIERS;

agent req: ARRAY [l::number of agents]
OF IN PORT;

BUFFER SUBCOMPONENTS;
req_type OF [request_code],
req_info OF [request_data]
END BUFFER SUBCOMPONENTS;

BUFFER CONDITIONS;
req type = ticket_req
END BUFFER CONDITIONS;

END IN PORT;
agent resp: ARRAY [l::number of agents]

OF OUT PORT;
BUFFER SUBCOMPONENTS; answer OF [tm_response]

END BUFFER SUBCOMPONENTS;
END OUT PORT;

manager: ARRAY [l::number of agents]
OF CONTROL PROCESS;

MODEL;
ITERATE

RECEIVE agent_req (MYINDEX);
SET answer (~_INDEX) TO ok OR error;
SEND agent_resp (MYINDEX);
END ITERATE;

END MODEL;
END CONTROL PROCESS;

END SUBSYSTEM CLASS;

Figure i.

as they are typically used in other computer-
related languages, as a notational shorthand for
describing a collection of entities with identi-
cal attributes.) Buffer subcomponent textual units
add detail to the interface description by speci-
fying of what type (i.e., monitor class) each sub-
field of any message passing through the port must
be. Buffer conditions further specify the design-
er's intentions by indicating the acceptable
states for a subfield. Thus, agent request mes-
sages entering a [ticket_~nager] subsystem
through an agent_req port should only have sub-
fields which are instances of the monitor classes
[request_code] and [requestdata] (both presumably
described elsewhere in the DDN ticket reservation
system description). Moreover, the designer has
indicated that only a request of type ticket2e q
(i.e., a [request_code] subfield whose state is
ticket2e q) is acceptable in an incoming message.
This information could later be used by the DREAM
system to determine that the [ticket_manager] was
being used correctly in the overall design, e.g.,
that it was not ever sent messages regarding such
other airline data processing operations as pay-
roll or maintenance scheduling.

Taken together, the various textual units
within the port descriptions represent a complete
(at the present level of detail), conceptual spe-
cification of the possibilities for interaction
between a [ticket~nanager] subsystem and other
components in the airline data processing system.
Thus they begin to delineate the nature of the new
system's interfaces and its modularization, pro-
viding an important first step toward the design
of the airline ticket reservation system.

Having begun with the specification of its
interfaces and modularization, the designer might

wish to continue development of the ticket reser-
vation system by providing an initial, abstract,
high-level description of its intended operation,
i.e., by indicating the intended functionality
of the [ticket_manager] subsystem. The function-
ality of a subsystem is described in DDN using
control processes. A control process is an ab-
stract representation of the potential flow of
messages through a subsystem. As illustrated in
figure i, a control process description may in-
clude a model textual unit, which describes the
subsystem's message transmission behavior as it
might appear to an outside observer of the subsys-
tem's activity. According to the model shown here,
each manager control process indefinitely repeats
a sequence of conceptual actions whose first step
is to await the arrival of a message through the
agen~req port associated with that particular con-
trol process. (The DDN keyword MY INDEX is used
to uniquely associate a pair of ports with each
individual control process.) Next, the control
process nondeterministically (from the point of

view of an outside observer) chooses to return a
response of either 'ok' or 'error', then sends a
message containing that response and proceeds to
repeat the sequence. Thus the model presents an
abstract description of the subsystem's function-
ality, i.e., says what the subsystem does, with-
out any details as to how that functionality is
achieved. Such a description may be termed out-
ward-directed, in that it offers a description of
subsystem behavior which can be relied upon by
others (e.g., designers of other components which
might interact with a [ticket_manager]) while
hiding information [6] about the internal opera-
tions which generate that behavior.

Together, the various textual units of the
[ticket_manager] subsystem class shown in figure 1
comprise a description which focuses on precisely
the issues of interest in a design specification.
The description offers an abstract representation
of component functionality and serves as an ini-
tial step toward a description of component inter-
action and system modularization. Of course, fur-
ther elaboration of this description would be re-
quired before a design specification sufficient
to serve as a guide to implementation would be
achieved; in particular, more information is
needed regarding the relationship of inbound and
outbound messages. We will in fact indicate how
such an elaboration might proceed later in this
example.

