
PREEMPTION COSTS IN ROUND ROBIN SCHEDULING 

Charles M. Shub 

Computer Science Department 
University of Wyoming 

Box 3682, University Station 
Laramie, Wyoming 82071 

Round robin scheduling with preemption costs taken into consideration is examined. 
Both a uniprocessor configuration and a multiprocessor configuration, one processor 
dedicated to the scheduling, are considered. Approximation formulae to obtain effec- 
tive load on the system from the actual load and the overhead parameters are derived 
and compared with simulation results. 
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i. Introduction 

Coffman and Denning [5] call for treatment of 
optimal scheduling with preemption costs taken into 
consideration. A more general problem is the 
effect of scheduler overhead in computer systems as 
it relates not only to optimal processor scheduling 
but also to the net effects of certain peripheral 
scheduling algorithms. In 1970, Mullery and 
Driscoll [7] observed that one method of minimizing 
overhead was to leave each job on the processor as 
long as possible. They reasoned that the smaller 
the number of scheduling operations, the less over- 
head. This idea was echoed by Bernstein and Sharp 
in 1971 [3]. Earlier, Coffman [4] investigated 
overhead in switching between foreground and back- 
ground using a fixed delay. More recently, gabad 
[2] reported results again involving a fixed 
constant amount of overhead. 

In terms of scheduling, there are many 
unanswered questions. For example, what is the 
overall effect of a disc scheduling algorithm 
which maximizes data transfer rate? If the imple- 
mentation of this disc scheduling algorithm 
requires more processing to handle disc requests 
than some other algorithm, is there an implication 
that the additional load on the processor due to 
the use of this particular algorithm will cause a 
decrease in overall throughput? Is there a point 

at which a processor can become so overloaded with 
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the business of scheduling operations that system 
performance collapses in a manner similar to the 
system performance collapse due to "thrashing" [5]? 
Is there a point at which the increased overhead to 
manage additional peripheral units offsets the per- 
formance gains which those additional peripheral 
units should have provided? 

A study at the University of Texas [9] claims 
that the best overall CPU throughout is obtained by 
a shortest execution first processor scheduling 
policy and presents results showing a 12.89 percent 
throughput increase over the worst case scheduling 
method. This work does not take into account the 
possibly significant processor overhead involved in 
making such a selection. 

The purpose of this study is to report on the 
investigation of, through simulation modeling, the 
effect of accounting for the finite amount of time 
that the scheduling operations take. This study is 
an extension to a prior study done on an M/M/I 
queueing system [ii]. This study extends the work 
previously reported to a Round Robin environment 
with a fixed quantum length given a Poisson arrival 
process and exponentially distributed service 
requirements. 

2. Methodology 

The methodology used is perhaps unusual and 
merits exposition. ~ Typically, a simulation experi- 
ment involves a number of phases including stra- 
tegic planning, tactical planning, experimentation, 
validation of the experimental results and analysis 
of the valid results [8]. In terms of the stra- 
tegic, or long-range plans, the goal is to develop 
a thorough understanding of the perhaps subtle 
effects that different scheduling algorithms can 
have on overall performance of computer systems 
when their costs are accurately taken into account. 
Normally, an experiment involving the exploration 
of one situation would be considered to be part of 
the tactical plan. However, in terms of this set 
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of experiments being one phase of the solution to 
the overall problem, the choice of what system to 
consider becomes part of the long-range plans. 

The tactical planning, then, involves choosing 
the parameters and values to produce the desired 
information. Considerable detail to motivate the 
choices made in the tactical plan is presented in 
that section of the report. In general, areas of 
concern include fairly heavily loaded systems, so 
the general parameter selection process chooses a 
fairly heavy loading factor when overhead is not 
considered and then selection of overhead parame- 
ters which will yield a range of values before 
driving the system to total saturation. 

