
PREEMPTION COSTS IN ROUND ROBIN SCHEDULING

Charles M. Shub

Computer Science Department
University of Wyoming

Box 3682, University Station
Laramie, Wyoming 82071

Round robin scheduling with preemption costs taken into consideration is examined.
Both a uniprocessor configuration and a multiprocessor configuration, one processor
dedicated to the scheduling, are considered. Approximation formulae to obtain effec-
tive load on the system from the actual load and the overhead parameters are derived
and compared with simulation results.

Key words: Analytical model; round robin scheduling; scheduling overhead; simulation
model.

i. Introduction

Coffman and Denning [5] call for treatment of
optimal scheduling with preemption costs taken into
consideration. A more general problem is the
effect of scheduler overhead in computer systems as
it relates not only to optimal processor scheduling
but also to the net effects of certain peripheral
scheduling algorithms. In 1970, Mullery and
Driscoll [7] observed that one method of minimizing
overhead was to leave each job on the processor as
long as possible. They reasoned that the smaller
the number of scheduling operations, the less over-
head. This idea was echoed by Bernstein and Sharp
in 1971 [3]. Earlier, Coffman [4] investigated
overhead in switching between foreground and back-
ground using a fixed delay. More recently, gabad
[2] reported results again involving a fixed
constant amount of overhead.

In terms of scheduling, there are many
unanswered questions. For example, what is the
overall effect of a disc scheduling algorithm
which maximizes data transfer rate? If the imple-
mentation of this disc scheduling algorithm
requires more processing to handle disc requests
than some other algorithm, is there an implication
that the additional load on the processor due to
the use of this particular algorithm will cause a
decrease in overall throughput? Is there a point

at which a processor can become so overloaded with

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title o f the publication and its date appear,
and not ice is given that copying is by permission of the Association for Com-
puting Machinery, Inc. To copy otherwise, or to republish, requixes a fee and/or
specific permission.

(~1978 ACM 0-89791-000-1/78/0012/0gb~ /$00.75

the business of scheduling operations that system
performance collapses in a manner similar to the
system performance collapse due to "thrashing" [5]?
Is there a point at which the increased overhead to
manage additional peripheral units offsets the per-
formance gains which those additional peripheral
units should have provided?

A study at the University of Texas [9] claims
that the best overall CPU throughout is obtained by
a shortest execution first processor scheduling
policy and presents results showing a 12.89 percent
throughput increase over the worst case scheduling
method. This work does not take into account the
possibly significant processor overhead involved in
making such a selection.

The purpose of this study is to report on the
investigation of, through simulation modeling, the
effect of accounting for the finite amount of time
that the scheduling operations take. This study is
an extension to a prior study done on an M/M/I
queueing system [ii]. This study extends the work
previously reported to a Round Robin environment
with a fixed quantum length given a Poisson arrival
process and exponentially distributed service
requirements.

2. Methodology

The methodology used is perhaps unusual and
merits exposition. ~ Typically, a simulation experi-
ment involves a number of phases including stra-
tegic planning, tactical planning, experimentation,
validation of the experimental results and analysis
of the valid results [8]. In terms of the stra-
tegic, or long-range plans, the goal is to develop
a thorough understanding of the perhaps subtle
effects that different scheduling algorithms can
have on overall performance of computer systems
when their costs are accurately taken into account.
Normally, an experiment involving the exploration
of one situation would be considered to be part of
the tactical plan. However, in terms of this set

868

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800178.810156&domain=pdf&date_stamp=1978-01-01

FIRR]VE > I > OUEUF PROCESSOR
"~ DEPRRT>

V YES

FIGURE i. SYSTEM DIRGRAM

of experiments being one phase of the solution to
the overall problem, the choice of what system to
consider becomes part of the long-range plans.

The tactical planning, then, involves choosing
the parameters and values to produce the desired
information. Considerable detail to motivate the
choices made in the tactical plan is presented in
that section of the report. In general, areas of
concern include fairly heavily loaded systems, so
the general parameter selection process chooses a
fairly heavy loading factor when overhead is not
considered and then selection of overhead parame-
ters which will yield a range of values before
driving the system to total saturation.