At this point, however, the designer might
decide that the next interesting design questions
to be addressed are the form and function of the
data repositories used in the airline reservation
system, and thus might leave the [ticket_manager]
subsystem for a while in order to address these
issues. The [flightseats] monitor class shown
in figure 2 could be the designer's initial repre-
sentation of the ticket system's information on
seat availability for a particular flight. Its
qualifiers textual unit indicates that individual
instances of [flight_seats] will differ only as
to the specific flight to which they correspond.
(Of course, later elaboration may introduce addi-
tional differences such as number of seats avail-
able, but at the current level of detail such
distinctions are irrelevant.) In all probability

91

[flightseats]: MONITOR CLASS;
QUALIFIERS; flight--# END QUALIFIERS;
STATE SUBSETS; full, not full END STATE SUBSETS;
begin: PROCEDURE; END PROCEDURE;
select: PROCEDURE; END PROCEDURE;
confirm: PROCEDURE;

TRANSITIONS;
not full --> full,
not full --> not full
END TRANSITIONS;

END PROCEDURE;
reject: PROCEDURE; END PROCEDURE;
done: PROCEDURE; END PROCEDURE;
EVENT DEFINITIONS;

choice: SEQUENCE (select, OR
(confirm, reject)),

trans: SEQUENCE (begin, REPEAT (choice),
done),

END EVENT DEFINITIONS;
DESIRED BEHAVIOR;

POSSIBLY CONCURRENT (trans,
[flight,seats]Itrans),

MUTUALLY EXCLUSIVE (choice, choice)
END DESIRED BEHAVIOR;

END MONITOR CLASS;

Figure 2

there will be numerous instances of [flightseats]
in the completed ticket reservation system design,
all potentially being accessed concurrently.

Interfaces to the monitor class are
described by procedure textual units, each pro-
cedure being assigned a name. (Parameters may
also be associated with monitor procedures, al-
though that aspect of DDN is not illustrated in
the present example.) The usual conventions for
mutually exclusive usage of a monitor procedure,
as defined by Hoare [5], apply to DDN monitor
procedures. Interaction with a monitor is then
described by procedure invocations, as we shall
see later in this example.

Monitor functionality is described in terms
of states and state transitions. At the current
level of detail, the [flight_seats] monitor class
can be described using two state subsets, full
and not ~ull. It is not necessary that DDN state
subsets be disjoint, although the two in this
example presumably are. It is, however, possible
to further coordinatize a monitor's state space
using state variables, each of which can assume
one of a disjoint set of values [ii].

An abstract, conceptual and outward-directed
description of each monitor procedure can be for-
mulated using the transitions textual unit.
Transitions may be viewed as a precondition/post-
condition specification for procedure behavior.
The left-hand sides of the transitions stipulate
the set of state subsets which the monitor class
may be in when the procedure is invoked; invoca-
tion when the monitor is in any other state sub-
set is not anticipated by the designer. The
right-hand sides of the transitions indicate what
state subsets the monitor may be put into as a
result of a procedure activation. In keeping
with their role as outward-directed representa-
tions of procedure behavior, transitions may be

nondeterministic. In our figure 2 example, for
instance, invocation of the confirm procedure is
only expected when the [flight_seats] monitor
class is in its not ~ull state subset, but such
an invocation might result in the monitor's
either remaining in the not~ull subset or tran-
siting into the full state subset.

The figure 2 example also provides an illus-
tration of DREAM's nonprocedural behavior descrip-
tion capabilities, which are based upon the defi-
nition of events. Events may be defined in a
number of different ways in DREAM [16]. In parti-
cular, every procedure definition in a DDN descrip-
tion implicitly defines an event whose name is the
same as the procedure's name and which corresponds
to an activation of the procedure. Thus the
[flightseats] monitor class implicitly defines
the events begin, select, confirm, reject and
done. Events may also be defined using an event
definitions textual unit. In particular, within
an event definitions textual unit events may be

defined by event sequenc e expressions, which are
expressions describing one or more sets of sequen-
tial or concurrent occurrences of other events.
For instance, in figure 2 the choice event is
defined to consist of an occurrence of the select
event followed by an occurrence of the confirm
event or an occurrence of the select event follow-
ed by an occurrence of the reject event. Simi-
larly, the trans event is defined to consist of
an occurrence of the begin event followed by any
number of occurrences of the choice event follow-
by an occurrence of the done event.

The principal use of events in DREAM descrip-
tions occurs in desired behavior textual units.
A designer may use a desired behavior textual unit
to express intended restrictions on the behavior
of the system being designed. These restrictions
are in no way enforced by DREAM; they merely re-
flect the designer's intentions and provide for
the possibility of assessing the design descrip-
tion by checking to see whether those intentions
were obeyed in the actual behavior described by
the subsystems and monitors. In the example of
figure 2, the designer has indicated two inten-
tions with respect to usage of [flight_seats] mon-
itors. The first concurrency expression in the
desired behavior textual unit indicates the de-
signer's willingness to permit seats on different
flights to be reserved simultaneously (i.e., a
trcr~s event in one [flight_seats] monitor may
occur concurrently with a trans event in any other
[flight_seats] monitor). The second concurrency
expression indicates the intended restriction that
two choice events within a single [flight_seats]
monitor should not be allowed to occur simulta-
neously (i.e., actual decisions regarding seats
on a particular plane must be made in a mutually
exclusive fashion). These intended restrictions
are stated by the designer of the [flight_seats]
monitor, the person in the best position to know
what restrictions are required (the person who
would, for example, know that mutually exclusive
occurrence of the entire transaction is not neces-
sary). However, these behavioral restrictions
must actually be realized by designers whose com-
ponents use the [flightseats] monitor, since
desired behavior descriptions are nonprescriptive.
DREAM can help in ascertaining whether or not the