The experimentation, then, involves one or 
both of two courses of action. The first, and most 
usual course of action, is to run the experiments 
on an already developed computer implementation of 
the model. The second involves developing a sepa~ 
rate computer implementation for the particular 
experiments. In the set of experiments reported in 
this paper both approaches were used. The first 
has as its advantage the ease of carrying out the 
experiments and confidence in the results, but as 
its disadvantage, the problem that the original 
model may not be totally appropriate and the 
development of a specific model may provide addi- 
tional insight to the process. Also, in a teaching 
environment, development of a new model can be 
valuable for student participation. 

The validation process is normally quite 
complex because of the lack of analytical models 
which consider the scheduling delays. One can 
avoid the problem by validating at the no-overhead 
point. However, much more effective is the mecha- 
nism of analysis and actual development of analyti- 
cal approximations through a thorough analysis. 
Once developed, the analytical approximation is, 
of course, not only much easier to apply but also 
cheaper than the simulation model. Thus, the meth- 
odology used is the development of a model, the 
development of a computer simulation of the model, 
the development of analytical techniques to vali- 
date the simulation model, and, finally, the use of 
the analytical results to get approximations 
quickly and cheaply. 

The natural question at this point is why 
bother with the simulation in the first place. 
Typically, analytical modeling requires making 

assumptions about the stochastic form of inter- 
actions within the system. The simulation experi- 
ment can either show that this form does in fact 
exist or that if the form does not exist, its lack 
of existence is not critical to the analysis. In 
addition, the simulation results can dramatically 
show counter-intuitive interactions which the pure 
analyst will neither expect nor take into account. 

In summary, then, the methodology is to a 
large degree a hybrid methodology blending both 
simulation and analytical techniques to obtain the 
desired results which are easy and cheap to use. 

3. The Idealized Model 

The idealized queueing situation described 
below evolves naturally by abstraction from a 
typical multiprogrammed computer system. A major 
simplifying assumption is that in the idealized 
system, peripheral usage is of peripheral interest 
and is thus ignored. With such an abstraction, the 
system can be depicted in Figure i. 

A user arrives at the system requiring an 
exponentially distributed service time. If the 
system is idle, the user receives control of the 
processor. Otherwise, the user enters a waiting 
line for the processor. Upon receiving control of 
the processor, the user utilizes the processor for 
a fixed quantum length and then goes to the end of 
the waiting line. Should a user complete his 
service requirement before ending a quantum, the 
user would then release the processor when he is 
done and depart. As has been described, the system 
is the classic Round Robin model. This classic 
model is modified by including a finite amount of 
time for effecting the queueing changes, and a 
finite amount of time to process departures. Add- 
ing these processing delays causes the idealized 
model to conform more closely to an actual system 
than the classic Round Robin model. It also trans- 
forms the model into a system for which there is 
not a closed form analytical solution. 

Consider, as an example, a service facility 
which services inoperable automobiles. When an 
inoperable automobile arrives at the facility, some 
processor at the facility must expend some effort 
in receiving the inoperable automobile for service. 
This effort could involve placing the automobile in 
a line or a position to be worked on. The mechanic 
(server) will work on an automobile for at most a 
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fixed time (quantum) s~:opping before the expiration 
of the quantum only if the car is completely 
repaired prior to the end of the quantum. After 
completing his quantum of work on a car, the 
mechanic then proceeds to the next car. There will, 
of course, be some time involved in the mechanic 
transferring from one car to the next as well as 
time involved placing +:he inoperable, but partially 
repaired, car in a sta:us to be worked up later. 
The operations of receiving a car for service and 
placing the car in a position for later resumption 
of work can be done either by a supervisor (sepa- 
rate resource) or by the mechanic (server) himself. 

The addition of this overhead can be consid- 
ered in two fashions. The first involves the server 
stopping production to perform the scheduling. This 
is the situation currently common in most multi- 
programming computer systems in use today. The 
second, or innovative method, involves the use of 
a second processor to perform the scheduling 
operations. Intuitively, the second processor 
might be a very small mini or micro processor 
designed only to do the queue management operations 
involved in scheduling. It would, naturally, run 
concurrently with the main processor. The advantage 
of this method would be that the processor could do 
productive work without being bothered with per- 
forming the scheduling operations. 

