
CONSERVATION OF SOFTWARE SCIENCE PARAMETERS
ACROSS MODULARIZATION

Lawrence Hunter
Certifiable Minicomputer Project, University of Texas

Austin, Texas 78712

Jose C. Ingojo
Department of Computer Science, Purdue University

Lafayette, Indiana 47907

Current results in software science research provide a potentially powerful tool for software
engineering management. Software science parameters including time required to write a program
and program length can be estimated from parameters available at the time of program design
specification. The application of these results to modularized programs is not straightforward
since the derived parameters are nonlinear in vocabulary size. We define an integrated
vocabulary for a modularized program. A parameter is said to be conserved across modularization
if the parameter value derived from the integrated vocabulary equals the sum of the parameter
values derived from the modules:three parameters have been found to be conserved across
modularization in well-modularized programs. Failure to exhibit conservation of length can
be used to detect excessive or insufficient intermodule communication.

i. BACKGROUND

Software science is an inherently empirical disci-
pline. The methodology of much of the research in
this area follows three stages :

(i) Quantitatively describe observed phenomena
or relationships involving software
me as u re men ts.

(2) Hypothesize a mechanism to explain the
observations.

(3) Support or disprove the hypothesized
mechanism by applying it to additional
data.

The empirical study of software requires well-
defined quantitative measurements applied to
actual programs written in actual programming
languages. We refer to these measurements
collectively as the software science parameters.
The parameters fall into three classes:

(i) Four fundamental parameters directly
counted from source code:

NI, the number of operators used (total
operator usage);

N 2, the number of operands used (total
operand usage) ;

nl, the number of distinct operators used
(operator vocabulary) ;

n2, the number of distinct operands used
(operand vocabulary).

From these we obtain the program length
N = N 1 + N 2 and the vocabulary size n =

n I + n 2 .

(2) Other parameters directly measured from
the overall software development cycle.
These include, for example, the time
required to write a program and the number
of delivered bugs. (Most of these para-
meters are well-defined but not necessarily
easy to measure.)

(3) Many useful secondary parameters, derived
indirectly from the two directly measured
classes. These include :

V*, potential or minimal possible volume,
defined by V* = n* log 2 n* where n*
is the vocabulary size required to
express the program as a single opera-
tion in a language which has the
program function as an operator.
(The length of such a program is n*.)

V, program volume, defined by V = N log 2 n
(V* a special case of V) J

L, program level, defined by L = V*/V.

E, program effort, defined by E = V/L.
(E essentially measures the number of
mental decisions required to select the
operators and operands from the voca-
bulary used.)

%, language level, essentially a measure-
ment of average program level in a
given language, defined by ~ = V*xL.

We refer to the four directly counted parameters as
the fundamental parameters, and to the others as
derived parameters.

Previous work has resulted in the discovery and
validation of many relationships among the para-

189

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800179.810200&domain=pdf&date_stamp=1977-01-01

meters. The first one reported El] was the length
equation,

= n I log 2 n I + n 2 log 2 n 2 (i)

This unexpected but not really counterintuitive
relationship showed that program length tends to
be characterized by the vocabulary used; as
length increases, vocabulary also increases in a
directly related way. Another relationship of
interest is the invariance of the LV product: for
a given algorithm, LxV remains constant regardless
of the language in which the algorithm is written.
While it is trivially true from the definitions
that

V* = V x L (2)

regardless of language, the potential volume V* is
in practice only an unreachable limit value. Yet,
the invariance of the LV product has been empiri-
cally validated. A complete introduction to
software science is given in [2].

The first effort at giving a formal mechanism for
the prograrmuing activity which would explain the
results mentioned above was [3]. While the models
given were greatly oversimplified, they gave sur-
prisingly close agreement with observed data.
That situation is typical of the current state of
the art in software science: the relationships
currently known are only approximately true of
observed programs, but they are very close to
being exact. Due to the simplifications of the
models, software science still deals largely with
firs t-order effects.