92

intentions so expressed have been honored, but
will not in any way actually enforce those
intentions.

We continue our example by illustrating how
the designer might carry out one step in an elab-
oration of the airline ticket reservation system
design. The step begins with the three minor mod-
ifications to the [ticket manager] subsystem class
shown in figure 3. The first change (quoted pre-
fixes are used in DREAM to indicate what part of
the current design description is to be modified)
is the addition of a subcomponents textual unit
to the [ticket manager] description. A subcompo-
nents textual unit describes the internal composi-
tion of objects in a class, in this case indicat-
ing that each [ticket_manager] contains a collec-
tion of [flight_seats] monitors, one for each
flight on which it is able to reserve tickets.
Similarly, the second change shown in figure 3 is
the addition of a local subcomponents textual unit
to the manager control process of the [ticket
manager], indicating that each control process in
the subsystem will have available to it a monitor
which can be used essentially as an integer vari-
able taking values in the range 1 to # of flights.
Both these changes may be termed inward-directed
since they reflect details of the internal opera-
tion of the subsystem rather than providing purely
behavioral information about the [ticket_manager]
class. The third change shown in figure 3 is the
replacement of the qualifiers textual unit of the
[ticket_manager] class by an updated version which
recognizes that # of flights is now a parameter of
the subsystem class.

'[ticket_manager]: SUBSYSTEM CLASS' SUBCOMPONENTS;
list: ARRAY [I::# of flights] of

[flight seats (~_INDEX)];
END SUBCOMPONENTS;

'[ticket_manager]: SUBSYSTEM CLASS;
manager: CONTROL PROCESS'
LOCAL SUBCOMPONENTS;

fl # of [I::# of flights]
END LOCAL SUBCOMPONENTS;

'[ticket_manager]: SUBSYSTEM CLASS'
QUALIFIERS; number of agents, # of flights

END QUALIFIERS;

Figure 3

The elaboration step continues with the addi-
tion of the control process body shown in figure 4
to the [ticket manager] subsystem class descrip-
tion. A control process body provides the inward-
directed description which corresponds to the
outward-directed description of a control process
model. That is, the body indicates what manipula-
tions of the subcomponents of the subsystem are
required to produce the behavior specified by the
model. Thus, for instance, we find invocations of
the begin, select, confirm, reject and done proce-
dures applied to specific instances of the
[flight_seats] monitor class in the list
subcomponent.

We conclude our example by briefly consider-
ing representative samples of the type of design

'[ticket_manager]: SUBSYSTEM CLASS;
manager: CONTROL PROCESS'

BODY
ITERATE;

RECEIVE agent_req(~_INDEX);
IF req_info(MYINDEX) = garbled

THEN SET answer(~_INDEX) TO error;
ELSE req_info(MYINDEX).get_fl(fl_#)

list(fl_#).begin;
ITERATE;

list(fl_#).select;
MAYBE list(fl_#).confirm;

ELSE list(fl #).reject;
END MAYBE;

END ITERATE;
list(fl_#).done;
SET answer(~_INDEX) TO ok;

END IF;
SEND agent_resp(MYINDEX);

END ITERATE;
END BODY;

Figure 4

analysis supported by DREAM. As indicated ear-
lier, the fundamental approach is feedback analy-
sis based upon consistency checking. Thus, for
instance, DREAM can be used to ascertain that the
behavior resulting from the operations specified
for the manager control process body (figure 3)
corresponds to the description of the manager
control process' behavior as given by its model
(figure i). By reporting the discovery of this
consistency between the inward-directed and
outward-directed descriptions of a design compo-
nent, DREAM can help to bolster the designer's
confidence in the correctness of this elaboration
step in the design of the airline reservation
system.