4. Simulation Experiments 

Several simulation experiments were run using 
the idealized models described above. The simula- 
tion runs were made using a previously validated 
simulation model [i0]. In each and every experi- 
ment, arrivals were according to a Poisson process 
with mean inter-arrival time set at 1.0 units. The 
mean service requirement was exponentially distrib- 
uted with a mean of 0.75 units, and the maximum 
quantum length was established as 0.25 units. In 
addition, the system was allowed an initial bias 
period of 125 units, and then statistics were 
gathered for a period of 500 time units. Careful 
consideration was given to these choices. The 
choice of 1 unit for the mean inter-arrival time 
gives a (lambda) parameter of 1 with mean and 
variance both unity. This has the net effect of 
removing all (lambda) multipliers from the per- 
formance equations. The mean service requirement 
was chosen as .75 to provide a fairly substantial 
loading such that there would he a buildup in the 
system and equilibrium conditions would involve 
reasonable queue lengths. In addition, the loading 
had to be low enough to allow for an introduction 
of scheduling delays. As a basis for comparison~ 
a M/M/I system with identical loading would have 
the following performance parameters [i]; these 
values are summarized in tahle i: 

Expected Waiting Time 2.25 
Expected Queue Lenght 2.25 
Expected Length of Nonempty 4 
Expected Number in System 3 
Expected Wait (liven Waiting 3 
Expected Time in System 3 

Table i. Expected Results 
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Graph i provides a summary of the simulation 
experiments showing the differences between using 
a separate processor for scheduling and using the 
same processor for both scheduling and productive 
work. 

5. Round Robin with Overhead 

Coffman and Denning [5] provide a detailed 
analysis of Round Robin systems with no overhead. 
In their analysis, they assume an integral number 
of quantum lengths as the service requirement. 
This factor influenced the choice of .25 for the 
quantum length. With the selected quantum figure, 
the expected number of quanta would be 3, and the 
probability of a user requiring an additional 
quantum at the end of any quantum would be 0.75. 

A base line experiment on the Round Robin 
model involving no overhead provided the results 
given in table 2 which compare nicely with the 
M/M/I system and design considerations. 

Mean Waiting Time 2.19 
Mean Queue Length 2.276 
Mean Length of Nonempty Queue 3.64 
Mean Number in System 3.08 
Mean Wait Given Waiting 2.48 
Mean Time in System 2.99 

Table 2. Observed Results 

A batch means technique [6] was used to reduce the 
variance of the simulation results, and, in every 
case, the simulation results were statistically 
identical at the a = .05 level of significance to 
the M/M/I system predicted results. 

The next experiment involved introducing 
scheduling delays as follows: 
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i) arrival at an idle system (AV) 
2) arrival at a productive 

system (AP) 
3) arrival at a system in 

overhead (A0) 
4) departure delay (DD) 
5) end of quantum delay (QD) 

.026 x units 

.031 x units 

.021 x units 

.025 x units 

.031 x units 

These figures were chosen in what appears to 
be a rather arbitrary fashion so some justification 
is in order. Given a system in which the expected 
number of quanta is 3, one can expect, on the aver- 
age, one arrival, one departure and two end of 
quantum delays. Each job would thus receive, on 
the average, four distinct scheduling services. 
Thus, to saturate the system, one would want total 
services (both production and scheduling) to take 
about 1 unit of time. With a .75 service require- 
ment, about .25 is left for overhead processing. 
In actuality, a bit more than the .25 would be 
available because the end of quantum processing 
involves two users, the one ending the quantum and 
the one starting the quantum. The units of delay 
were chosen to attempt to reflect a total delay 
ascribable to each user of approximately about .ii 
units. That would yield, in a rather general 
sense, loads similar to .86 and .97 for x equals 1 
and 2 respectively. A second, and concurrent, con~ 
sideration is that of breaking down the delays into 
the primitive units as recognized by the simulation 
model. To establish the desired results given 
above, the following values were used: 

i) .010 x interrupt processing time 
2) .001 x time to check the queue to determine 

if a user was waiting for service 
3) .005 x time to unlink task control block of 

waiting user so that he could receive 
the processor 

4) .005 x 6ime to link task control block into 
queue for start or resumption of 
processing later 

5) .010 x time to restore processor to uninter- 
rupted status 

The ratios of these values are based upon actual 
instruction counts in an existing system. 

