
A NEWAPPROACH TO
CONSTRUCTION OF COMPUTER SYST]~4S

Tatsuya Hayashi
F u j i t s u Limited, Computer Science Laboratory

Eawasaki
JAPAN

In this paper we propose a new method in which original form of the whole system (described in a design
and implementation language called DEAPLAN) is directly implemented as it is without either modifica-
tion or transformation. In other words a kind of high level language machine is considered in the more
throughgoing way. Our hardware apparently has neither CPU nor storage device and only consists of a
large number of quantum processing units (QPUs) except channels and peripherals. Therefore, extremely
speaking, the main contemporary concepts such as virtual space, reenterability and multiplexing of CPU
as well as compiling and linkage editing are all disappeared in our system. The identity of implemen-
ted version of the system with the original form seems to give a more fundamental solution to the pro-
blem of the rapid growth of operating systems compared with the mere structured programming and so on.

i. INTRODUCTION

In the present decade, the people such as N. A.
Chomsky (Linguistics)~ R. Jakobson (Phonology), C.
Levi = Stransse (Cultural Anthropology), Bourbaki
(Modern Mathematics) and J. Piaget (Psychology)
have obtained excellent results based on the Struc-
turalism. The Structuralism has various aspects.
But we may say that its fundamental standpoint ex-
ists where both simple positivism and inductionism
should be excluded and asserts that using the pro-
visional models, we could recognize the deeper real-
ities which lie behind our various cultural activi-
ties and usually are out of the range of our con-
sciousness. Then, the structured programming
proposed byE. W. Dijkstra ~ ks also considered to
belong in the same category.

We also have taken the same approach when we have
developed a design and implementation language
(DEAPLAN) ~ . DEAPLAN, requiring no prior con-
dition concerning the structure of operating
systems, enables us to describe the whole hierarchi~
cal logical structure of any operating system.

In this paper, we present a new architecture of
computer systems based on the principle of Structu-
ralism. In other words, considered is a new method
by which the system is directly implemented from the
original representation in DEAPLAN without any omis-
sion or transformation.

Each of e t operating systems (MULTICS [2] , OS/
VS II [3] , etc.) is thought of essentially having
some hierarchical structure in its original form.
But when actually implemented, the system is trans-
formed into the one which, as a rule~ consists of
only the lower parts (procedure, statement, opera-
tion, etc.) of the original hierarchical structure
which are described in conventional programming
languages. The upper layers (subsystem, job, task,
load module, etc.) of the original form that cannot
be described in conventional programming languages
are indirectly represented, if any, in such a manner
as using control blocks. Furthermore, even if the
lower parts of the original form are considered, it
may be said that they have never been implemented
as they stood~ unless they have been preprocessed or
compiled into the other form. This comes from the
fact that the conventional hardware or machine lan-
guage is not suitable to accept the hierarchical
structure in original form of the system.

In this paper, we consider the direct implementation
of the system where its original form represented i~

19

DEAPLAN is retained invariably. In the different
point of view, we also consider the high level lan-
guage machine in the more throughgoing way than
the designers of the conventional machines, [4] ~
[17] , have done, since we do not transform the
original representation into any intermediate one
and we can implement not only each program but also
the whole operating system.

From this standpoint, the hardware of our system
becomes quite different from what are conventional
including the current high level language machines.
In our system, except channels and peripherals, the
hardware only consists of a large number of quantum
processing units (QPUs) which might be regarded as
microminiaturized versions of the current micro-
computers with writable control storage (WCS) as
shown in Fig. I. There is apparently neither CPU
nor storage device which may be seen in the current
computer system. Therefore~ the main contemporary
concepts, such as virtual storage, reenterability
and multiplexing of CPU as well as compiling and
linkage editing are all disappeared in our system.

O O

© O
I I
i I
I I
I I

© ©

©

©
I
I

~Pus
!

©

Fig. I Hardware System

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800181.810259&domain=pdf&date_stamp=1975-01-01

In the following, we will first introduce the chara-
cteristics of DEAPLAN in section 2 and next the
hardware requirements in section 3. Then, we will
present our method in section 4 and finally in sec-
tion 5 we will refer to the significance of our
system.

2. BRIEF SKETCH OF DEAPLAN

To be easily understandable we will briefly sketch
the characteristics of DEAPLANby contrasting it
with conventional programming languages such as
PL/I

At first the descriptive unit in PL/I is an external
procedure which usually exists in the lowest layer
of hierarchical systems. In the upper layer of ope-
rating systems there exist higher level modules than
procedures such as load-modules, tasks, jobs, sub-
systems or entire system itself (in DEAPLAN an enti-
ty having acess to data is always called module).
Such higher level modules can be also described as
independent units of description in DEAPLAN.