The experimentation, then, involves one or
both of two courses of action. The first, and most
usual course of action, is to run the experiments
on an already developed computer implementation of
the model. The second involves developing a sepa~
rate computer implementation for the particular
experiments. In the set of experiments reported in
this paper both approaches were used. The first
has as its advantage the ease of carrying out the
experiments and confidence in the results, but as
its disadvantage, the problem that the original
model may not be totally appropriate and the
development of a specific model may provide addi-
tional insight to the process. Also, in a teaching
environment, development of a new model can be
valuable for student participation.

The validation process is normally quite
complex because of the lack of analytical models
which consider the scheduling delays. One can
avoid the problem by validating at the no-overhead
point. However, much more effective is the mecha-
nism of analysis and actual development of analyti-
cal approximations through a thorough analysis.
Once developed, the analytical approximation is,
of course, not only much easier to apply but also
cheaper than the simulation model. Thus, the meth-
odology used is the development of a model, the
development of a computer simulation of the model,
the development of analytical techniques to vali-
date the simulation model, and, finally, the use of
the analytical results to get approximations
quickly and cheaply.

The natural question at this point is why
bother with the simulation in the first place.
Typically, analytical modeling requires making

assumptions about the stochastic form of inter-
actions within the system. The simulation experi-
ment can either show that this form does in fact
exist or that if the form does not exist, its lack
of existence is not critical to the analysis. In
addition, the simulation results can dramatically
show counter-intuitive interactions which the pure
analyst will neither expect nor take into account.

In summary, then, the methodology is to a
large degree a hybrid methodology blending both
simulation and analytical techniques to obtain the
desired results which are easy and cheap to use.

3. The Idealized Model

The idealized queueing situation described
below evolves naturally by abstraction from a
typical multiprogrammed computer system. A major
simplifying assumption is that in the idealized
system, peripheral usage is of peripheral interest
and is thus ignored. With such an abstraction, the
system can be depicted in Figure i.

A user arrives at the system requiring an
exponentially distributed service time. If the
system is idle, the user receives control of the
processor. Otherwise, the user enters a waiting
line for the processor. Upon receiving control of
the processor, the user utilizes the processor for
a fixed quantum length and then goes to the end of
the waiting line. Should a user complete his
service requirement before ending a quantum, the
user would then release the processor when he is
done and depart. As has been described, the system
is the classic Round Robin model. This classic
model is modified by including a finite amount of
time for effecting the queueing changes, and a
finite amount of time to process departures. Add-
ing these processing delays causes the idealized
model to conform more closely to an actual system
than the classic Round Robin model. It also trans-
forms the model into a system for which there is
not a closed form analytical solution.

Consider, as an example, a service facility
which services inoperable automobiles. When an
inoperable automobile arrives at the facility, some
processor at the facility must expend some effort
in receiving the inoperable automobile for service.
This effort could involve placing the automobile in
a line or a position to be worked on. The mechanic
(server) will work on an automobile for at most a

B69

fixed time (quantum) s~:opping before the expiration
of the quantum only if the car is completely
repaired prior to the end of the quantum. After
completing his quantum of work on a car, the
mechanic then proceeds to the next car. There will,
of course, be some time involved in the mechanic
transferring from one car to the next as well as
time involved placing +:he inoperable, but partially
repaired, car in a sta:us to be worked up later.
The operations of receiving a car for service and
placing the car in a position for later resumption
of work can be done either by a supervisor (sepa-
rate resource) or by the mechanic (server) himself.

The addition of this overhead can be consid-
ered in two fashions. The first involves the server
stopping production to perform the scheduling. This
is the situation currently common in most multi-
programming computer systems in use today. The
second, or innovative method, involves the use of
a second processor to perform the scheduling
operations. Intuitively, the second processor
might be a very small mini or micro processor
designed only to do the queue management operations
involved in scheduling. It would, naturally, run
concurrently with the main processor. The advantage
of this method would be that the processor could do
productive work without being bothered with per-
forming the scheduling operations.

