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Introduction 

The Design Realization, Evaluation And Model- 
ling (DREAM) system is an automated support system 
for designers of large-scale, concurrent software 
systems. DREAM is intended to facilitate the or- 
derly development of such software systems by sup- 
porting high-level, abstract design descriptions 
and the successive modification and elaboration of 
incomplete descriptions. DREAM also provides a 
basis for formulating arguments regarding the cor- 
rectness of an evolving design at any stage during 
its development. 

We begin this paper by presenting a viewpoint 
which has served to motivate our work in develop- 
ing the DREAM system. Next we will describe DREAM 
itself, and its associated design language (the 
DREAM Design Notation or DDN). This discussion 
will highlight the major features of DREAM and the 
approach to software system design which DREAM 
supports. Finally, we will present a simple exam- 
ple of a DREAM design description. This should 
serve to illustrate both the specifics of the 
DREAM Design Notation and also the application of 
DDN to the description of concurrent software sys- 
tem designs. 

A Viewpoint on Software Development 

Our work on the DREAM system is predicated 
upon the fundamental observation that software 
development consists of the production of a suc- 
cession of descriptions of the proposed system. 
Generally speaking, each description in this pro- 
gression is more detailed than its predecessor. 
In particular, the final description in this pro- 
gression should be fully detailed, since it is 
normally a piece of software intended for execu- 
tion on some piece of computing hardware. 

The various descriptions in the progression 
offer a succession of differing orientations, 
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vocabularies and concerns in the representation of 
the proposed system. For instance, the final de- 
scription in the progression is typically a collec- 
tion of computer programs. This description may 
be considered to be oriented toward some particu- 
lar (perhaps virtual) machine, is generally ex- 
pressed in the vocabulary of one or more computer 
languages and is concerned with details of the 
manipulation of (virtual) machine-level data ob- 
jects by functional units (e.g., words by regis- 
ters, variables by arithmetic expressions). 

It is both convenient and common practice to 
group the various descriptions which comprise soft- 
ware development into categories based upon their 
major orientation. We normally distinguish three 
such categories and designate them requirements 
specifications, design specifications and program 
>pecificati0ns. 

Requirements specifications are characterized 
as user-oriented. That is, descriptions in this 
category are essentially oriented toward the prob- 
lem domain of interest to the eventual user of the 
software system. These descriptions are phrased 
in the vocabulary of the problem domain and are 
principally concerned with the overall functional- 
ity of the system, although performance and econo- 
mic constraints are frequently also addressed. 

Design specifications are referred to as 
implementation-oriented. That is, descriptions in 
this category are basically oriented toward the 
implementation domain of conceptual processing 
units. Such descriptions are formulated using the 
vocabulary of implementation, being expressed in 
terms of modules, their functions and their inter- 
actions. The central concerns of descriptions in 
this category are the modularity, module function- 
ality and module interactions of the proposed sys- 
tem, although here, too, performance issues may be 
of interest. 

Descriptions in the program specifications 
category may be considered execution-oriented. As 
was mentioned previously, these descriptions are 
oriented toward a specific (possibly virtual) ma- 
chine, stated in the vocabulary of one or more 
programming languages and concerned with the de- 
tailed manipulations which embody computational 
algorithms. 
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Given that software development consists of 
producing a succession of descriptions, it is evi- 
dently desirable that those descriptions be pro- 
duced in as orderly a manner as possible. Ideally, 
the generation of descriptions should proceed 
through a step-by-step progression with a clearly 
discernible, perferably formal, relationship be- 
tween successive descriptions. In any case, order- 
liness can be maintained only if each succeeding 
description is thoroughly comprehensible. This 
demands that the descriptions be expressed using 
a representation which is precise and unambiguous, 
although possibly abstract and lacking some degree 
of detail. 

Equally important to high-quality software de- 
velopment is continual assessment of the evolving 
description of the proposed system. At each step 
in the progression it is desirable to be able to 
rigorously inspect the current description for er- 
rors and inconsistencies. This makes possible the 
timely correction of mistakes and can prevent their 
propagation through to later stages of development 
where their repair may be significantly more diffi- 
cult and costly. 