A brief consideration of the length equation above
will reveal an important phenomenon: it is very
easy to write programs for which the software
science relationships (such as the length equation
eq. (i) or the invariance equation eq. (2)) do not
hold, but doing so requires the use of such prac-
tices as unwarranted assignments and redundant
subexpression evaluation. An early study [4] of
program features which prevented the length equa-
tion eq. (i) from holding led to the discovery of
program impurity classes, a well-defined classifi-
cation of what are informally known as "poor
programming practices". Because of phenomena
like these, software science research efforts must
follow two related but distinct goals: first, the
quantitative description of relationships which
hold (approximately) in well-written programs; and
second, the study of those program features which
cause the relationships not to hold in poorly-
written programs.

2. APPLICATION TO SOFTWARE ENGINEERING MANAGEMENT

2.1 Estimating Parameters from Program Specifica-
tion Information

It is shown in [2] that most of the software science
parameters for a given program can be estimated
surprisingly well from only two independent para-
meters: the language level % of the language used,
and n~, the number of distinct items of input

information. Informally, this means that a
program is largely characterized by the absolute

minimum vocabulary required to express it.

In particular, two of the parameters which can be
estimated from n~ and % are T, the time required
to write the program, and N, the length of the
program. The time T is estimated from the
program effort E (defined earlier) and known
estimates of the rate at which a concentrating
human being can perform elementary mental discri-
minations (approximately 18 per second). The
length N is estimated by first obtaining approxi-
mations of the number of distinct operators n I and
operands n2, then using the length equation.

These results hold obvious potential for the
development of powerful software engineering
management tools. Estimates of the writing time
T and the program size N can be made from infor-
mation which is known at the time the detailed
program design specifications are made. It has
also been shown [5] that estimates of the number
of bugs remaining in the program when it is
delivered for system integration can be made.
These estimates could be used to decide how much
more testing and debugging effort was likely to be
productive.

2.2 Application to Modularized Programs

The estimation methods described above are still
rather crude, and they depend on knowing n~ and
more precisely than may currently be possible.
These appear to be limitations of refinement
rather than basic method. Previous work in
software science has largely dealt with program
modules as separate programs. In order to be
usable as a software engineering management tool,
parameter estimation must be applicable to highly
modularized programs. In practice the modules
will be interrelated. It is important to manage
the development of both the individual modules and
the project as a whole. And it is important to
insure that good programming practices are used
both within the individual modules and in the use
of the modules on a higher level.

All of the derived parameters can be derived (or
estimated) from the four fundamental, directly-
counted parameters. But we observe that the
derivations are nonlinear in the fundamental
parameters. This means that we cannot simply add
up the lengths and vocabulary sizes of individual
modules, and then derive the parameters for the
overall project from their sums. Yet the length N,
writing time T, and other parameters of the overall
project are directly related to the parameters of
the modules. Thus we are led to the central
question of this research: how are the derived
parameters of a modularized program related to the
parameters of the separate modules?

3. INTEGRATED PARAMETERS

3.1 Integrated Parameter Definition

The length of a modularized program must be the
sum of the lengths of its modules, but the size of
the vocabulary of a modularized program is not the
sum of the sizes of the vocabularies of its
modules. This is because there must be some
duplication of vocabulary elements in different

19o

modules in order to have intermodule communication.
Duplication of vocabulary elements may be in the
form of either global items or formal and actual
parameters.

Let a program consist of M modules. Define the
integrated vocabulary VOCin t of the program as

VOCin t = ~(VOC i - ~i) U PO (3)
i=l

where

VOC i is the vocabulary of the i th module;

is the set of forma~parameters
FPi (operands) of the i module;

PO is a set of pseudo-operands containing
one element for each actual parameter
expression which is not an operand in
the set VOC i of the calling site.

The effect of the definition is to make VOCin t a

"global" vocabulary. Formal parameters are deleted
since they do not add operands to the overall
vocabulary; they only serve to define operations.
Actual parameter pseudo-operands are added, since
each is conceptually an operand of the procedure
call where it is used; in most cases, a compiler
will treat such an expression as a temporary value-
operand.