A second form of feedback analysis is based
upon checking for consistency between the evolving
description of a design's components and the de-
signer's intentions regarding behavioral restric-
tions as expressed through desired behavior textu-
al units. Using techniques similar to those pre-
sented in [13], an event sequence expression re-
presenting the behavior of the manager control
process in terms of trans and choice events can be
derived from the control process body. Upon com-
paring this derived expression with the concur-
rency expressions of the desired behavior textual
unit associated with the [flight_seats] monitor
class (figure 2), the designer would discover that
the mutual exclusion between choice events which
was recorded as desirable has not been realized in
the [ticket manager] subsystem. Thus feedback
provided by DREAM permits the designer to discover
an inconsistency, thereby exposing an oversight or
an error in the design as it is currently de-
scribed. Uncovering the flaw at this early stage
in the development of the airline reservation sys-
tem makes possible a timely and relatively easy
correction of the problem, preventing it from per-
sisting through further developmental stages to
become a major repair job later.

93

Conclusion

In this paper we have attempted to show how
the Design Realization, Evaluation And Modelling
system and the DREAM Design Notation can facili-
tate the orderly development of large, concurrent
software systems. Based upon numerous example
usages of DDN [2,3,12,13,14,17], we believe that
the notation is well-suited for use in designing
such systems and that the assessment facilities
of DREAM can be of significant value to the devel-
opers of large-scale~ concurrent software.

Acknowledgements

The DREAM system was developed jointly by
William E. Riddle, John H. Sayler, Alan R. Segal
and the author. Allan M. Stavely was also instru-
mental in DREAM's development, while Mark Welter
and Dirk Kabcenell made significant contributions
at various stages in that development. DREAM has
also benefited from discussions which we have had
with Jan Cuny, Victor Lesser, Carolyn Steinhaus
and Pamela Zave.

References

[i] A. Ambler et al. GYPSY: A Language for
Specification and Implementation of Verifi-
able Programs. ICSCA-CMP-2, Certifiable
Minicomputer Project, Univ. of Texas, Austin,
January 1977.

[2] J. Cuny. A DREAM Model of the RC4000 Multi-
programming System. RSSM/48, Dept, of Com-
puter and Comm. Sciences, Univ. of Mich.,
Ann Arbor, July 1977.

[3] J. Cuny. The GM Terminal System. RSSM/63,
Dept. of Computer and Comm. Sciences, Univ.
of Mich., Ann Arbor, August 1977.

[4] J. Feldman. High Level Programming for
Distributed Computing. Comm. ACM, 22, 6
(June 1979), 353-368.

[5] C. Hoare. Monitors: An Operating System
Structuring Concept. Comm. ACM, 17, i0
(October 1974), 549-557.

[6] D. Parnas. Information Distribution
Aspects of Design Methodology. Proc. IFIP
Congress 71, Ljubljana, August 1971, pp.
TA-3-26-TA-3-30.

[7] W. Riddle and J. Wileden. Languages for
Representing Software Specifications and
Designs. Software Engineering Notes, 3, 5
(October 1978), pp. 1-5.

[8] W. Riddle, J. Wileden, J. Sayler, A. Segal
and A. Stavely. Behavior Modelling During
Software Design. IEEE Transactions on Soft-
ware Engineering, SE-4, 4 (July 1978), 283-
292.

[9] W. Riddle. Hierarchical Description of
Software System Structure. RSSM/40, Dept. of
Computer Science, Univ. of Colorado at
Boulder, November 1977.

[io]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

W. Riddle. Abstract Process Types. RSSM/42,
Dept. of Computer Science, Univ. of Colorado
at Boulder, December 1977 (revised July
1978).

W. Riddle, J. Sayler, A. Segal, A. Stavely
and J. Wileden. Abstract Monitor Types.
Proc. Specifications of Reliable Software,
Boston, April 1979.

W. Riddle. DREAM Design Notation Example:
The T.H.E. Operating System. RSSM/50, Dept.
of Computer Science, Univ. of Colorado at
Boulder, April 1978.

W. Riddle. An Approach to Software System
Modelling and Analysis. J. of Computer Lan-
guages, to appear.

A. Segal. DREAM Design Notation Example:
A Multiprocessor Supervisor. RSSM/53, Dept.
of Computer and Comm. Sciences, Univ. of
Mich., Ann Arbor, August 1977.

A. Stavely. DREAM Design Notation Example:
An Aircraft Engine Monitoring System. RSSM/
49, Dept. of Computer and Comm. Sciences,
Univ. of Mich., Ann Arbor, July 1977.

J. Wileden. Behavior Specification in a
Software Design Aid System. RSSM/43, Dept.
of Computer and Information Science, Univ.
of Massachusetts, August 1978.

J. Wileden. DREAM Design Notation Example:
Scheduler for a Multiprocessor System.
RSSM/51, Dept. of Computer and Comm.
Sciences, Univ. of Mich., Ann Arbor,
October 1977.

94