DREAM 

The Design Realization, Evaluation And Model- 
ling system is intended to support software system 
development carried out within the framework out- 
lined above. As its name implies, DREAM has been 
created primarily for use during the design speci- 
fication phase of development, with the provision 
of evaluation (i.e., assessment) capabilities as a 
central goal and with modelling employed as the 
fundamental technique for design description. 

DREAM focuses upon supporting design specifi- 
cation, particularly the specification of designs 
for large, complex, concurrent software systems. 
Especially for systems of this kind, the issues of 
primary importance during the design phase of soft- 
ware development are modularization, component 
functionality and component interaction. Thus 
DREAM is geared toward descriptions which highlight 
the delineation of system components (i.e., modu- 
larization), provide specifications of individual 
components' intended functions and contain a repre- 
sentation of the interaction patterns which those 
components will utilize in cooperating to achieve 
the system's overall function. 

While offering bookkeeping ai__dby allowing a 
designer to store, retrieve or modify descriptions, 
supervisory aid by automatically enforcing design 
principles or practices considered beneficial by 
project supervisors I and management aid by support- 
ing the automated generation of progress reports, 
DREAM is primarily intended to provide designers 
with analysis aid. Evaluation of even a partial, 
incomplete design specification can uncover errors 
at a sufficiently early point in development to 

iFor instance, documentation standards and prac- 
tices such as information hiding [6] can be en- 
forced through imposition of appropriate restric- 
tions on the access and modifications which various 
design team members are permitted to make to the 
description database. 

permit their relatively easy and inexpensive re- 
pair. Thus DREAM seeks to help designers in as- 
sessing the appropriateness of decisions which are 
made and recorded in the descriptions produced dur- 
ing the design phase of development. Of particular 
interest during this phase are questions concerning 
modularization (e.g., does the description repre- 
sent a reasonable decomposition of the system?), 
component functionality (e.g., are the descriptions 
of the individual components' functions reasonable? 
Will their coordinated, joint, concurrent operation 
produce the intended overall system behavior?) and 
component interactions (e.g., are the described in- 
teraction patterns acceptable? Are there synchro- 
nization problems inherent in this pattern of inter- 
actions among concurrently operating components?). 

The nature of these questions suggests that 
feedback _analysis is the most appropriate approach 
to design evaluation. Feedback analysis is not a 
fully automated verification technique and hence 
avoids the difficulties and complexities of veri- 
fication. Rather, feedback analysis relies upon 
the designer to make a final determination as to 
the appropriateness of the decisions embodied in a 
particular software system description or descrip- 
tion fragment. The technique is based upon having 
the system, in this case DREAM, first derive some 
information from the current version of the design 
specification. The derivation process consists of 
providing an explicit representation for informa- 
tion which was already implicit in the descrip- 
tion. This may be done either through paraphras- 
ing (i.e., generating a restatement of the de- 
scription in other terms, such as a graphical re- 
statement of a textual description) or animation 
(i.e., a symbolic or simulated 'execution' of the 
description). The derived information is then 
presented to the designer for evaluation. The 
designer can bring human insight and experience as 
well as an understanding of the specific problem 
domain to bear in assessing this feedback and 
determining the appropriateness of the current de- 
sign specification. Thus feedback analysis as 
supported by DREAM attempts to automate only those 
aspects of evaluation which are relatively routine 
and mechanical to perform, leaving to the human 
designer those aspects more amenable to the appli- 
cation of such uniquely human (but little under- 
stood) skills as insight and contextualized 
reasoning. 

Modelling is employed as the fundamental 
technique for design description in DREAM. A 
model provides an abstract, undetailed, but pre- 
cise and unambiguous description and hence is 
appropriate for use in the design phase of soft- 
ware development. Moreover a model provides a 
conceptual representation, one which is not neces- 
sarily indicative of the details of a final imple- 
mentation. This, too, is appropriate for design 
specification and is in keeping with our view [7] 
that a design description should be nonprescrip- 
tive, capable of describing the designer's inten- 
tions for system behavior without prescribing any 
specific means for achieving those intentions. Of 
course, to be useful during the design phase of 
software development, a model must provide a 
faithful representation of the modularity and 
functionality of the proposed software system. It 
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must also provide a sufficient basis for evalua- 
tion of a design specification, but only with re- 
spect to issues of functionality and modularity, 
not details of system composition. An appropriate 
choice of modelling primitives can insure that 
these desirable attributes are retained while 
still achieving a model which is an appropriately 
abstract representation of a software system 
design. 

