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Current results in software science research provide a potentially powerful tool for software 
engineering management. Software science parameters including time required to write a program 
and program length can be estimated from parameters available at the time of program design 
specification. The application of these results to modularized programs is not straightforward 
since the derived parameters are nonlinear in vocabulary size. We define an integrated 
vocabulary for a modularized program. A parameter is said to be conserved across modularization 
if the parameter value derived from the integrated vocabulary equals the sum of the parameter 
values derived from the modules:three parameters have been found to be conserved across 
modularization in well-modularized programs. Failure to exhibit conservation of length can 
be used to detect excessive or insufficient intermodule communication. 

i. BACKGROUND 

Software science is an inherently empirical disci- 
pline. The methodology of much of the research in 
this area follows three stages : 

(i) Quantitatively describe observed phenomena 
or relationships involving software 
me as u re men ts. 

(2) Hypothesize a mechanism to explain the 
observations. 

(3) Support or disprove the hypothesized 
mechanism by applying it to additional 
data. 

The empirical study of software requires well- 
defined quantitative measurements applied to 
actual programs written in actual programming 
languages. We refer to these measurements 
collectively as the software science parameters. 
The parameters fall into three classes: 

(i) Four fundamental parameters directly 
counted from source code: 

NI, the number of operators used (total 
operator usage); 

N 2, the number of operands used (total 
operand usage) ; 

nl, the number of distinct operators used 
(operator vocabulary) ; 

n2, the number of distinct operands used 
(operand vocabulary). 

From these we obtain the program length 
N = N 1 + N 2 and the vocabulary size n = 

n I + n 2 . 

(2) Other parameters directly measured from 
the overall software development cycle. 
These include, for example, the time 
required to write a program and the number 
of delivered bugs. (Most of these para- 
meters are well-defined but not necessarily 
easy to measure.) 

(3) Many useful secondary parameters, derived 
indirectly from the two directly measured 
classes. These include : 

V*, potential or minimal possible volume, 
defined by V* = n* log 2 n* where n* 
is the vocabulary size required to 
express the program as a single opera- 
tion in a language which has the 
program function as an operator. 
(The length of such a program is n*.) 

V, program volume, defined by V = N log 2 n 
(V* a special case of V) J 

L, program level, defined by L = V*/V. 

E, program effort, defined by E = V/L. 
(E essentially measures the number of 
mental decisions required to select the 
operators and operands from the voca- 
bulary used.) 

%, language level, essentially a measure- 
ment of average program level in a 
given language, defined by ~ = V*xL. 

We refer to the four directly counted parameters as 
the fundamental parameters, and to the others as 
derived parameters. 

Previous work has resulted in the discovery and 
validation of many relationships among the para- 
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meters. The first one reported El] was the length 
equation, 

= n I log 2 n I + n 2 log 2 n 2 (i) 

This unexpected but not really counterintuitive 
relationship showed that program length tends to 
be characterized by the vocabulary used; as 
length increases, vocabulary also increases in a 
directly related way. Another relationship of 
interest is the invariance of the LV product: for 
a given algorithm, LxV remains constant regardless 
of the language in which the algorithm is written. 
While it is trivially true from the definitions 
that 

V* = V x L (2) 

regardless of language, the potential volume V* is 
in practice only an unreachable limit value. Yet, 
the invariance of the LV product has been empiri- 
cally validated. A complete introduction to 
software science is given in [2]. 

The first effort at giving a formal mechanism for 
the prograrmuing activity which would explain the 
results mentioned above was [3]. While the models 
given were greatly oversimplified, they gave sur- 
prisingly close agreement with observed data. 
That situation is typical of the current state of 
the art in software science: the relationships 
currently known are only approximately true of 
observed programs, but they are very close to 
being exact. Due to the simplifications of the 
models, software science still deals largely with 
firs t-order effects. 

A brief consideration of the length equation above 
will reveal an important phenomenon: it is very 
easy to write programs for which the software 
science relationships (such as the length equation 
eq. (i) or the invariance equation eq. (2)) do not 
hold, but doing so requires the use of such prac- 
tices as unwarranted assignments and redundant 
subexpression evaluation. An early study [4] of 
program features which prevented the length equa- 
tion eq. (i) from holding led to the discovery of 
program impurity classes, a well-defined classifi- 
cation of what are informally known as "poor 
programming practices". Because of phenomena 
like these, software science research efforts must 
follow two related but distinct goals: first, the 
quantitative description of relationships which 
hold (approximately) in well-written programs; and 
second, the study of those program features which 
cause the relationships not to hold in poorly- 
written programs. 