4. Simulation Experiments

Several simulation experiments were run using
the idealized models described above. The simula-
tion runs were made using a previously validated
simulation model [i0]. In each and every experi-
ment, arrivals were according to a Poisson process
with mean inter-arrival time set at 1.0 units. The
mean service requirement was exponentially distrib-
uted with a mean of 0.75 units, and the maximum
quantum length was established as 0.25 units. In
addition, the system was allowed an initial bias
period of 125 units, and then statistics were
gathered for a period of 500 time units. Careful
consideration was given to these choices. The
choice of 1 unit for the mean inter-arrival time
gives a (lambda) parameter of 1 with mean and
variance both unity. This has the net effect of
removing all (lambda) multipliers from the per-
formance equations. The mean service requirement
was chosen as .75 to provide a fairly substantial
loading such that there would he a buildup in the
system and equilibrium conditions would involve
reasonable queue lengths. In addition, the loading
had to be low enough to allow for an introduction
of scheduling delays. As a basis for comparison~
a M/M/I system with identical loading would have
the following performance parameters [i]; these
values are summarized in tahle i:

Expected Waiting Time 2.25
Expected Queue Lenght 2.25
Expected Length of Nonempty 4
Expected Number in System 3
Expected Wait (liven Waiting 3
Expected Time in System 3

Table i. Expected Results

.91

/ .811

.S! A~, SIMULRTION RESULTS FOR BOTH
"~ / / SEPRRATE AND SHARED SCHEnULER .7g
.78
.77

.75

.0 1.o 2.0 3.0 4.0

LORD FRCTOR

Graph i provides a summary of the simulation
experiments showing the differences between using
a separate processor for scheduling and using the
same processor for both scheduling and productive
work.

5. Round Robin with Overhead

Coffman and Denning [5] provide a detailed
analysis of Round Robin systems with no overhead.
In their analysis, they assume an integral number
of quantum lengths as the service requirement.
This factor influenced the choice of .25 for the
quantum length. With the selected quantum figure,
the expected number of quanta would be 3, and the
probability of a user requiring an additional
quantum at the end of any quantum would be 0.75.

A base line experiment on the Round Robin
model involving no overhead provided the results
given in table 2 which compare nicely with the
M/M/I system and design considerations.

Mean Waiting Time 2.19
Mean Queue Length 2.276
Mean Length of Nonempty Queue 3.64
Mean Number in System 3.08
Mean Wait Given Waiting 2.48
Mean Time in System 2.99

Table 2. Observed Results

A batch means technique [6] was used to reduce the
variance of the simulation results, and, in every
case, the simulation results were statistically
identical at the a = .05 level of significance to
the M/M/I system predicted results.

The next experiment involved introducing
scheduling delays as follows:

8 7 0

i) arrival at an idle system (AV)
2) arrival at a productive

system (AP)
3) arrival at a system in

overhead (A0)
4) departure delay (DD)
5) end of quantum delay (QD)

.026 x units

.031 x units

.021 x units

.025 x units

.031 x units

These figures were chosen in what appears to
be a rather arbitrary fashion so some justification
is in order. Given a system in which the expected
number of quanta is 3, one can expect, on the aver-
age, one arrival, one departure and two end of
quantum delays. Each job would thus receive, on
the average, four distinct scheduling services.
Thus, to saturate the system, one would want total
services (both production and scheduling) to take
about 1 unit of time. With a .75 service require-
ment, about .25 is left for overhead processing.
In actuality, a bit more than the .25 would be
available because the end of quantum processing
involves two users, the one ending the quantum and
the one starting the quantum. The units of delay
were chosen to attempt to reflect a total delay
ascribable to each user of approximately about .ii
units. That would yield, in a rather general
sense, loads similar to .86 and .97 for x equals 1
and 2 respectively. A second, and concurrent, con~
sideration is that of breaking down the delays into
the primitive units as recognized by the simulation
model. To establish the desired results given
above, the following values were used:

i) .010 x interrupt processing time
2) .001 x time to check the queue to determine

if a user was waiting for service
3) .005 x time to unlink task control block of

waiting user so that he could receive
the processor

4) .005 x 6ime to link task control block into
queue for start or resumption of
processing later

5) .010 x time to restore processor to uninter-
rupted status

The ratios of these values are based upon actual
instruction counts in an existing system.

6. Analysis of Round Robin Scheduling

0 = P + arrival overhead + (N - i) quantum (i)

end overhead + departure overhead

arrival overhead = PO * AV + (i - PO) * (2)

(PP , AP + (i - PP) AO)

where

PO = probability the system is idle (I - ~)

PP = probability the system is productive (p)

AV = arrival overhead at vacant system

AP = arrival overhead at productive system

A0 = additional arrival overhead at system in
overhead

DD = departure delay

QD = end of quantum delay

O = effective load

Substituting into eq (i) gives

= p + (N - i) QD + DD + (i - 0) , AV (3)

+ ~ (p * AP + (i - p) AO)

Solving eq (3) for ~ we find

p + (N - i) QD + DD + AV
= 1 + AV + (p * AP + (i - p) * AQ)

(4)

Tables 3 and 4 summarize the results of these
experiments. It can be seen that these results
compare favorably with those expected. This indi-
dates that the commonly advanced idea of, in
essence, "charging" the user for a scheduling oper-
ation, while it might not be fair, is a good approx-
imation for determining the net effect of finite
scheduling time in the Round Robin situation.