We define the integrated versions of the software
science parameters as being those counted or
derived from the integrated vocabulary. We use a
subscript "int" to designate an integrated para-
meter. The integrated length.~ for example, is

given by the predicted value ~int' where

~int = nl log 2 n I + n 2 log 2 n 2 (4)
int int int int

When computing the length equation for the inte-
grated program, therefore, the integrated para-
meters must be used.

3.2 Conservation across Modularlzation

Let M be the number of modules in a program. Let P

designate any software science parameter; Pint is

the integrated version of P, and P. is P for module
i

"i", 1 < i < M. Parameter P is conserved across
modularization if

M

Pint = [Pi (5)
i=l

The following parameters have been found to be
conserved across modularization:

(I) Conservation of Length via
the Length Equation

M

 int = i= 1 l
(6)

(2) Conservation of Potential Volume

M
V* = [V*. (7)

int i
i=l

(3) Conservation of Modular Effort

M

Ein t = ~ E.I (8)
i=l

This list of conserved properties is not meant to
imply an exclusive list of such properties, since
further ones may yet be uncovered.

4. CONSERVATION PROPERTIES

4.1 Empirical Data

A set of 14 programs were selected for study to
investigate conservation properties. The criteria
for selection were that the program be readily
available in published form and modularized. Seven
were selected frown the Algorithms section of CACM
[6] ; four were selected from a set of programs for
use in chemical engineering education [7]; one is
a published compiler [8] ; and one is a program for
counting software science parameters [9]. The
last program in the data set is one used in a
tutorial on software science integrated parameters
[10]. This is tabulated in Table 1 below.

Table i. Programs in the Data Set

Algorithm Source Number of Language
Designation Modules Utilized

A CACM 3 FORTRAN
B [I 0] 3 FORTRAN
C CACM 4 FORTRAN

D CACM 4 ALGOL 60
E C AC M 4 FORT RAN
F CACM 5 FORTRAN

G CACHE 5 FORTRAN
H CACM 7 ALGOL 60
I CACHE 7 FORTRAN

J CACHE 7 FORT R~N
K CACM 8 ALGOL 60
L [8] 14 PILOT

M [9] 24 FORTRAN
N CACHE 36 FORTRAN

The integrated versions of the fundamental para-
meters are given in Table 2. From these values,
the other integrated parameters may be computed
with one exception: the program level L. In order
to compute L, both for modules and the integrated
program, the program level equation will be used
to approximate it [2],

LA n~l x n2
(9)

n I N 2

where n* 1 = 1 + m and m is the number of modules

in the code. For individual modules of a program,
m = i and hence, n* I = 2. For the integrated

program, m = M and hence, n* 1 = 1 + M.

191

Table 2. Fundamental Parameters for
the Integrated Programs

Algorithm
Designation nl n2 N1 N2 N

A 18 43 171 185 356
B 14 17 69 49 118
C 61 133 759 677 1 436

D 32 65 483 439 922
E 32 70 468 378 846
F 64 160 i 007 942 1 949

G 80 150 846 623 1 469
H 31 167 1 124 1 239 2 363
I 132 233 1 646 1 211 2 857

J 185 345 2 394 1 732 4 126
K 32 76 439 405 844
L 83 96 763 571 1 334

M 247 185 2 644 1 666 4 310
N 320 368 3 561 2 204 5 765

Extensive tables containing the fundamental para-
meters for the individual modules of each program
may be found in [10,11,12].