2. APPLICATION TO SOFTWARE ENGINEERING MANAGEMENT 

2.1 Estimating Parameters from Program Specifica- 
tion Information 

It is shown in [2] that most of the software science 
parameters for a given program can be estimated 
surprisingly well from only two independent para- 
meters: the language level % of the language used, 
and n~, the number of distinct items of input 

information. Informally, this means that a 
program is largely characterized by the absolute 

minimum vocabulary required to express it. 

In particular, two of the parameters which can be 
estimated from n~ and % are T, the time required 
to write the program, and N, the length of the 
program. The time T is estimated from the 
program effort E (defined earlier) and known 
estimates of the rate at which a concentrating 
human being can perform elementary mental discri- 
minations (approximately 18 per second). The 
length N is estimated by first obtaining approxi- 
mations of the number of distinct operators n I and 
operands n2, then using the length equation. 

These results hold obvious potential for the 
development of powerful software engineering 
management tools. Estimates of the writing time 
T and the program size N can be made from infor- 
mation which is known at the time the detailed 
program design specifications are made. It has 
also been shown [5] that estimates of the number 
of bugs remaining in the program when it is 
delivered for system integration can be made. 
These estimates could be used to decide how much 
more testing and debugging effort was likely to be 
productive. 

2.2 Application to Modularized Programs 

The estimation methods described above are still 
rather crude, and they depend on knowing n~ and 
more precisely than may currently be possible. 
These appear to be limitations of refinement 
rather than basic method. Previous work in 
software science has largely dealt with program 
modules as separate programs. In order to be 
usable as a software engineering management tool, 
parameter estimation must be applicable to highly 
modularized programs. In practice the modules 
will be interrelated. It is important to manage 
the development of both the individual modules and 
the project as a whole. And it is important to 
insure that good programming practices are used 
both within the individual modules and in the use 
of the modules on a higher level. 

All of the derived parameters can be derived (or 
estimated) from the four fundamental, directly- 
counted parameters. But we observe that the 
derivations are nonlinear in the fundamental 
parameters. This means that we cannot simply add 
up the lengths and vocabulary sizes of individual 
modules, and then derive the parameters for the 
overall project from their sums. Yet the length N, 
writing time T, and other parameters of the overall 
project are directly related to the parameters of 
the modules. Thus we are led to the central 
question of this research: how are the derived 
parameters of a modularized program related to the 
parameters of the separate modules? 

3. INTEGRATED PARAMETERS 

3.1 Integrated Parameter Definition 

The length of a modularized program must be the 
sum of the lengths of its modules, but the size of 
the vocabulary of a modularized program is not the 
sum of the sizes of the vocabularies of its 
modules. This is because there must be some 
duplication of vocabulary elements in different 
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modules in order to have intermodule communication. 
Duplication of vocabulary elements may be in the 
form of either global items or formal and actual 
parameters. 

Let a program consist of M modules. Define the 
integrated vocabulary VOCin t of the program as 

VOCin t = ~(VOC i - ~i ) U PO (3) 
i=l 

where 

VOC i is the vocabulary of the i th module; 

is the set of forma~parameters 
FPi (operands) of the i module; 

PO is a set of pseudo-operands containing 
one element for each actual parameter 
expression which is not an operand in 
the set VOC i of the calling site. 

The effect of the definition is to make VOCin t a 

"global" vocabulary. Formal parameters are deleted 
since they do not add operands to the overall 
vocabulary; they only serve to define operations. 
Actual parameter pseudo-operands are added, since 
each is conceptually an operand of the procedure 
call where it is used; in most cases, a compiler 
will treat such an expression as a temporary value- 
operand. 

We define the integrated versions of the software 
science parameters as being those counted or 
derived from the integrated vocabulary. We use a 
subscript "int" to designate an integrated para- 
meter. The integrated length.~ for example, is 

given by the predicted value ~int' where 

~int = nl log 2 n I + n 2 log 2 n 2 (4) 
int int int int 

When computing the length equation for the inte- 
grated program, therefore, the integrated para- 
meters must be used. 

3.2 Conservation across Modularlzation 

Let M be the number of modules in a program. Let P 

designate any software science parameter; Pint is 

the integrated version of P, and P. is P for module 
i 

"i", 1 < i < M. Parameter P is conserved across 
modularization if 

M 

Pint = [ Pi (5) 
i=l 

The following parameters have been found to be 
conserved across modularization: 

(I) Conservation of Length via 
the Length Equation 

M 

 int = i= 1 l 
(6) 

(2) Conservation of Potential Volume 

M 
V* = [ V*. (7) 

int i 
i=l 

(3) Conservation of Modular Effort 

M 

Ein t = ~ E.I (8) 
i=l 

This list of conserved properties is not meant to 
imply an exclusive list of such properties, since 
further ones may yet be uncovered. 