DDN 

The DREAM Design Notation (DDN) is the lan- 
guage used for representing design specifications 
in DREAM. DDN is not a programming language, nor 
an extension of a programming language. Rather, 
it was expressly developed to support DREAM's 
focus on the design phase of software development, 
its concern with evaluation and its modelling 
approach to design description. The result is a 
language which facilitates modelling and is well 
suited to describing modularity, functionality and 
interaction, but which intentionally inhibits the 
description of algorithmic details so as to pre- 
vent the premature appearance of program specifi- 
cations in a software development. 

All DDN descriptions are expressed in terms 
of classes. Each class is a generic description 
of a type of entity, one or more instances of 
which might appear as components of the overall 
system being described. A class description is 
composed of textual units, fragments of descrip- 
tive text which specify various individual aspects 
of the description and which may be nested one 
within another. A class description may, for in- 
stance, be parameterized by a qualifiers textual 
unit so that individual instances of the class may 
differ from one another in minor details. 

Three varieties of classes may be defined in 
DDN. A subsystem class is a generic description 
of a processing entity within a concurrent soft- 
ware system. Each subsystem, which could be 
thought of as a module, is conceptually a collec- 
tion of sequential processes. Interaction among 
subsystems is represented as message transmission. 
This is, however, intended merely as a model for 
interaction and does not necessarily imply a 
message-based implementation, although message 
transmission is becoming increasingly popular as a 
basis for concurrent programming [1,4]. Function- 
ality of subsystems is represented by abstract de- 
scriptions of message movement through the subsys- 
tem. Again, this description, which amounts to a 
specification of the input/output behavior for a 
subsystem, is a conceptual representation which 
does not necessarily reflect the actual details of 
an eventual implementation. 

The second variety of DDN class is the moni- 
tor class. DDN monitors, which are generic de- 
scriptions of shared data repositories in a con- 
current software system, are based on the monitor 
concept of Hoare [5]. Interactions with a monitor 
are represented by procedure calls, while a moni- 
tor's functionality is described abstractly in 
terms of states and the state transitions produced 
by procedure executions. Here again, DDN's moni- 
tor-based representation is purely a conceptual 

model and is in no way intended to prescribe the 
use of monitors as an implementation construct. 

The final variety of DDN class is the event 
class. Event classes are used in describing as- 
pects of the proposed system's behavior without 
reference to particular processing entities or 
data repositories. Such descriptions may relate 
to occurrences which are relevant to but not pro- 
duced by the software system itself. Alterna- 
tively, they may be associated with components of 
th~ system which have not yet been described in 
terms of subsystems and monitors or may relate to 
occurrences not easily associated with any parti- 
cular entity. Thus they enhance the flexibility 
and descriptive power of DDN by permitting the re- 
presentation of facets of system behavior not re- 
presentable using classes of the other two varie- 

ties. 

Fully detailed presentations of the various 
constructs and features of DDN have appeared else- 
where [8,9,10,11,16]. Rather than replicate that 
information here, we will proceed to illustrate a 
variety of aspects of the language by means of a 
simple example of its use. The example also 
serves to demonstrate the DREAM approach to soft- 
ware design description. 

An Example 

We present a DREAM description for part of a 
simple airline ticket reservation system. The 
components which we describe here may be consid- 
ered to constitute some fraction of the overall 
data processing system for an airline. 

As the first step in designing our example 
system, a designer might choose to focus upon the 
interactions which will take place between the 
system and the ticket sales agents who will be 
using it. A possible result of considering this 
aspect of the system's design is the [ticket 
manager] subsystem class shown in figure i. The 
[ticket manager] (DDN syntax requires that all 
class names be enclosed in square brackets) repre- 
sents an initial design for the controller of the 
ticket reservation facet of the airline's data 
processing operation and for the system's inter- 
face to the various agents using the ticket reser- 
vation system. As indicated by the qualifiers 
textual unit, various instances of the ticket man- 
ager might differ from one another according to 
how many agents they were capable of serving. 
Thus in a completed DDN description of the ticket 
reservation system we might find several instanti- 
ations of the [ticket manager], each serving a 
different number of agents and all conceptually 
operating concurrently. 