Since it is usual that kinds or types of module are
different among various operating systems, DEAPLAN
provides no standard higher level type of module and
instead allows one to define and introduce new types
freely.

There are only three standard types: PROC (procedu-
re/function), ST (statement) and OP (operator). As
is already seen procedures/functions~ statements and
operators are also regarded as modules in DEAPLAN.
These modules are introduced (when necessary) within
their parent modules according to custom of program-
ming languages like PL/I, although it may be a view
that each of these modules should be described sepa-
rately.

Second, the unit of description contains declarat-
ions of entries, parameters~ data, constituent modu-
les and execution logic (sequence of executable
statements) as well as in PL/I. But in the declara-
tion of constituent module one can define not only
procedure module but also new OP or ST module and
new data types may be introduced in the data decla-
ration. DEAPLAN, therefore, is an extensible lan-
guage 08] and also a very high level language 04.

In the case of higher level modules or external pro-
cedures access and call declarations (which may be
considered declarations of the scope or the capabi-
lity ~, [2~) are included besides those men-
tioned above in the unit of description. In the
access declaration access relations between consti-
tuent modules and (inner, external) data are speci-
fied, while in the call declaration call relations
among constituent/external modules being specified.

In the case of lower level modules which appear in
programming languages it may be reasonable that the
scope of data and modules is based on the block
structure. But in the case of higher level modules
the block becomes too wide to be practical and such
two relational declarations seem to be necessary on
the standpoint of security. W. Wulf even says that
global variables in,leek sZructured) programming
languages are considered harmful.

There are two other declarations in DEAPLAN: space
and map declarations. Since they are applicable
only to the conventional computer system with sto-
rage devices, further explanation is omitted, al-
though strictly speaking the map declaration may be
used in the different manner (cf. 4).

The third characteristic of DEAPLAN is that when
inner data or constituent modules are declared,
design decisions concerning their inner structure
may be defered. This enables us to do structured
top-down designing.

Since, as already mentioned, ST primitives (modules)
can be freely introduced, we are able to do it much
efficiently. Further we should like to add that
DEAPLAN has no BEGIN blocks~ because new ST primiti-
ve fulfill the function of BEGIN block.

The fourth characteristic is that the concept of
time span (storage attribute in PL/I) is applied not
only to data but also to modules. When the whole
system is considered this concept seems to he neces-
sary, although it has no value in the case of the
lower module as its constituent modules are always
together with it.

Finally we will explain the fifth characteristic.
It is considered in DEAPLAN that the logic declara-
tion consists of a sequence of commands which acti-
vate specific (constituent, external) modules res-
pectively.

A command is a combination of the entry name of cor-
responding module and actual parameters. Although
we have previously said that statements and opera-
tions in programming languages are kinds of modules,
exactly speaking statements and operations are com-
mands that activate corresponding ST and OP modules
respectively. In our system the concept of command
is the most fundamental. The logic declaration may
he omitted in the case of higher level modules and
is regarded as consisting of only one command which
activates the main constituent module.

3. HARDWARE REQUIREMENTS

In this section we will discuss hardware require-
ments for our system. The hardware consists of only
one kind of components called quantum processing
unit (QPU). There are sufficiently large number of
QPUs in the system. As is explained later, a set of
QPUs enables us to represent the whole operating
system as it is.

3.1 Quantum Processing Unit

A QPU may be regarded as the microminiaturized ver-
sion of a current microcomputer and consists of ari-
thmetic logical unit (ALU), local memory (LM)~
writable control storage (WCS) and communication
unit (CU) as shown in Fig. 2. The actual function
of each QPU is determined by the program stored in
WCS (called quantum program). A QPU is assigned a
unit (device) number and has communication with each
other using CU.

20

ALU : Arithmetic Logical Unit
LM : Local Memory
WCS : Writable Control Storage
CU : Conununication Unit

Fig. 2 Quantum Processing Unit

The DEAPLAN representation of system is distributi-
vely allocated on the large number of Ql~/s. The set
of QPUs may, therefore, he considered a new sort of
device which is unified and reorganized from the
current storage units and CPUs.

3.2 ~uantum Instruction

A quantum program which determines the specified
function of QI~] is formed by quantum instructions.
The set of quantum instructions is common to all
QPUs. The main instructions are shown below•

(i) Inter QPU communication
a. activate~inform termination
b. halt/inform halt
c. enter interrupt directory/delete inter-

rupt directory/inform interruption
d. request module call
e. request data access
f. lock/unlock
g. transfer data
h. request creation(deletion)of data or module
i. enter directory/delete directory/search

directory
j. get QPU/free QPU

(2) Arithmetic and control
a. arithmetic operations
b. logical operations
c. compare/branch operations

In this section we will omit the further explanation
of quantum instructions. These are discussed in the
next section as occasion arises.