The comparison of simulation results to ana-
lytical results is provided in graph 2.

PARAMETER EXPECTED OBSERVED

Expected Waiting Time 5.54 5.42
Expected Queue Length 5.54 6.28
Expected Length of Nonempty Queue 7.41 7.28
Expected Number in System 6.41 7.10
Expected Wait Given Waiting 6.41 5.66
Expected Time in System 6.41 6.28
Overhead Percentage 11.51 13.98
Effective Load .8651 .8655

Table 3. Expected Versus Observed Parameters
for Nominal Load of 0.865

PARAMETER EXPECTED OBSERVED

Expected Waiting Time 32.51 33.73
Expected Queue Length 32.51 32.32
Expected Length of Nonempty Queue 34.48 32.32
Expected Number in System 33.48 33.10
Expected Wait Given Waiting 33.48 33.73
Expected Time in System 33.48 34.32
Overhead Percentage 22.1 25.67
Effective Load .971 .972

Table 4. Expected Versus Observed Parameters
for Nominal Load of 0.971

7. Separate Processor

Of much greater interest and importance is
the consideration of the use of an auxiliary

871

.@9

.97

.96

OS .94

0

W"

LJ.J .B5
LL- .s4
b- .s3
LLJ.~

.81

.78

.77

.76

.?4
,0

, , , , i , , r

1.0 2.0

LOAD FRCTOR

processor to perform scheduling operations. These
cperations, under a wide class of queueing disci-
plines, involve only simple priority calculations,
some minor queue management routines and simple
message sending operations [i0]. There is no need
for a complex modern large scale third or fourth
generation processor to perform these tasks, espe-
cially when there is productive work which could
otherwise occupy the processor while the scheduling
is going on. In addition, the use of a small pro-
cessor specifically designed to perform the sched-
uling would be conducive to implementing the sched-
uling operations with hardware rather than software.

Several simulation experiments were run with a
separate processor called the scheduler to perform
the scheduling operations. For comparison purposes,
delay values and loading were chosen to be similar
to the previous experiments.

The most interesting result is that the intro-
duction of a separate processor to perform sched-
uling has little, if any, influence on performance
at lower scheduling delays. At the higher delays
there is a significant backup in the system due to
the time the scheduling is taking. At these higher
dalays, the scheduler is taking over 50 percent of
the available time to do the scheduling, but the
utilization statistics are no worse than with using
the same processor with smaller delays for both
productive work and scheduling. If the magnitude
of the delay is interpreted as being due to a
slower scheduling processor, we see that the sched-
uler can run at one-fourth the speed of the proces-
sor!

The major portion of the degradation in per-
formance for high overhead (low speed) scheduling
appears to be that scheduling has become a bottle-
neck. Almost 60 percent of the requests for sched-
uling find the scheduler busy. Thus, it is not the
lack of a processor which is holding things up but
the inability for requests for service to be acted
upon. Also, the percentage of time that the pro-

eessor is idle appears to increase with slower
scheduling. This is due to the fact that the pro-
cessor must sit idle while waiting for the scheduler
to tell it which job to process next. There is a
substantial synergistic effect from adding a sched-
uling device. The next section analyses the system
in more detail.

8. Analysis of Separate Processor

There can be a wide range of events involved
in this system because of the two processors
involved. The initial step is to analyze each pos-
sible action which can occur and provide the timing
data for that situation.

8.1. Job Arrival

There are three possible situations. The sys--
tem can be idle when a job arrives (AV) or the
scheduler can be busy (AB) or the processor can be
busy and the scheduler is doing nothing (AI).

In the first case, the scheduler goes from
idle mode to busy mode. This status will last for
a duration of .025 x units of time. This is to
create a task control block for the user and is
consistent with the previous experiments. Since we
have a processor in addition to the scheduler, the
job will not have to wait the entire .025 x units
in order to start being processed. The processor
will remain idle for a period of .015 x units,
experience an overhead time of .005 x units and
then go into production. This is an unproductive
period (UAV) of .020 x units.

