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Abstract 

The computer storage consists of a 
large, slow main storage and a small, fast 
storage called a buffer, which is inte- 
grated into the CPU. A proper management 
of data in the two storages can satisfy the 
desire for large and fast memory. The per- 
formance of this system is significantly 
influenced by the hit rate, which is de- 
fined as the probability of finding the 
data wanted for a fetch in buffer storage. 

This paper discusses an approach of 
representing the degree of association be- 
tween variables for a given program and 
describes an associative assignment of 
program variables into main storage in or- 
der to imp rove the hit rate. As a result 
of the simulation, this association mehtod 
provides a good indication of performance. 

i. Introduction 

The desire for large memory and for 
fast memory, to keep pace with CPU speed, 
are conflicting goals. A properly design- 
ed storage hierarchy in the memory system 
is one method of resolving the conflict 
between size and speed requirements [i]. 
The storage hierarchy consists of a large, 
slow main storage and a small, fast storage 
called a buffer, which is integrated into 
the CPU. The buffer is not addressable by 
a program, but rather is used to hold the 
contents of those portions of main storage 
that are currently being used. Most proc- 
essor fetches can then be handled by re- 
ferring to the buffer, so that most of the 
time the processor has a short access time. 
When the program starts operating on data 
in a different portion of main storage, 
the data in that portion must be loaded 
into the buffer storage and the data from 
some other portion removed. This system 
provides effective access time near that of 
the small buffer memory to an amount of 
information equal to the capacity of the 
large main storage. In the hierarchy sys- 
tem, the hit rate plays an important role 
[2]. This rate is defined as the proba- 
bility of finding the data wanted for a 
fetch in buffer storage. 

The purpose of this paper is to formu- 

late a model for the degree of association 
between the variables in the program and 
to describe the procedure for an associa- 
tive assignment of the variables to main 
storage in order to improve the hit rate. 
The degree of association between two var- 
iables is measured on the basis of the 
frequency of finding these two at the same 
time in an executable statement of a given 
program. The variables in a given program 
are divided into blocks in proportion to 
the degree of strength of association a- 
mong them and the variables in a block are 
assigned into a sector of main storage. 
If data is requested by the CPU and is 
unfortunately not found in buffer storage, 
the sector with this data is transferred 
from main storage to buffer. In the sub- 
sequent request by the CPU, the data can 
be easily found in buffer storage as a 
natural course of association among the 
data in the sector. This results in a 
higher hit rate, which results in shorter 
access time. 

2. Association among variables 

Consider the joint distribution plane 
between program variables and executable 
statements of a given program (Fig.l). 
Let each program variable vj~V for j=l,2, 
..... ,n be represented at the position xj on 
the X-axis and each executable statement 
sitS for i=i,2,- .... ,m be represented at 
the position Yi on the Y-axis of this 
plane. Here, an array is considered to 
be a variable. The sign "o " is marked at 
the coordinates (xj,y i) if the variable vj 
is contained in the executable ststement 
s i. Fig.2 illustrates this plane of the 
example program. Using this joint dis- 
tribution plane, we can define the corre- 
lation coefficient between the variables 
and the executable statements. The value 
of the correlation coefficient depends on 
the positions xj (variable vj) and Yi 
(statement s i) on both axes. We obtain 
the maximum value of the correlation coef- 
ficient by selecting the proper value of 
xj and Yi- Under this condition, the mark 
"°" is distributed along a diagonal line 
on the joint distribution plane as in 
Fig. 3. According to the arrangement of 
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No. of execu- 
table statement. 

READ (5,10) M,K S 1 
N = 2 *M+K ................... S 2 
DO 20 I=i,N ............. S 3 
A=FLOAT ( I ) - 2.5 ............ S 4 

20 P=P+A $5 
R=P*P ........ S 6 
WRITE (6,30) P,R,A ...... S 7 
STOP ..................... S 8 

i0 FORMAT (215) 
30 FORMAT (iHi, 3E15.7) 

END 

Fig.l An example of the program (P). 

variables on the X-axis in this figure, 
the nearer the distance between the two 
variables, the higher the rate of finding 
them at the same time in a statement. In 
contrast to this, two variables cannot be 
found at the same time in an executable 
statement if one variable is far from the 
other on the X-axis. Therefore, the dis- 
tance between the variables on the X-axis 
represents the rate of finding the varia- 
bles at the same time in an executable 
statement. We call this rate the degree 
of association between variables for a 
given program. Consequently, beneath the 
maximum correlation coefficient, the var- 
ables are arranged on the X-axis in pro- 

portion to the degree of strength of asso- 
ciation among them. 

In the following section, we shall 
discuss the approach for obtaining the 
maximum value of the correlation coeffi- 
cient. 