4. CONSERVATION PROPERTIES 

4.1 Empirical Data 

A set of 14 programs were selected for study to 
investigate conservation properties. The criteria 
for selection were that the program be readily 
available in published form and modularized. Seven 
were selected frown the Algorithms section of CACM 
[6] ; four were selected from a set of programs for 
use in chemical engineering education [7]; one is 
a published compiler [8] ; and one is a program for 
counting software science parameters [9]. The 
last program in the data set is one used in a 
tutorial on software science integrated parameters 
[10]. This is tabulated in Table 1 below. 

Table i. Programs in the Data Set 

Algorithm Source Number of Language 
Designation Modules Utilized 

A CACM 3 FORTRAN 
B [ I 0 ] 3 FORTRAN 
C CACM 4 FORTRAN 

D CACM 4 ALGOL 60 
E C AC M 4 FORT RAN 
F CACM 5 FORTRAN 

G CACHE 5 FORTRAN 
H CACM 7 ALGOL 60 
I CACHE 7 FORTRAN 

J CACHE 7 FORT R~N 
K CACM 8 ALGOL 60 
L [8] 14 PILOT 

M [9] 24 FORTRAN 
N CACHE 36 FORTRAN 

The integrated versions of the fundamental para- 
meters are given in Table 2. From these values, 
the other integrated parameters may be computed 
with one exception: the program level L. In order 
to compute L, both for modules and the integrated 
program, the program level equation will be used 
to approximate it [2], 

LA n~l x n2 
(9) 

n I N 2 

where n* 1 = 1 + m and m is the number of modules 

in the code. For individual modules of a program, 
m = i and hence, n* I = 2. For the integrated 

program, m = M and hence, n* 1 = 1 + M. 
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Table 2. Fundamental Parameters for 
the Integrated Programs 

Algorithm 
Designation nl n2 N1 N2 N 

A 18 43 171 185 356 
B 14 17 69 49 118 
C 61 133 759 677 1 436 

D 32 65 483 439 922 
E 32 70 468 378 846 
F 64 160 i 007 942 1 949 

G 80 150 846 623 1 469 
H 31 167 1 124 1 239 2 363 
I 132 233 1 646 1 211 2 857 

J 185 345 2 394 1 732 4 126 
K 32 76 439 405 844 
L 83 96 763 571 1 334 

M 247 185 2 644 1 666 4 310 
N 320 368 3 561 2 204 5 765 

Extensive tables containing the fundamental para- 
meters for the individual modules of each program 
may be found in [10,11,12]. 

4.2 Conservation of Predicted Length 

Conservation of observed length is trivially true 
across modularization. Predicted length, as 
computed by the length equation eq. (I), is not, 
due to the nonlinearity of the equation. Never- 
theless, predicted program length appears to be 
conserved across modularization. The third colunm 
of Table 3 gives the integrated predicted length 
(obtained from the length equation using the 
integrated vocabulary). The fourth column gives 
the sums of the predicted module lengths. Figure 
I is a graph of integrated predicted lengths 
against sums of predicted module lengths. The 
coefficient of correlation between the two is 
0.983, indicating a linear relationship; the 
slope of the least-squares line shown in Figure 1 
is 1.358. The coefficient of correlation between 
the integrated predicted length and the observed 
length is 0.978, and between the sums of the 
predicted module lengths and the observed length 

Figure i. The Conservation of Predicted Length 

Across Modularization 
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is 0.971. The corresponding slopes of the least- 
square lines are 0.977 and 1.341 respectively. 
Thus, conservation of predicted length is also 
consistent with the observed values of length. 

4.3 Conservation of Potential Volume 

Potential volume also appears to be conserved. In 
the fifth and sixth columns of Table 3, the inte- 
grated potential volumes and sums of module poten- 
tial volumes are given. Figure 2 is the corres- 
ponding graph. The coefficient of correlation is 
0.914 and the slope of the least-square line is 
0.972, indicating approximate equality. 

Integrated Parameter Values vs. Summed Modular Parameter Values Table 3. 