The interfaces to the [ticket-manager] are 
specified using port definition textual units. A 
port may best be thought of as a hole through 
which messages may flow into or out of a subsystem. 
Thus the ~ent_req ports represent sources of 
agent request messages to the [ticketmanager] 
while the agent_resp ports provide the interface 
through which the [ticket manager] may send re- 
sponse messages back to the agents, (Arrays are 
used here and elsewhere in DDN descriptions, just 
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[ticket~nanager]: SUBSYSTEM CLASS; 
QUALIFIERS; number of agents END QUALIFIERS; 

agent req: ARRAY [l::number of agents] 
OF IN PORT; 

BUFFER SUBCOMPONENTS; 
req_type OF [request_code], 
req_info OF [request_data] 
END BUFFER SUBCOMPONENTS; 

BUFFER CONDITIONS; 
req type = ticket_req 
END BUFFER CONDITIONS; 

END IN PORT; 
agent resp: ARRAY [l::number of agents] 

OF OUT PORT; 
BUFFER SUBCOMPONENTS; answer OF [tm_response] 

END BUFFER SUBCOMPONENTS; 
END OUT PORT; 

manager: ARRAY [l::number of agents] 
OF CONTROL PROCESS; 

MODEL; 
ITERATE 

RECEIVE agent_req (MYINDEX); 
SET answer (~_INDEX) TO ok OR error; 
SEND agent_resp (MYINDEX); 
END ITERATE; 

END MODEL; 
END CONTROL PROCESS; 

END SUBSYSTEM CLASS; 

Figure i. 

as they are typically used in other computer- 
related languages, as a notational shorthand for 
describing a collection of entities with identi- 
cal attributes.) Buffer subcomponent textual units 
add detail to the interface description by speci- 
fying of what type (i.e., monitor class) each sub- 
field of any message passing through the port must 
be. Buffer conditions further specify the design- 
er's intentions by indicating the acceptable 
states for a subfield. Thus, agent request mes- 
sages entering a [ticket_~nager] subsystem 
through an agent_req port should only have sub- 
fields which are instances of the monitor classes 
[request_code] and [requestdata] (both presumably 
described elsewhere in the DDN ticket reservation 
system description). Moreover, the designer has 
indicated that only a request of type ticket2e q 
(i.e., a [request_code] subfield whose state is 
ticket2e q) is acceptable in an incoming message. 
This information could later be used by the DREAM 
system to determine that the [ticket_manager] was 
being used correctly in the overall design, e.g., 
that it was not ever sent messages regarding such 
other airline data processing operations as pay- 
roll or maintenance scheduling. 

Taken together, the various textual units 
within the port descriptions represent a complete 
(at the present level of detail), conceptual spe- 
cification of the possibilities for interaction 
between a [ticket~nanager] subsystem and other 
components in the airline data processing system. 
Thus they begin to delineate the nature of the new 
system's interfaces and its modularization, pro- 
viding an important first step toward the design 
of the airline ticket reservation system. 

Having begun with the specification of its 
interfaces and modularization, the designer might 

wish to continue development of the ticket reser- 
vation system by providing an initial, abstract, 
high-level description of its intended operation, 
i.e., by indicating the intended functionality 
of the [ticket_manager] subsystem. The function- 
ality of a subsystem is described in DDN using 
control processes. A control process is an ab- 
stract representation of the potential flow of 
messages through a subsystem. As illustrated in 
figure i, a control process description may in- 
clude a model textual unit, which describes the 
subsystem's message transmission behavior as it 
might appear to an outside observer of the subsys- 
tem's activity. According to the model shown here, 
each manager control process indefinitely repeats 
a sequence of conceptual actions whose first step 
is to await the arrival of a message through the 
agen~req port associated with that particular con- 
trol process. (The DDN keyword MY INDEX is used 
to uniquely associate a pair of ports with each 
individual control process.) Next, the control 
process nondeterministically (from the point of 

view of an outside observer) chooses to return a 
response of either 'ok' or 'error', then sends a 
message containing that response and proceeds to 
repeat the sequence. Thus the model presents an 
abstract description of the subsystem's function- 
ality, i.e., says what the subsystem does, with- 
out any details as to how that functionality is 
achieved. Such a description may be termed out- 
ward-directed, in that it offers a description of 
subsystem behavior which can be relied upon by 
others (e.g., designers of other components which 
might interact with a [ticket_manager]) while 
hiding information [6] about the internal opera- 
tions which generate that behavior. 