6. Analysis of Round Robin Scheduling 

0 = P + arrival overhead + (N - i) quantum (i) 

end overhead + departure overhead 

arrival overhead = PO * AV + (i - PO) * (2) 

(PP , AP + (i - PP) AO) 

where 

PO = probability the system is idle (I - ~) 

PP = probability the system is productive (p) 

AV = arrival overhead at vacant system 

AP = arrival overhead at productive system 

A0 = additional arrival overhead at system in 
overhead 

DD = departure delay 

QD = end of quantum delay 

O = effective load 

Substituting into eq (i) gives 

= p + (N - i) QD + DD + (i - 0) , AV (3) 

+ ~ (p * AP + (i - p) AO) 

Solving eq (3) for ~ we find 

p + (N - i) QD + DD + AV 
= 1 + AV + (p * AP + (i - p) * AQ) 

(4) 

Tables 3 and 4 summarize the results of these 
experiments. It can be seen that these results 
compare favorably with those expected. This indi- 
dates that the commonly advanced idea of, in 
essence, "charging" the user for a scheduling oper- 
ation, while it might not be fair, is a good approx- 
imation for determining the net effect of finite 
scheduling time in the Round Robin situation. 

The comparison of simulation results to ana- 
lytical results is provided in graph 2. 

PARAMETER EXPECTED OBSERVED 

Expected Waiting Time 5.54 5.42 
Expected Queue Length 5.54 6.28 
Expected Length of Nonempty Queue 7.41 7.28 
Expected Number in System 6.41 7.10 
Expected Wait Given Waiting 6.41 5.66 
Expected Time in System 6.41 6.28 
Overhead Percentage 11.51 13.98 
Effective Load .8651 .8655 

Table 3. Expected Versus Observed Parameters 
for Nominal Load of 0.865 

PARAMETER EXPECTED OBSERVED 

Expected Waiting Time 32.51 33.73 
Expected Queue Length 32.51 32.32 
Expected Length of Nonempty Queue 34.48 32.32 
Expected Number in System 33.48 33.10 
Expected Wait Given Waiting 33.48 33.73 
Expected Time in System 33.48 34.32 
Overhead Percentage 22.1 25.67 
Effective Load .971 .972 

Table 4. Expected Versus Observed Parameters 
for Nominal Load of 0.971 

7. Separate Processor 

Of much greater interest and importance is 
the consideration of the use of an auxiliary 
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processor to perform scheduling operations. These 
cperations, under a wide class of queueing disci- 
plines, involve only simple priority calculations, 
some minor queue management routines and simple 
message sending operations [i0]. There is no need 
for a complex modern large scale third or fourth 
generation processor to perform these tasks, espe- 
cially when there is productive work which could 
otherwise occupy the processor while the scheduling 
is going on. In addition, the use of a small pro- 
cessor specifically designed to perform the sched- 
uling would be conducive to implementing the sched- 
uling operations with hardware rather than software. 

Several simulation experiments were run with a 
separate processor called the scheduler to perform 
the scheduling operations. For comparison purposes, 
delay values and loading were chosen to be similar 
to the previous experiments. 

The most interesting result is that the intro- 
duction of a separate processor to perform sched- 
uling has little, if any, influence on performance 
at lower scheduling delays. At the higher delays 
there is a significant backup in the system due to 
the time the scheduling is taking. At these higher 
dalays, the scheduler is taking over 50 percent of 
the available time to do the scheduling, but the 
utilization statistics are no worse than with using 
the same processor with smaller delays for both 
productive work and scheduling. If the magnitude 
of the delay is interpreted as being due to a 
slower scheduling processor, we see that the sched- 
uler can run at one-fourth the speed of the proces- 
sor! 