Program Attributes: (i) Predicted Length: (2) Potential Volume: 

Algorithm Modules ~ 
Designation M Nlnt Nsum V*Int V'sum 

A 3 308 390 109 91 
B 3 123 123 58 42 
C 4 1 300 1 376 176 190 

D 4 551 662 141 120 
E 4 589 636 163 109 
F 5 1 556 1 535 242 214 

G 5 1 590 1 731 206 212 
H 7 1 387 1 580 627 275 
I 7 2 762 3 046 282 235 

J 7 4 302 4 678 325 332 
K 8 635 979 301 200 
L 14 1 161 1 461 303 326 

M 24 3 357 4 830 434 586 
N 36 5 800 8 426 1 048 I iii 

(3) Modular Effort: 

Eln t 

40 877 
5 898 

677 735 

263 027 
195 087 
955 598 

638 230 
518 296 

2 075 638 

4 334 9 19 
108 021 
328 572 

3 357 284 
2 814 222 

Esum 

50 006 
7 416 

513 242 

288 338 
245 409 
9 13 194 

538 499 
861 318 

2 944 344 

7 890 650 
132 116 
230 300 

5 989 572 
4 903 301 
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Figure 2. 
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4.4 Conservation of Modular Effort 

The effort involved in constructing a modularized 
program is composed of the effort needed to write 
the individual modules and the effort needed to 
integrate the modules into a functional whole. 
The first is the modular effor[, and the second 
component is the integrating 9ffort. The data 
suggests that modular effort is also conserved. 
The seventh column of Table 3 gives the modular 
effort as computed from the integrated parameters. 
The eighth column gives the modular effort as 
the sum of the module efforts. The coefficient 
of correlation is 0,993 and the slope of the 
least~squares line is 1.828. Figure 3 is a 
graph of the modular efforts computed by the two 
methods. 

5. ANALYSIS 

5.1 Evaluation of Results 

The work reported here is based on a small sample. 
The sample does include a wide range of program 
lengths, several authors, and several languages. 
Conservation of properties is exhibited as equality 
of an integrated measurement and the sum of the 
corresponding measurements over modules. We have 
taken two pieces of evidence for conservation: a 
high coefficient of correlation (indicating linear- 
ity) and a least-squares line with slope near 1 
(indicating equality). 

Within our sample, there is convincing evidence 
for conservation of predicted length and potential 
volume. The evidence for conservation of modular 
effort is less convincing. Effort measurements 
for total module construction show high correlation, 
but the slope of the least-squares line is nearly 
twice the value of unity. 

The conservation of software science properties 
hold in the same sense as other software science 
relationships, as discussed in section i. The 
conservation of such properties is not exactly 
a true relationship for any programs in general. 
But the conserved integrated parameters are 
approximately equal to the summed corresponding 
module parameters over a variety of modularized 
programs. 

5.2 Toward a Theory of Modularization Impurities 

We have only found convincing evidence for the 
conservation of two parameters: predicted length 
and potential volume. Additional evidence has 
been found for the conservation of modular effort. 
Work currently in progress has shown that these 
are significant. In particular, conservation of 
length can be shown to be governed by the sharing 
of global information among module vocabularies, 
and conservation of potential volume can be shown 
to be governed by the parameterization of modules. 
Furthermore, it can be shown that instances of 
what are generally considered to be poor practices 
in modularization will cause one or the other 
conservation not to hold. By examining ways in 
which conservation of length or potential volume 
can be violated, we are developing a theory of 
"modularization impurities". This appears to 
be a natural extension of what Bulut and Halstead's 
theory of "algorithm impurities" [4] to the 
situation of several modules. 

For example, algorithm H is the only one in our 
sample which conserves neither length nor potential 
volume. It can be shown that an excessive amount 
of global information will cause the integrated 
length to be much smaller than the sum of module 
lengths. Algorithm H violates conservation of 
length in this direction, and it does appear to 

Figure 3. 
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have a lot of global information shared among 
routines. It can also be shown that if many call 
sites have the same actual parameter expression 
corresponding to a given formal parameter, the 
integrated potential volume will be much larger 
than the sum of module potential volumes. Algo- 
rithm H violates conservation of potential 
volume in this direction, and it has several 
formal parameters for which the same actual 
parameter expression is used at all call sites. 

6. CONCLUSIONS 

The conservation of software science properties 
reported here do not represent rigorous conditions 
for good modularization. But our empirical study 
shows that they are exhibited by programs which 
we subjectively feel are well modularized. The 
conservation of such properties as predicted 
length, potential volume, and modular effort 
apparently represent a balance between overhead 
due to intermodule communication and the higher 
level of abstraction provided by modularization. 
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