4.2 Conservation of Predicted Length

Conservation of observed length is trivially true
across modularization. Predicted length, as
computed by the length equation eq. (I), is not,
due to the nonlinearity of the equation. Never-
theless, predicted program length appears to be
conserved across modularization. The third colunm
of Table 3 gives the integrated predicted length
(obtained from the length equation using the
integrated vocabulary). The fourth column gives
the sums of the predicted module lengths. Figure
I is a graph of integrated predicted lengths
against sums of predicted module lengths. The
coefficient of correlation between the two is
0.983, indicating a linear relationship; the
slope of the least-squares line shown in Figure 1
is 1.358. The coefficient of correlation between
the integrated predicted length and the observed
length is 0.978, and between the sums of the
predicted module lengths and the observed length

Figure i. The Conservation of Predicted Length

Across Modularization

I0

9

o 8

6

3

1

0

SCALE :

Units are in Thousands

Px,y = 0.983

J

0 i 2 3 4 5 6 7 8 9 i0

INTEGRATED PREDICTED LENGTH

is 0.971. The corresponding slopes of the least-
square lines are 0.977 and 1.341 respectively.
Thus, conservation of predicted length is also
consistent with the observed values of length.

4.3 Conservation of Potential Volume

Potential volume also appears to be conserved. In
the fifth and sixth columns of Table 3, the inte-
grated potential volumes and sums of module poten-
tial volumes are given. Figure 2 is the corres-
ponding graph. The coefficient of correlation is
0.914 and the slope of the least-square line is
0.972, indicating approximate equality.

Integrated Parameter Values vs. Summed Modular Parameter Values Table 3.

Program Attributes: (i) Predicted Length: (2) Potential Volume:

Algorithm Modules ~
Designation M Nlnt Nsum V*Int V'sum

A 3 308 390 109 91
B 3 123 123 58 42
C 4 1 300 1 376 176 190

D 4 551 662 141 120
E 4 589 636 163 109
F 5 1 556 1 535 242 214

G 5 1 590 1 731 206 212
H 7 1 387 1 580 627 275
I 7 2 762 3 046 282 235

J 7 4 302 4 678 325 332
K 8 635 979 301 200
L 14 1 161 1 461 303 326

M 24 3 357 4 830 434 586
N 36 5 800 8 426 1 048 I iii

(3) Modular Effort:

Eln t

40 877
5 898

677 735

263 027
195 087
955 598

638 230
518 296

2 075 638

4 334 9 19
108 021
328 572

3 357 284
2 814 222

Esum

50 006
7 416

513 242

288 338
245 409
9 13 194

538 499
861 318

2 944 344

7 890 650
132 116
230 300

5 989 572
4 903 301

19e

Figure 2.

i000

900

o
800

700

600
o

5o0

400

3o0

200

100

0

o

The Conservation of Potential Volume
Across Modularization

Px,y ~ 0 . 9 ~

S ~ - ~ ' ~ : / I i i i i i i I I : : ; ; ; ;

O O O O O O O O O O
O

INTEGRATED POTENTIAL VOLUME

4.4 Conservation of Modular Effort

The effort involved in constructing a modularized
program is composed of the effort needed to write
the individual modules and the effort needed to
integrate the modules into a functional whole.
The first is the modular effor[, and the second
component is the integrating 9ffort. The data
suggests that modular effort is also conserved.
The seventh column of Table 3 gives the modular
effort as computed from the integrated parameters.
The eighth column gives the modular effort as
the sum of the module efforts. The coefficient
of correlation is 0,993 and the slope of the
least~squares line is 1.828. Figure 3 is a
graph of the modular efforts computed by the two
methods.

5. ANALYSIS

5.1 Evaluation of Results

The work reported here is based on a small sample.
The sample does include a wide range of program
lengths, several authors, and several languages.
Conservation of properties is exhibited as equality
of an integrated measurement and the sum of the
corresponding measurements over modules. We have
taken two pieces of evidence for conservation: a
high coefficient of correlation (indicating linear-
ity) and a least-squares line with slope near 1
(indicating equality).

Within our sample, there is convincing evidence
for conservation of predicted length and potential
volume. The evidence for conservation of modular
effort is less convincing. Effort measurements
for total module construction show high correlation,
but the slope of the least-squares line is nearly
twice the value of unity.

The conservation of software science properties
hold in the same sense as other software science
relationships, as discussed in section i. The
conservation of such properties is not exactly
a true relationship for any programs in general.
But the conserved integrated parameters are
approximately equal to the summed corresponding
module parameters over a variety of modularized
programs.