The major portion of the degradation in per- 
formance for high overhead (low speed) scheduling 
appears to be that scheduling has become a bottle- 
neck. Almost 60 percent of the requests for sched- 
uling find the scheduler busy. Thus, it is not the 
lack of a processor which is holding things up but 
the inability for requests for service to be acted 
upon. Also, the percentage of time that the pro- 

eessor is idle appears to increase with slower 
scheduling. This is due to the fact that the pro- 
cessor must sit idle while waiting for the scheduler 
to tell it which job to process next. There is a 
substantial synergistic effect from adding a sched- 
uling device. The next section analyses the system 
in more detail. 

8. Analysis of Separate Processor 

There can be a wide range of events involved 
in this system because of the two processors 
involved. The initial step is to analyze each pos- 
sible action which can occur and provide the timing 
data for that situation. 

8.1. Job Arrival 

There are three possible situations. The sys-- 
tem can be idle when a job arrives (AV) or the 
scheduler can be busy (AB) or the processor can be 
busy and the scheduler is doing nothing (AI). 

In the first case, the scheduler goes from 
idle mode to busy mode. This status will last for 
a duration of .025 x units of time. This is to 
create a task control block for the user and is 
consistent with the previous experiments. Since we 
have a processor in addition to the scheduler, the 
job will not have to wait the entire .025 x units 
in order to start being processed. The processor 
will remain idle for a period of .015 x units, 
experience an overhead time of .005 x units and 
then go into production. This is an unproductive 
period (UAV) of .020 x units. 

In the second case, a job arrives while the 
scheduler is processing some other request. This 
arrival will have absolutely no effect upon pro- 
ductive use of the processor. The scheduler will 
spend an additional .015 x units processing this 
request. 

The final arrival case involves an arrival 
when the scheduler is doing nothing but the pro- 
cessor is busy. In this situation, the arrival has 
no effect on the processing but does cause scheduler 
to spend .025 x units of time processing the 
arrival. 

8.2. Job Departure 

There are two possibilities when a job departs. 
The scheduler can be idle (DI) or the scheduler can 
be busy (DB). In the first case, the~processor 
will go idle. If there is a request for service in 
the queue, the processor will remain idle for a 
period of .016 x units, then go to overhead mode 
for .005 x units and finally back into production. 
Thus, the processor will be unproductive (UDI) for 
a total of .021 x units. The scheduler, meanwhile, 
will spend a total of .026 x units of time process- 
ing the departure and scheduling the next user. 

In the second case, we use D to denote the 
delay before the scheduler can process the depar- 
ture due to being otherwise occupied. The proces- 
sor will be idle for a period of D + .006 x units, 
and then in overhead for a total of .005 x units 
yielding a total nonproductive interval (UDB) for 
the processor of D + .011 x units. The scheduler 
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will require an additional .016 x units after the 
delay to complete the departure processing. 

8.3. Quantum Expiration 

At quantum termination, either the scheduler 
is idle (QI) or busy (QB). When the scheduler is 
idle, the processor goes idle, then to overhead 
mode .016 x units later and finally back to produc- 
tive mode .005 x units after that. This is an 
enforced nonproductive period (UQI) of .021 x units 
due to quantum end. The scheduler takes a total of 
.031 x units of time to process the quantum expira- 
tion, actually queueing the request for the next 
quantum .021 x units after starting. 

When the scheduler is busy, we use D to denote 
the delay before the scheduler can process the 
quantum expiration. The processor immediately goes 
idle. It remains idle for D + .006 x units and 
then goes into overhead for .005 x units before 
going back to production. This is a nonproductive 
period (UQB) of D + .011 x units. The scheduler, 
meanwhile, requires an additional .021 x units of 
time to process the end of the quantum, actually 
queueing the request for another quantum .011 x 
units after starting. 