Together, the various textual units of the 
[ticket_manager] subsystem class shown in figure 1 
comprise a description which focuses on precisely 
the issues of interest in a design specification. 
The description offers an abstract representation 
of component functionality and serves as an ini- 
tial step toward a description of component inter- 
action and system modularization. Of course, fur- 
ther elaboration of this description would be re- 
quired before a design specification sufficient 
to serve as a guide to implementation would be 
achieved; in particular, more information is 
needed regarding the relationship of inbound and 
outbound messages. We will in fact indicate how 
such an elaboration might proceed later in this 
example. 

At this point, however, the designer might 
decide that the next interesting design questions 
to be addressed are the form and function of the 
data repositories used in the airline reservation 
system, and thus might leave the [ticket_manager] 
subsystem for a while in order to address these 
issues. The [flightseats] monitor class shown 
in figure 2 could be the designer's initial repre- 
sentation of the ticket system's information on 
seat availability for a particular flight. Its 
qualifiers textual unit indicates that individual 
instances of [flight_seats] will differ only as 
to the specific flight to which they correspond. 
(Of course, later elaboration may introduce addi- 
tional differences such as number of seats avail- 
able, but at the current level of detail such 
distinctions are irrelevant.) In all probability 

91 



[flightseats]: MONITOR CLASS; 
QUALIFIERS; flight--# END QUALIFIERS; 
STATE SUBSETS; full, not full END STATE SUBSETS; 
begin: PROCEDURE; END PROCEDURE; 
select: PROCEDURE; END PROCEDURE; 
confirm: PROCEDURE; 

TRANSITIONS; 
not full --> full, 
not full --> not full 
END TRANSITIONS; 

END PROCEDURE; 
reject: PROCEDURE; END PROCEDURE; 
done: PROCEDURE; END PROCEDURE; 
EVENT DEFINITIONS; 

choice: SEQUENCE (select, OR 
(confirm, reject)), 

trans: SEQUENCE (begin, REPEAT (choice), 
done), 

END EVENT DEFINITIONS; 
DESIRED BEHAVIOR; 

POSSIBLY CONCURRENT (trans, 
[flight,seats]Itrans), 

MUTUALLY EXCLUSIVE (choice, choice) 
END DESIRED BEHAVIOR; 

END MONITOR CLASS; 

Figure 2 

there will be numerous instances of [flightseats] 
in the completed ticket reservation system design, 
all potentially being accessed concurrently. 

Interfaces to the monitor class are 
described by procedure textual units, each pro- 
cedure being assigned a name. (Parameters may 
also be associated with monitor procedures, al- 
though that aspect of DDN is not illustrated in 
the present example.) The usual conventions for 
mutually exclusive usage of a monitor procedure, 
as defined by Hoare [5], apply to DDN monitor 
procedures. Interaction with a monitor is then 
described by procedure invocations, as we shall 
see later in this example. 

Monitor functionality is described in terms 
of states and state transitions. At the current 
level of detail, the [flight_seats] monitor class 
can be described using two state subsets, full 
and not ~ull. It is not necessary that DDN state 
subsets be disjoint, although the two in this 
example presumably are. It is, however, possible 
to further coordinatize a monitor's state space 
using state variables, each of which can assume 
one of a disjoint set of values [ii]. 

An abstract, conceptual and outward-directed 
description of each monitor procedure can be for- 
mulated using the transitions textual unit. 
Transitions may be viewed as a precondition/post- 
condition specification for procedure behavior. 
The left-hand sides of the transitions stipulate 
the set of state subsets which the monitor class 
may be in when the procedure is invoked; invoca- 
tion when the monitor is in any other state sub- 
set is not anticipated by the designer. The 
right-hand sides of the transitions indicate what 
state subsets the monitor may be put into as a 
result of a procedure activation. In keeping 
with their role as outward-directed representa- 
tions of procedure behavior, transitions may be 

nondeterministic. In our figure 2 example, for 
instance, invocation of the confirm procedure is 
only expected when the [flight_seats] monitor 
class is in its not ~ull state subset, but such 
an invocation might result in the monitor's 
either remaining in the not~ull subset or tran- 
siting into the full state subset. 