5.2 Toward a Theory of Modularization Impurities

We have only found convincing evidence for the
conservation of two parameters: predicted length
and potential volume. Additional evidence has
been found for the conservation of modular effort.
Work currently in progress has shown that these
are significant. In particular, conservation of
length can be shown to be governed by the sharing
of global information among module vocabularies,
and conservation of potential volume can be shown
to be governed by the parameterization of modules.
Furthermore, it can be shown that instances of
what are generally considered to be poor practices
in modularization will cause one or the other
conservation not to hold. By examining ways in
which conservation of length or potential volume
can be violated, we are developing a theory of
"modularization impurities". This appears to
be a natural extension of what Bulut and Halstead's
theory of "algorithm impurities" [4] to the
situation of several modules.

For example, algorithm H is the only one in our
sample which conserves neither length nor potential
volume. It can be shown that an excessive amount
of global information will cause the integrated
length to be much smaller than the sum of module
lengths. Algorithm H violates conservation of
length in this direction, and it does appear to

Figure 3.

o

8

t~

o

SCALE:

l0

9

8

7

The Conservation of Modular Effort
Across Modularization

Px,y = 0.993

1 2 3 4 5 6 7 8 9 I0

INTEGRATED MODULAR EFFORT

193

have a lot of global information shared among
routines. It can also be shown that if many call
sites have the same actual parameter expression
corresponding to a given formal parameter, the
integrated potential volume will be much larger
than the sum of module potential volumes. Algo-
rithm H violates conservation of potential
volume in this direction, and it has several
formal parameters for which the same actual
parameter expression is used at all call sites.

6. CONCLUSIONS

The conservation of software science properties
reported here do not represent rigorous conditions
for good modularization. But our empirical study
shows that they are exhibited by programs which
we subjectively feel are well modularized. The
conservation of such properties as predicted
length, potential volume, and modular effort
apparently represent a balance between overhead
due to intermodule communication and the higher
level of abstraction provided by modularization.

ACKNOWLEDGEMENT

Special thanks are due to Prof. M.H. Halstead, who
guided the research on conservation of software
science parameters. Further documentation for
the research for this paper can be found in [12].

REFERENCES

[1] M.H. Halstead, Natural laws controlling
algorithm structure?, ACM Sigplan Notices,
vol. 7, no. 2, February 1972.

[2] M.H. Halstead, Elements of software science,
American Elsevier, New York NY, 1977.

[3] M.H° Halstead and Rudolph Bayer, Algorithm
dynamics, Proc. ACM National Conference,
Atlanta, 1973.

[4] Necdet Bulut and M.H. Halstead, Impurities
found in algorithm implementation, ACM
Sigplan Notices, vol. 9, no. 3, March 1974.

[5] Linda Cornell and M.H. Halstead, Predicting
the number of bugs expected in a program
module, Proc. Computer Management Group
International Conference, Atlanta, 1976.

[6] "Algorithms" section, Communications of the
ACM, vols. 16 - 17.

[7] CACHE, Computer Programs for Chemical
Engineering Education, vols. 1 - 7.
Aztec Publishing Co., Austin TX, 1972.

[8] M.H. Halstead, A laboratory manual for
c?m~i!er and operating system implementation,
American Elsevier, New York NY, 1974.

[9] Karl Ottenstein, A program to count operators
and operands for ANSI FORTRAN modules,
Computer Sciences Report TR 196, Purdue
University, June 1976.

[10]

[11]

[12]

J.C. Ingojo, Deriving the integrated vocabu-
lary for a modularized program, Computer
Sciences Report TR 77-4, Indiana University-
Purdue University at Indianapolis, February
1977.

J.C. Ingojo, Modularization in the PILOT
compiler and its effect on the length,
Computer Sciences Report TR 169, Purdue
University (complete); also in abridged
form, Proc. ACM National Conference, Houston,
1976.

J.C. Ingojo, Modularity properties in soft-
ware science, Ph.D Thesis, Purdue University,
October 1977.

194

