
The Efficient Use of Buffer Storage

Kunio Fukunaga and Tamotsu Kasai

University of Osaka Prefecture

Abstract

The computer storage consists of a
large, slow main storage and a small, fast
storage called a buffer, which is inte-
grated into the CPU. A proper management
of data in the two storages can satisfy the
desire for large and fast memory. The per-
formance of this system is significantly
influenced by the hit rate, which is de-
fined as the probability of finding the
data wanted for a fetch in buffer storage.

This paper discusses an approach of
representing the degree of association be-
tween variables for a given program and
describes an associative assignment of
program variables into main storage in or-
der to imp rove the hit rate. As a result
of the simulation, this association mehtod
provides a good indication of performance.

i. Introduction

The desire for large memory and for
fast memory, to keep pace with CPU speed,
are conflicting goals. A properly design-
ed storage hierarchy in the memory system
is one method of resolving the conflict
between size and speed requirements [i].
The storage hierarchy consists of a large,
slow main storage and a small, fast storage
called a buffer, which is integrated into
the CPU. The buffer is not addressable by
a program, but rather is used to hold the
contents of those portions of main storage
that are currently being used. Most proc-
essor fetches can then be handled by re-
ferring to the buffer, so that most of the
time the processor has a short access time.
When the program starts operating on data
in a different portion of main storage,
the data in that portion must be loaded
into the buffer storage and the data from
some other portion removed. This system
provides effective access time near that of
the small buffer memory to an amount of
information equal to the capacity of the
large main storage. In the hierarchy sys-
tem, the hit rate plays an important role
[2]. This rate is defined as the proba-
bility of finding the data wanted for a
fetch in buffer storage.

The purpose of this paper is to formu-

late a model for the degree of association
between the variables in the program and
to describe the procedure for an associa-
tive assignment of the variables to main
storage in order to improve the hit rate.
The degree of association between two var-
iables is measured on the basis of the
frequency of finding these two at the same
time in an executable statement of a given
program. The variables in a given program
are divided into blocks in proportion to
the degree of strength of association a-
mong them and the variables in a block are
assigned into a sector of main storage.
If data is requested by the CPU and is
unfortunately not found in buffer storage,
the sector with this data is transferred
from main storage to buffer. In the sub-
sequent request by the CPU, the data can
be easily found in buffer storage as a
natural course of association among the
data in the sector. This results in a
higher hit rate, which results in shorter
access time.

2. Association among variables

Consider the joint distribution plane
between program variables and executable
statements of a given program (Fig.l).
Let each program variable vj~V for j=l,2,
..... ,n be represented at the position xj on
the X-axis and each executable statement
sitS for i=i,2,- ,m be represented at
the position Yi on the Y-axis of this
plane. Here, an array is considered to
be a variable. The sign "o " is marked at
the coordinates (xj,y i) if the variable vj
is contained in the executable ststement
s i. Fig.2 illustrates this plane of the
example program. Using this joint dis-
tribution plane, we can define the corre-
lation coefficient between the variables
and the executable statements. The value
of the correlation coefficient depends on
the positions xj (variable vj) and Yi
(statement s i) on both axes. We obtain
the maximum value of the correlation coef-
ficient by selecting the proper value of
xj and Yi- Under this condition, the mark
"°" is distributed along a diagonal line
on the joint distribution plane as in
Fig. 3. According to the arrangement of

B99

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800179.1125351&domain=pdf&date_stamp=1977-01-01

No. of execu-
table statement.

READ (5,10) M,K S 1
N = 2 *M+K S 2
DO 20 I=i,N S 3
A=FLOAT (I) - 2.5 S 4

20 P=P+A $5
R=P*P S 6
WRITE (6,30) P,R,A S 7
STOP S 8

i0 FORMAT (215)
30 FORMAT (iHi, 3E15.7)

END

Fig.l An example of the program (P).

variables on the X-axis in this figure,
the nearer the distance between the two
variables, the higher the rate of finding
them at the same time in a statement. In
contrast to this, two variables cannot be
found at the same time in an executable
statement if one variable is far from the
other on the X-axis. Therefore, the dis-
tance between the variables on the X-axis
represents the rate of finding the varia-
bles at the same time in an executable
statement. We call this rate the degree
of association between variables for a
given program. Consequently, beneath the
maximum correlation coefficient, the var-
ables are arranged on the X-axis in pro-

portion to the degree of strength of asso-
ciation among them.

In the following section, we shall
discuss the approach for obtaining the
maximum value of the correlation coeffi-
cient.

3. Association plane

The joint distribution plane can be
considered to represent the discrete prob-
ability distribution respect to X and Y.
This probability function is given as fol-
lows,

p(X=xj, Y=Yi)=6ji/To , (i)

where 6ji and To are

i ; if the variable v.. is con-
6j i= tained in the statement si,

0 ; otherwise,

and

n m
To= Z Z 6ji .

j:l i=l
(2)

We abbreviate the probability function of
Eq. (i) as P(xi,Yi). The probability func-
tion Pl(Xi) i~ the variable X can be ob-
tained by'use of this probability function
stated above.

m

Pl(Xj)= Z p(x y)
i=l j' i "

(3)

Executable
statement

, C ' ~ ,

x I (A) x 2 (I) x 3 (K)

Yl (SI)O

'Y2 ($2)O

Y3($3)

Program
variable

, , , l l !

x 5 (M) x 6 (P) x 7 (R)

Y5(S5) o

Y6($6) O O

YT(S7) o o

Fig.2 The joint distribution plane
of the program (P).