In the second case, a job arrives while the
scheduler is processing some other request. This
arrival will have absolutely no effect upon pro-
ductive use of the processor. The scheduler will
spend an additional .015 x units processing this
request.

The final arrival case involves an arrival
when the scheduler is doing nothing but the pro-
cessor is busy. In this situation, the arrival has
no effect on the processing but does cause scheduler
to spend .025 x units of time processing the
arrival.

8.2. Job Departure

There are two possibilities when a job departs.
The scheduler can be idle (DI) or the scheduler can
be busy (DB). In the first case, the~processor
will go idle. If there is a request for service in
the queue, the processor will remain idle for a
period of .016 x units, then go to overhead mode
for .005 x units and finally back into production.
Thus, the processor will be unproductive (UDI) for
a total of .021 x units. The scheduler, meanwhile,
will spend a total of .026 x units of time process-
ing the departure and scheduling the next user.

In the second case, we use D to denote the
delay before the scheduler can process the depar-
ture due to being otherwise occupied. The proces-
sor will be idle for a period of D + .006 x units,
and then in overhead for a total of .005 x units
yielding a total nonproductive interval (UDB) for
the processor of D + .011 x units. The scheduler

872

will require an additional .016 x units after the
delay to complete the departure processing.

8.3. Quantum Expiration

At quantum termination, either the scheduler
is idle (QI) or busy (QB). When the scheduler is
idle, the processor goes idle, then to overhead
mode .016 x units later and finally back to produc-
tive mode .005 x units after that. This is an
enforced nonproductive period (UQI) of .021 x units
due to quantum end. The scheduler takes a total of
.031 x units of time to process the quantum expira-
tion, actually queueing the request for the next
quantum .021 x units after starting.

When the scheduler is busy, we use D to denote
the delay before the scheduler can process the
quantum expiration. The processor immediately goes
idle. It remains idle for D + .006 x units and
then goes into overhead for .005 x units before
going back to production. This is a nonproductive
period (UQB) of D + .011 x units. The scheduler,
meanwhile, requires an additional .021 x units of
time to process the end of the quantum, actually
queueing the request for another quantum .011 x
units after starting.

8.4. Timing Data

From the above analysis, expressions can be
derived for the magnitudes of the overhead values.
The following notation is used:

AO arrival overhead
QO quantum expiration overhead
DO departure overhead
UQ unproductive interval on quantum expiration
UD unproductive interval on departure
PO probability the system is idle
PSI probability the scheduler is idle
PPA probability the scheduler is processing an

arrival
N expected number of quanta a job requires
MO mean event overhead
MU mean unproductive interval
ESR effective service requirement
QL quantum length

The first step in the analysis is to determine
the mean length of scheduling operation. This,
coupled with the unity expected inter-arrival time,
allows the calculation of the probability that the
scheduler is idle. The timing data mentioned above
can be used to solve the equations.

MO = ((N - i) * QO + DO + AO)/(N + i) (5)

PSI = 1.0 - (N + i) * MO (6)

QO = PSI * QI + (i - PSI) * (OB) (7)

DO = PSI * DI + (i - PSI) * (DB) (8)

AO = PSI * AI + (i - PSI) * (AB) (9)

Some simple mathematics yields eq (i0) from
eqs (5) through (9).

(N - i) QI + DI + AI
MO = (N+I)(I+(N-I)(QI-QB)+(DI-DB)+(AI-AB)) (i0)

Next, we calculate the average forced unpro-
ductive period, due to the overhead, at quantum
expiration and departure.

MU = (N- i) * UQ + UD (11)
N

Note that a quantum expiration can occur when the
scheduler is in overhead mode only when an arrival
is being processed. In this case, the unproductive
period will be longer than expected because the
scheduler must finish processing the arrival before
it can process the quantum expiration. Both the
simulation results and the fact that arrivals are
exponential indicate that this delay averages out
to be 36.7879 percent (l/e) of the arrival over-
head. Thus, we have

UQ = PPA * (UQB + AO/e) + (I - PPA)(UQI) (12)

UD = PSI(UDI) + (i - PSI)(UDB + MO/e) (13)

and MU can be easily calculated. Finally,

= ~ + N * MU. (14)

Table 5 summarizes the comparison of the
analysis and the simulation.