The figure 2 example also provides an illus- 
tration of DREAM's nonprocedural behavior descrip- 
tion capabilities, which are based upon the defi- 
nition of events. Events may be defined in a 
number of different ways in DREAM [16]. In parti- 
cular, every procedure definition in a DDN descrip- 
tion implicitly defines an event whose name is the 
same as the procedure's name and which corresponds 
to an activation of the procedure. Thus the 
[flightseats] monitor class implicitly defines 
the events begin, select, confirm, reject and 
done. Events may also be defined using an event 
definitions textual unit. In particular, within 
an event definitions textual unit events may be 

defined by event sequenc e expressions, which are 
expressions describing one or more sets of sequen- 
tial or concurrent occurrences of other events. 
For instance, in figure 2 the choice event is 
defined to consist of an occurrence of the select 
event followed by an occurrence of the confirm 
event or an occurrence of the select event follow- 
ed by an occurrence of the reject event. Simi- 
larly, the trans event is defined to consist of 
an occurrence of the begin event followed by any 
number of occurrences of the choice event follow- 
by an occurrence of the done event. 

The principal use of events in DREAM descrip- 
tions occurs in desired behavior textual units. 
A designer may use a desired behavior textual unit 
to express intended restrictions on the behavior 
of the system being designed. These restrictions 
are in no way enforced by DREAM; they merely re- 
flect the designer's intentions and provide for 
the possibility of assessing the design descrip- 
tion by checking to see whether those intentions 
were obeyed in the actual behavior described by 
the subsystems and monitors. In the example of 
figure 2, the designer has indicated two inten- 
tions with respect to usage of [flight_seats] mon- 
itors. The first concurrency expression in the 
desired behavior textual unit indicates the de- 
signer's willingness to permit seats on different 
flights to be reserved simultaneously (i.e., a 
trcr~s event in one [flight_seats] monitor may 
occur concurrently with a trans event in any other 
[flight_seats] monitor). The second concurrency 
expression indicates the intended restriction that 
two choice events within a single [flight_seats] 
monitor should not be allowed to occur simulta- 
neously (i.e., actual decisions regarding seats 
on a particular plane must be made in a mutually 
exclusive fashion). These intended restrictions 
are stated by the designer of the [flight_seats] 
monitor, the person in the best position to know 
what restrictions are required (the person who 
would, for example, know that mutually exclusive 
occurrence of the entire transaction is not neces- 
sary). However, these behavioral restrictions 
must actually be realized by designers whose com- 
ponents use the [flightseats] monitor, since 
desired behavior descriptions are nonprescriptive. 
DREAM can help in ascertaining whether or not the 

92 



intentions so expressed have been honored, but 
will not in any way actually enforce those 
intentions. 

We continue our example by illustrating how 
the designer might carry out one step in an elab- 
oration of the airline ticket reservation system 
design. The step begins with the three minor mod- 
ifications to the [ticket manager] subsystem class 
shown in figure 3. The first change (quoted pre- 
fixes are used in DREAM to indicate what part of 
the current design description is to be modified) 
is the addition of a subcomponents textual unit 
to the [ticket manager] description. A subcompo- 
nents textual unit describes the internal composi- 
tion of objects in a class, in this case indicat- 
ing that each [ticket_manager] contains a collec- 
tion of [flight_seats] monitors, one for each 
flight on which it is able to reserve tickets. 
Similarly, the second change shown in figure 3 is 
the addition of a local subcomponents textual unit 
to the manager control process of the [ticket 
manager], indicating that each control process in 
the subsystem will have available to it a monitor 
which can be used essentially as an integer vari- 
able taking values in the range 1 to # of flights. 
Both these changes may be termed inward-directed 
since they reflect details of the internal opera- 
tion of the subsystem rather than providing purely 
behavioral information about the [ticket_manager] 
class. The third change shown in figure 3 is the 
replacement of the qualifiers textual unit of the 
[ticket_manager] class by an updated version which 
recognizes that # of flights is now a parameter of 
the subsystem class. 