Executable
statement

l
Yl(Sl o 0

Y2 ($2)O O 0

Y3 ($3)O Program

X 7 (R) x 6 (P) x I (A) I x 4 (N) x 3 (K) x 5 (M)

O O O IY7(S 7)

0 0 IY6(S6)

Fig.3 The joint distribution plane
of the program (P) under the
maximum correlation coefficient.

400

In the same way, we have

n

p2(Yi)= Z p(xj,Yi).
j=l

(4)

Now, let us find the values for var-
iables x. and y~ so that the correlation

3 ±
coefficient may be maximum. 2

The variance o~ in X, o in Y and the x y
covariance Cxy are given from their defi-
nitions.

n n
2

Ox= [ElX Pi(xj)]- [E x Pi(x)] 2
j= j=l j J

, (5)

m m
2 2

Oy=[Z yiP2(Yi)]-[Z yiP2(Yi)] 2
i=l i=l

, (6)

n m
Cxy= ~ ~ xjYiP(X j,yi)

j=l i=l

n m

- [~ xjp l(xj)] [~ yip 2(yi)] . (7)
j=l i=l

Then, the correlation coefficient 0 is
given by

0= Cxy . (8)
OxOy

In order to obtain the maximum correlation
coefficient, we differenciate with respect
to the variables xj (j=l,2, -,n) , Yi(i=l,
2,- ,m) , and set the derivatives equal
to 0.

20 -0 , (k=l,2,- ,n) , (9)
~x k

20 -0 , (e=l,2,- ,m) . (i0)
DYe

From these equations, we have [3]

Ax=ICx , (ii)

where the parameter I is given by

I=0 2 , (12)

and x is represented by the column vector,

x=(xl,x2,_ ,Xn) t , (13)

and each element x~ represents the posi-
tion of program vagiable v~ on the X-axis
in the joint distribution plane.

The element of the symmetric matrix
A (=ajk) is defined by

m

6j i6ki/r i , (14)
ajk=i= l

where ri=T o p2(Yi) and the element of the
diagonal matrix C (=Ckk) is defined by

m

Ckk = ~ 6kj
j=l

(15)

respectively.
Solving the characteristic equation

of Eq. (ii), we obtain the eigenvalues
I I(=0~) and 12(=05) , which are arranged
accoraing to the 6rder of their size. The
eigenvector x (k) associated with the eigen-
value Ik(k=l,2) is represented by

x(k)=(Xlk,X2k, - 'Xnk) t, (16)

where the maximum element of the vector is
normalized to i. It follows from these
vectors that we can define the association
vector of each variables as follows:

[Definition]
The association vector xj of program

variable v. is given by
3

xj=(Xjl,Xj2) t , (17)

where 7~ (j=l,2,- ,n,

in Eq.).
k=l,2) is defined

Next, let us consider the plane, in
which each variable vj is represented by
a point at the coordinates (Xjl,Xj2). There
is no question that the distance d~ k bet-
ween variables v j and v k is given ~y

djk= llxj_xk~= [~ (Xjp_Xkp) 2] 1/2 . (18)
p=l

Second vector
axis

x 1.0
(i)

(N)

.5

(A)
x First vector

axis
i ! ! , |

-i 0 -0.5 0.5 1.0

(p)

x (R) x

.5 (K,M)

.0

Fig.4 The association plane of the
program (P) .

401

According to the discussion about associa-
tion in Sec.2, this distance represents
the degree of association between the two
variables. Hereafter, we shall call this
plane the association plane. Fig.4 illus-
trate the association plane of the pro-
gram (P) .

Here, we define the common variables
and the assignment variables by using the
distance on the association plane.

[Definition]
The variables which satisfy the fol-

lowing two conditions are called the com-
mon variables and the rest in the program
are called the assignment variables.

(i) The norm (dj) of the association
vector of a variable v j is lesser
than ~ i"

dj-Ilxjll <~ (~9)

(2) The number (fj) of executable state-
ments which contain the variable v j
is more than ~2"

fj>~2" (20)

4. Associative assignment

Fig.5 illustrates the storage system
discussed. A small buffer storage with
fast access time is packaged into the
heart of the CPU. Supposed that the main
storage has a true access time and cycle
time on the order of more than ten times
that of the buffer memory. Data is trans-
ferred from main storage to buffer storage
in blocks. Main storage is logically di-
vided into sectors, which are subdivided
into blocks. Buffer storage is also divid-
ed into sectors and into blocks. A sector
from main storage can be mapped into any
sector in buffer storage [i] .

CPU

sector

sector

sector

sector sector

sector sector

Buffer Storage X~ sector

Main Storage

Fig.5 The hierarchical storage system.