In all cases, the calculated ~ is within about
2 percent of the observed value of ~. At these high
loadings, the measures are very sensitive to small
changes in the loading. For example, in the last
column a difference of less than 1/2 percent in
calculated and observed loading produces a large
disparity between the measures. This is depicted
in graph 3 which compares the simulation results
and analytical results.

9. Conclusions

The results presented above extend previous
models for predicting the effect of scheduler over-
head in computing systems from the single server
single queue system to the Round Robin scheduling
discipline. Performance calculation equations and
procedures have been presented. These equations
and procedures will allow the system designer to
analyze the effect of adding bells and whistles to
his scheduling algorithms. The analytical results
derived have been validated against a valid simu-
lation model. The effect of adding a separate pro-
cessor to perform the scheduling operations has
been investigated and shown to be less deleterious
to system performance than the currently used
mechanism. There is a need for future work in this
area to extend the results to a wider variety of

873

.99

.90

.97

.96

(IZ
(Z]
_3

"911 lJl.~

LL].~
b_.e~
[i_.~
Li3 .ss

.61

.60

.78

.?7

.?6

.0

J

• . • , i , • i , , i • , , ,

1.0 2.0 3.0 4.0
LOflD FRCTOR

DELAY FACTOR 0 i 2 3 4

Calculated ~ .75 .811 .870 .928 .984

Expected Waiting 2.25 3.48 5.82 11.96 60.51
Time

Observed Waiting 2.69 4.14 7.48 15.27 49.74
Time

Observed ~ .776 .832 .893 .942 .980
Calculated from WT

Expected Queue 2.25 3;48 5.82 11.96 60.51
Length
Observed Queue 2.75 4.24 7.65 15.56 51.05
Length

Observed ~ .779 .835 .895 .943 .981
Calculated from QL

Expected Time 3.0 4.29 6.69 12.89 61.5
in System

Observed Time 3.42 4.96 8.41 16.32 50.93
in System

Observed ~ .773 .832 .894 .942 .9S0
Calculated from TS

Table 5. Comparison of Calculation and Simulation
Results for Various Scheduler Speeds

4.

4.

5.

6.

7.

8.

9,

i0.

ii.

Bernstein, A. J. and J. C. Sharp, A Policy
Driven Scheduler for a Time Sharing System,
Communications of the A.C.M., Volume 14,
No. 2, February 1971, pp. 74-78.

Coffman, Edward G., Jr., On the Trade-off
Between Response and Preemptive Costs in a
Foreground Background Computer Service Disci-
pline, IEEE Transactions on Computers, Volume
C 18, No. i0, October 1969, pp. 942-947.

Coffman, Edward G., Jr. and Peter J. Denning,
Operating Systems Theory, Prentice-Hall,
Englewood Cliffs, New Jersey, 1973.

Gordon, Geoffrey, System Simulation, (second
edition), Prentice-Hall, Englewood Cliffs,
New Jersey, 1978.

Mullery, A. P. and G. C. Driscoll, A Processor
Allocation Method for Time-Sharing, Communi-
cations of the A.C.M., Volume 13, No. i,
January 1970, pp. 10-14.

Shannon, Robert E., Systems Simulation: The
Art and the Science, Prentice-Hall, Englewood
Cliffs, New Jersey, 1975.

Sherman, Steven, Forest Baskett, III and J. C.
Browne, Trace-Driven Modeling and Analysis of
CPU Scheduling in a Multiprogramming System,
Communications of the A.C.M., Volume 15, No.
12, December 1972, pp. 1063-1069.

Shub, Charles M. and William G. Bulgren, A
Stable Time Independent Queue Model for
Studying the Effects of Overhead in Computing
Systems, Proceedings of the 1975 Summer Com-
puter Simulation Conference, San Francisco,
California, July 1975.

Shub, Charles M., Simulation Studies on the
Effect of Overhead in Computing Systems,
Proceedings of the Ninth Annual Simulation
Symposium, Tampa, Florida, March 1976.

queueing disciplines. There is a further need to
develop models to handle the effect of overhead in
output scheduling as well. The methods presented
here should be extended to produce these needed
additional results.

References

i , Analysis of Some queueing Models
in Real Time Systems, IBM Document GF20-007-1.

2. Babad, J. M., A Generalized Multi-Entrance
Time-Sharing Priority Queue, Journal of the
A.C.M., Volume 22, No. 2, April 1975, pp. 231-
248.

874