3. Association plane 

The joint distribution plane can be 
considered to represent the discrete prob- 
ability distribution respect to X and Y. 
This probability function is given as fol- 
lows, 

p(X=xj, Y=Yi )=6ji/To , (i) 

where 6ji and To are 

i ; if the variable v.. is con- 
6j i= tained in the statement si, 

0 ; otherwise, 

and 

n m 
To= Z Z 6ji . 

j:l i=l 
(2) 

We abbreviate the probability function of 
Eq. (i) as P(xi,Yi). The probability func- 
tion Pl(Xi) i~ the variable X can be ob- 
tained by'use of this probability function 
stated above. 

m 

Pl(Xj)= Z p(x y ) 
i=l j' i " 

(3) 

Executable 
statement 

, C ' ~  , 

x I (A) x 2 (I) x 3 (K) 

Yl (SI)O 

'Y2 ($2)O 

Y3($3 ) 

Program 
variable 

, , ,  l l ! 

x 5 (M) x 6 (P) x 7 (R) 

Y5(S5 ) o 

Y6($6 ) O O 

YT(S7 ) o o 

Fig.2 The joint distribution plane 
of the program (P). 

Executable 
statement 

l 
Yl(Sl o 0 

Y2 ($2)O O 0 

Y3 ($3)O Program 

X 7 (R) x 6 (P) x I (A) I x 4 (N) x 3 (K) x 5 (M) 

O O O IY7(S 7) 

0 0 IY6(S6) 

Fig.3 The joint distribution plane 
of the program (P) under the 
maximum correlation coefficient. 
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In the same way, we have 

n 

p2(Yi )= Z p(xj,Yi). 
j=l 

(4) 

Now, let us find the values for var- 
iables x. and y~ so that the correlation 

3 ± 
coefficient may be maximum. 2 

The variance o~ in X, o in Y and the x y 
covariance Cxy are given from their defi- 
nitions. 

n n 
2 

Ox= [ ElX Pi(xj) ]- [ E x Pi(x ) ] 2 
j= j=l j J 

, (5) 

m m 
2 2 

Oy=[ Z yiP2(Yi)]-[ Z yiP2(Yi)] 2 
i=l i=l 

, (6) 

n m 
Cxy= ~ ~ xjYiP(X j,yi ) 

j=l i=l 

n m 

- [ ~ xjp l(xj) ] [ ~ yip 2(yi ) ] . (7) 
j=l i=l 

Then, the correlation coefficient 0 is 
given by 

0= Cxy . (8) 
OxOy 

In order to obtain the maximum correlation 
coefficient, we differenciate with respect 
to the variables xj (j=l,2, -,n) , Yi(i=l, 
2,- ..... ,m) , and set the derivatives equal 
to 0. 

20 -0 , (k=l,2,- ...... ,n) , (9) 
~x k 

20 -0 , (e=l,2,- ..... ,m) . (i0) 
DYe 

From these equations, we have [3] 

Ax=ICx , (ii) 

where the parameter I is given by 

I=0 2 , (12) 

and x is represented by the column vector, 

x=(xl,x2,_ ...... ,Xn) t , (13) 

and each element x~ represents the posi- 
tion of program vagiable v~ on the X-axis 
in the joint distribution plane. 

The element of the symmetric matrix 
A (=ajk) is defined by 

m 

6j i6ki/r i , (14) 
ajk=i= l 

where ri=T o p2(Yi ) and the element of the 
diagonal matrix C (=Ckk) is defined by 

m 

Ckk = ~ 6kj 
j=l 

(15) 

respectively. 
Solving the characteristic equation 

of Eq. (ii), we obtain the eigenvalues 
I I(=0~) and 12(=05) , which are arranged 
accoraing to the 6rder of their size. The 
eigenvector x (k) associated with the eigen- 
value Ik(k=l,2) is represented by 

x(k)=(Xlk,X2k, - ....... 'Xnk ) t, (16) 

where the maximum element of the vector is 
normalized to i. It follows from these 
vectors that we can define the association 
vector of each variables as follows: 

[Definition] 
The association vector xj of program 

variable v. is given by 
3 

xj=(Xjl,Xj2 ) t , (17) 

where 7~ (j=l,2,- .... ,n, 

in Eq. ). 
k=l,2) is defined 

Next, let us consider the plane, in 
which each variable vj is represented by 
a point at the coordinates (Xjl,Xj2). There 
is no question that the distance d~ k bet- 
ween variables v j and v k is given ~y 

djk= llxj_xk~= [ ~ (Xjp_Xkp) 2] 1/2 . (18) 
p=l 

Second vector 
axis 

x 1.0 
(i) 

(N) 

.5 

(A) 
x First vector 

axis 
i ! ! , | 

-i 0 -0.5 0.5 1.0 

(p) 

x (R) x 

.5 (K,M) 

.0 

Fig.4 The association plane of the 
program (P) . 
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According to the discussion about associa- 
tion in Sec.2, this distance represents 
the degree of association between the two 
variables. Hereafter, we shall call this 
plane the association plane. Fig.4 illus- 
trate the association plane of the pro- 
gram (P) . 

Here, we define the common variables 
and the assignment variables by using the 
distance on the association plane. 

[Definition] 
The variables which satisfy the fol- 

lowing two conditions are called the com- 
mon variables and the rest in the program 
are called the assignment variables. 