Up to now, we have presented the meth-
od to represent the program variables on
the association plane. As we have describ-
ed in Sec.3, the distance among the varia-
bles represents the degree of association
on this plane. Using this degree of associ-
ation, we now propose the associative as-
signment of variables as follow:
For the common variables,

(i) The variables are assigned into the
sectors of the main storage in order
of their appearance in the program.

For the assignment variables,
(ii) We divide this plane into V-shaped

blocks (sectors) so that the number
of variables may be same as that in
a sector of main storage.

(iii) The variables in a sector of this
plane are assigned into a sector of
the main storage.

Fig.6 illustrates this associative
assignment of variables.

In the next," we shall discuss the as-
signing of the main storage sector to the
buffer sector [4] . In this system, during
operation a correspondence is set up bet-
ween buffer sectors and main storage sec-
tors in which each buffer sector is assign-
ed to a single different main storage sec-
tor. The assignment of buffer sector is
dynamically adjusted during operation, so
that they are assigned to the main storage
sectors that are currently being used by
the program. If the program causes a fetch
from a main storage sector that does not
have a buffer sector assigned to it, one
of the buffer sectors is then reassigned
to that main storage sector. To make a
good selection of a buffer sector to reas-
sign, enough information is maintained to

Second vector

axis

i
First ' ~ ,,

vector " "

Associative ---I

Association Plane

sector

sector

sector

sector

sector

~Vg2

sector

sector

sector

sector

Main Storage

Fig.6 The associative assignment
of variables.

h.o2

order the buffer sectors into an activity ory capacity needed to load the program
list. The sector at the top of the list was about 40 kws on the average.
is the one that was most recently referred Fig.7 shows the hit rates of the comp-
to, the second one is the next most recent- uter simulated results for both the pos-
ly referred to, and so forth. When a buffer tulated system and the system without the
sector is referred to, it is moved to the associative assignment. It is apparent
top of the list, and the intervening ones that the former is higher hit rate than the
are moved down one position. This is not later in any capacity, especially in the
meant to imply an actual movement of sec- small capacity of the buffer storage. Note
tors within the buffer, but rather referred that the access time of buffer storage is
to a logical ordering of the sectors. When more than ten times as fast as that of
it is necessary to reassign a sector, the
one selected is the one at the bottom of
the activity list.

g ioo --

.O..

9O

m l .'" ^ ^ a system without
• ..~9. - _ .0-. , , ,

0.5 1.0 2.0 4.0

Capacity of buffer storage (kws)

Fig.7 Relations between hit rates
and the capacity of buffer
storage.

main storage. Therefore, the equivalent
access time of the postulated system is
reduced remarkably in comparison with the
system without the associative assignment.

The time needed to obtain the associ-
ation vectors and the associative assign-
ment of variables was several seconds. As
the result of numerical studies [5], it is
well known that the necessary time to get
this association vectors increases in pro-
portion to the square of the number of the
variables. This time, however, is rela-
tively small compared to the computing time
of the programs.

6. Conclutions

The associative assignment of varia-
bles has been introduced to the system with
storage hierarchy in order to improve its
equivalent access time. This access time
is influenced significantly by the hit rate,
which is the probability of finding the da-
ta wanted for a fetch in buffer storage.
It has become clear through the results of
the simulation that the associative assign-
ment improve the hit rate and reduces con-
siderably the equivalent access time.

5. Performance studies Acknowledgement

In order to measure the effectiveness
of the associative assignment, we postula-
ed a system identical to the proposed sys-
tem, except that variables are assigned
into main storage in order of their appear-
ance in the given program. An important
statistic related to this comparison is the
hit rate. The equivalent access time (t)
of the system is represented by the follow-
ing equation, using the hit rate (h) [2],

t = [h+ (l-h) t2/tl] tl (21)

We want to show our appreciation to
Mr. M. D. Cox for helping us with our
English.

References

1. Conti, C. J., "Concepts for buffer stor-
age", Computer Group News, March (1969).

2. Takahashi, S., "Electronic computer",
Kyoritsu, Tokyo (1975).

where t I and t 2 are access times of buffer
and main storage, respectively. Befor dis-
cussing the result of the simulation, let
us define the storage system in detail.
The buffer storage is divided into i0 sec-
tors and each sector subdivided into words,
where one word is four byte. In the same
way as the buffer storage, the main storage
is divided into sectors with the same size
as in the buffer. In the simulation, the
program contained about i00 variables on
the average. Here, an array is considered
to be one variable. We obtained the asso-
ciation vectors related to these variables
and assigned them into main storage using
the associative assignment. The total mem-

3. Hayashi, C., "Theory and examples of
quantification (If) ", Jour. Inst. Statis.
Math. Japan, Vol.4, No.2 (1956).

4. Conti, C. J., "Structural aspects of
the System/360 Model 85", IBM System
Jour., Vol.7, No.l (1968) .

5. Amamiya, A., "Numerical analysis and
FORTRAN", Maruzen, Tokyo (1970).

b-o3