8.4. Timing Data 

From the above analysis, expressions can be 
derived for the magnitudes of the overhead values. 
The following notation is used: 

AO arrival overhead 
QO quantum expiration overhead 
DO departure overhead 
UQ unproductive interval on quantum expiration 
UD unproductive interval on departure 
PO probability the system is idle 
PSI probability the scheduler is idle 
PPA probability the scheduler is processing an 

arrival 
N expected number of quanta a job requires 
MO mean event overhead 
MU mean unproductive interval 
ESR effective service requirement 
QL quantum length 

The first step in the analysis is to determine 
the mean length of scheduling operation. This, 
coupled with the unity expected inter-arrival time, 
allows the calculation of the probability that the 
scheduler is idle. The timing data mentioned above 
can be used to solve the equations. 

MO = ((N - i) * QO + DO + AO)/(N + i) (5) 

PSI = 1.0 - (N + i) * MO (6) 

QO = PSI * QI + (i - PSI) * (OB) (7) 

DO = PSI * DI + (i - PSI) * (DB) (8) 

AO = PSI * AI + (i - PSI) * (AB) (9) 

Some simple mathematics yields eq (i0) from 
eqs (5) through (9). 

(N - i) QI + DI + AI 
MO = (N+I)(I+(N-I)(QI-QB)+(DI-DB)+(AI-AB)) (i0) 

Next, we calculate the average forced unpro- 
ductive period, due to the overhead, at quantum 
expiration and departure. 

MU = (N- i) * UQ + UD (11) 
N 

Note that a quantum expiration can occur when the 
scheduler is in overhead mode only when an arrival 
is being processed. In this case, the unproductive 
period will be longer than expected because the 
scheduler must finish processing the arrival before 
it can process the quantum expiration. Both the 
simulation results and the fact that arrivals are 
exponential indicate that this delay averages out 
to be 36.7879 percent (l/e) of the arrival over- 
head. Thus, we have 

UQ = PPA * (UQB + AO/e) + (I - PPA)(UQI) (12) 

UD = PSI(UDI) + (i - PSI)(UDB + MO/e) (13) 

and MU can be easily calculated. Finally, 

= ~ + N * MU. (14) 

Table 5 summarizes the comparison of the 
analysis and the simulation. 

In all cases, the calculated ~ is within about 
2 percent of the observed value of ~. At these high 
loadings, the measures are very sensitive to small 
changes in the loading. For example, in the last 
column a difference of less than 1/2 percent in 
calculated and observed loading produces a large 
disparity between the measures. This is depicted 
in graph 3 which compares the simulation results 
and analytical results. 

9. Conclusions 

The results presented above extend previous 
models for predicting the effect of scheduler over- 
head in computing systems from the single server 
single queue system to the Round Robin scheduling 
discipline. Performance calculation equations and 
procedures have been presented. These equations 
and procedures will allow the system designer to 
analyze the effect of adding bells and whistles to 
his scheduling algorithms. The analytical results 
derived have been validated against a valid simu- 
lation model. The effect of adding a separate pro- 
cessor to perform the scheduling operations has 
been investigated and shown to be less deleterious 
to system performance than the currently used 
mechanism. There is a need for future work in this 
area to extend the results to a wider variety of 
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DELAY FACTOR 0 i 2 3 4 

Calculated ~ .75 .811 .870 .928 .984 

Expected Waiting 2.25 3.48 5.82 11.96 60.51 
Time 

Observed Waiting 2.69 4.14 7.48 15.27 49.74 
Time 

Observed ~ .776 .832 .893 .942 .980 
Calculated from WT 

Expected Queue 2.25 3;48 5.82 11.96 60.51 
Length 
Observed Queue 2.75 4.24 7.65 15.56 51.05 
Length 

Observed ~ .779 .835 .895 .943 .981 
Calculated from QL 

Expected Time 3.0 4.29 6.69 12.89 61.5 
in System 

Observed Time 3.42 4.96 8.41 16.32 50.93 
in System 

Observed ~ .773 .832 .894 .942 .9S0 
Calculated from TS 

Table 5. Comparison of Calculation and Simulation 
Results for Various Scheduler Speeds 
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queueing disciplines. There is a further need to 
develop models to handle the effect of overhead in 
output scheduling as well. The methods presented 
here should be extended to produce these needed 
additional results. 
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