'[ticket_manager]: SUBSYSTEM CLASS' SUBCOMPONENTS; 
list: ARRAY [I::# of flights] of 

[flight seats (~_INDEX)]; 
END SUBCOMPONENTS; 

'[ticket_manager]: SUBSYSTEM CLASS; 
manager: CONTROL PROCESS' 
LOCAL SUBCOMPONENTS; 

fl # of [I::# of flights] 
END LOCAL SUBCOMPONENTS; 

'[ticket_manager]: SUBSYSTEM CLASS' 
QUALIFIERS; number of agents, # of flights 

END QUALIFIERS; 

Figure 3 

The elaboration step continues with the addi- 
tion of the control process body shown in figure 4 
to the [ticket manager] subsystem class descrip- 
tion. A control process body provides the inward- 
directed description which corresponds to the 
outward-directed description of a control process 
model. That is, the body indicates what manipula- 
tions of the subcomponents of the subsystem are 
required to produce the behavior specified by the 
model. Thus, for instance, we find invocations of 
the begin, select, confirm, reject and done proce- 
dures applied to specific instances of the 
[flight_seats] monitor class in the list 
subcomponent. 

We conclude our example by briefly consider- 
ing representative samples of the type of design 

'[ticket_manager]: SUBSYSTEM CLASS; 
manager: CONTROL PROCESS' 

BODY 
ITERATE; 

RECEIVE agent_req(~_INDEX); 
IF req_info(MYINDEX) = garbled 

THEN SET answer(~_INDEX) TO error; 
ELSE req_info(MYINDEX).get_fl(fl_#) 

list(fl_#).begin; 
ITERATE; 

list(fl_#).select; 
MAYBE list(fl_#).confirm; 

ELSE list(fl #).reject; 
END MAYBE; 

END ITERATE; 
list(fl_#).done; 
SET answer(~_INDEX) TO ok; 

END IF; 
SEND agent_resp(MYINDEX); 

END ITERATE; 
END BODY; 

Figure 4 

analysis supported by DREAM. As indicated ear- 
lier, the fundamental approach is feedback analy- 
sis based upon consistency checking. Thus, for 
instance, DREAM can be used to ascertain that the 
behavior resulting from the operations specified 
for the manager control process body (figure 3) 
corresponds to the description of the manager 
control process' behavior as given by its model 
(figure i). By reporting the discovery of this 
consistency between the inward-directed and 
outward-directed descriptions of a design compo- 
nent, DREAM can help to bolster the designer's 
confidence in the correctness of this elaboration 
step in the design of the airline reservation 
system. 

A second form of feedback analysis is based 
upon checking for consistency between the evolving 
description of a design's components and the de- 
signer's intentions regarding behavioral restric- 
tions as expressed through desired behavior textu- 
al units. Using techniques similar to those pre- 
sented in [13], an event sequence expression re- 
presenting the behavior of the manager control 
process in terms of trans and choice events can be 
derived from the control process body. Upon com- 
paring this derived expression with the concur- 
rency expressions of the desired behavior textual 
unit associated with the [flight_seats] monitor 
class (figure 2), the designer would discover that 
the mutual exclusion between choice events which 
was recorded as desirable has not been realized in 
the [ticket manager] subsystem. Thus feedback 
provided by DREAM permits the designer to discover 
an inconsistency, thereby exposing an oversight or 
an error in the design as it is currently de- 
scribed. Uncovering the flaw at this early stage 
in the development of the airline reservation sys- 
tem makes possible a timely and relatively easy 
correction of the problem, preventing it from per- 
sisting through further developmental stages to 
become a major repair job later. 
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Conclusion 

In this paper we have attempted to show how 
the Design Realization, Evaluation And Modelling 
system and the DREAM Design Notation can facili- 
tate the orderly development of large, concurrent 
software systems. Based upon numerous example 
usages of DDN [2,3,12,13,14,17], we believe that 
the notation is well-suited for use in designing 
such systems and that the assessment facilities 
of DREAM can be of significant value to the devel- 
opers of large-scale~ concurrent software. 
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