(i) The norm (dj) of the association 
vector of a variable v j is lesser 
than ~ i" 

dj-Ilxjll <~ (~9) 

(2) The number (fj) of executable state- 
ments which contain the variable v j 
is more than ~2" 

fj>~2" (20) 

4. Associative assignment 

Fig.5 illustrates the storage system 
discussed. A small buffer storage with 
fast access time is packaged into the 
heart of the CPU. Supposed that the main 
storage has a true access time and cycle 
time on the order of more than ten times 
that of the buffer memory. Data is trans- 
ferred from main storage to buffer storage 
in blocks. Main storage is logically di- 
vided into sectors, which are subdivided 
into blocks. Buffer storage is also divid- 
ed into sectors and into blocks. A sector 
from main storage can be mapped into any 
sector in buffer storage [i] . 

CPU 

sector 

sector 

sector 

sector sector 

sector sector 

Buffer Storage X~ sector 

Main Storage 

Fig.5 The hierarchical storage system. 

Up to now, we have presented the meth- 
od to represent the program variables on 
the association plane. As we have describ- 
ed in Sec.3, the distance among the varia- 
bles represents the degree of association 
on this plane. Using this degree of associ- 
ation, we now propose the associative as- 
signment of variables as follow: 
For the common variables, 

(i) The variables are assigned into the 
sectors of the main storage in order 
of their appearance in the program. 

For the assignment variables, 
(ii) We divide this plane into V-shaped 

blocks (sectors) so that the number 
of variables may be same as that in 
a sector of main storage. 

(iii) The variables in a sector of this 
plane are assigned into a sector of 
the main storage. 

Fig.6 illustrates this associative 
assignment of variables. 

In the next," we shall discuss the as- 
signing of the main storage sector to the 
buffer sector [4] . In this system, during 
operation a correspondence is set up bet- 
ween buffer sectors and main storage sec- 
tors in which each buffer sector is assign- 
ed to a single different main storage sec- 
tor. The assignment of buffer sector is 
dynamically adjusted during operation, so 
that they are assigned to the main storage 
sectors that are currently being used by 
the program. If the program causes a fetch 
from a main storage sector that does not 
have a buffer sector assigned to it, one 
of the buffer sectors is then reassigned 
to that main storage sector. To make a 
good selection of a buffer sector to reas- 
sign, enough information is maintained to 

Second vector 

axis 

i 
First ' ~ ,, 

vector " "  

Associative ---I 

Association Plane 

sector 

sector 

sector 

sector 

sector 

~Vg2 

sector 

sector 

sector 

sector 

Main Storage 

Fig.6 The associative assignment 
of variables. 
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order the buffer sectors into an activity ory capacity needed to load the program 
list. The sector at the top of the list was about 40 kws on the average. 
is the one that was most recently referred Fig.7 shows the hit rates of the comp- 
to, the second one is the next most recent- uter simulated results for both the pos- 
ly referred to, and so forth. When a buffer tulated system and the system without the 
sector is referred to, it is moved to the associative assignment. It is apparent 
top of the list, and the intervening ones that the former is higher hit rate than the 
are moved down one position. This is not later in any capacity, especially in the 
meant to imply an actual movement of sec- small capacity of the buffer storage. Note 
tors within the buffer, but rather referred that the access time of buffer storage is 
to a logical ordering of the sectors. When more than ten times as fast as that of 
it is necessary to reassign a sector, the 
one selected is the one at the bottom of 
the activity list. 

g ioo -- 

.O.. 

9O 

m l .'" ^ ^ a system without 
• ..~9. - _ .0-. , , , 

0.5 1.0 2.0 4.0 

Capacity of buffer storage (kws) 

Fig.7 Relations between hit rates 
and the capacity of buffer 
storage. 

main storage. Therefore, the equivalent 
access time of the postulated system is 
reduced remarkably in comparison with the 
system without the associative assignment. 

The time needed to obtain the associ- 
ation vectors and the associative assign- 
ment of variables was several seconds. As 
the result of numerical studies [5], it is 
well known that the necessary time to get 
this association vectors increases in pro- 
portion to the square of the number of the 
variables. This time, however, is rela- 
tively small compared to the computing time 
of the programs. 

6. Conclutions 

The associative assignment of varia- 
bles has been introduced to the system with 
storage hierarchy in order to improve its 
equivalent access time. This access time 
is influenced significantly by the hit rate, 
which is the probability of finding the da- 
ta wanted for a fetch in buffer storage. 
It has become clear through the results of 
the simulation that the associative assign- 
ment improve the hit rate and reduces con- 
siderably the equivalent access time. 

5. Performance studies Acknowledgement 

In order to measure the effectiveness 
of the associative assignment, we postula- 
ed a system identical to the proposed sys- 
tem, except that variables are assigned 
into main storage in order of their appear- 
ance in the given program. An important 
statistic related to this comparison is the 
hit rate. The equivalent access time (t) 
of the system is represented by the follow- 
ing equation, using the hit rate (h) [2], 

t = [h+ (l-h) t2/tl] tl (21) 

We want to show our appreciation to 
Mr. M. D. Cox for helping us with our 
English. 
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