4. SYST~ CONSTRUCTIONMETHOD

In order to understand easily we will explain our
method using a relatively simple example. In Fig.
3(a) and (b) a program PROGX and its main external
procedure P1 are described in DF~LAN respectively.
These modules are implemented without any trans-
formation as shown in Fig. 4. In Fig. 4 a QPU is
indicated by a circle and its unit number is placed
on the shoulder of the circle. By the way since the
DEAPLAN representation of module is implemented as
i% is, extremely speaking, neither linkage editor
nor compiler is necessary in our system except a
louder.

module PROGX PROGRAM; tspan controlled(USE~OB);
entry PRDGX]~;
data (X, Y) bin(31); tspan static;
data Z org i V char (8),

1 W bin(31); tspan static;
module Pl proc main; tspan static;

entry main PIE;
end P1;

module P2 proc; tspan static;
entry P2E;
end P2;

module P3 proc; tspan static;
entry P3E;
end P3;

access P1 (read (X, Y), write Z.W),
P2 write X,
P3 write Y;

call from P1 to P2, from P2 to P3;
end PROGX;

Fig. 3(a) Original Form of Program
PROGX (in DEAPLAN)

module Pl proc (PROGX) main; tspan static;
entry main PIE;
data (A, B, C) char (8); tspan automatic;
data ext (X,Y) bin (31);
data ext Z org i V char (8)7

i W bin (31);
module Q1 proc;

entry QIE;

end QI;

21

module Q2 proc;
entry Q2E;

end Q2;
logic

P2E;

if ~-B then Z.W=X else Z.W=X+Y;

access ext PI (read (X, Y), write Z.W);
call ext from Pl to P2 entry P2E;
end PI;

Fig. 3(b) Original Form of external
procedure P1 (in DEAPLAN)

#11 MD DD

#101 #1 02 #1 03 ® Q G

F i g . 4 I m p l e m e n t a t i o n of PR~-X and P1

4.1 Module Creation

Each module is allocated on the different QPUwith-
out regard to its complexity level• In Fig. 4 pro-
gram module PROGX and its constituent modules
(external procedures) PI, P2 and P3 are allocated on
QPU #ii, #12, #13 and #14 respectively. Inner pro-
cedures Q1 and Q2 of P1 are on QPU #53 and #54 res-
pectively.

Next according to the LOGIC declaration of PI~ ST
module IP, OP module = (compare), = (assign) and +
(add) are allocated on QPU #55 ~ #58 respectively•
Although we have regarded = (assign) as an OP module,
i% may be contained in the set of ST modules•

We note here that the object placed on QPU #51 is
not a module but a command %o external procedure P2.
It is, therefore, not necessary originally since P1
should directly activate P2, but is left as is in
Fig. 4 so that we might easily follow the flow of
control.

Now in the case of higher level modules module di-
rectory (MD) and data directory (DD) are generated
in [*M of the QPU on which that module is allocated.
Each MD entry contains a constituent or relevant ex-
ternal module name~ type, time span, entry, QPU
number~ID number, call attribute and so on.

ID number is provided so that we may uniquely iden-
tify each module or datum throughout the lifetime of
whole system. It will be appropriate, for example,
to make each created time of module or datum such an
ID number. Each DD entry contains an inner or rele-
vant external data name, type, time span, QPU number,
ID number, access attribute, etc.

4.2 Data Creation

Data are also allocated on different QPUs in the
similar manner as modules. The structured data or
array such as Z is placed on more than one QPUs re-
taining its hierarchy and a field directory (PD) is
generated in every LM of the upper level QPUs. Each
FD entry has field name, type, QPU number, ID number,
etc.

Since the time span of data A, B and C is AUTOMATIC,
they are created when procedure P1 is activated and
deleted as soon as Pl terminates its action. Accor-
dingly QPU numbers and ID numbers assigned to data
A, B and C may be different in every allocation.

4.3 System Behavior

We will explain the behavior of our system using the
example of Fig. 4. When PROGX (QPU #11) is called
it gives an activation instruction to P1 (QPU #12)
at once and waits for the termination signal from
Pl. The reason why PROGX could directly communicate
with Pl thus from the first time is that the loader
previously sets Pl's QPU number and]3) number in
PROGX. The lines in Fig. 4 means that such linkages
are given at the beginning by the loader. The more
information the loader is available, the more lin-
kages it can staticly give at the allocation time.
Otherwise linkages are dynamically done at the ex-
ecution time.

New when P1 is activated by PROGX it examines the
directories, finds data A, B and C to be AUTOMATIC,
allocates them on different QPUs and stores the QPU
numbers and their IB numbers into DD of PI. Then P1
gives an activation instruction to the QPU on which
the module corresponding the first command in the
LOGIC declaration is placed. When P1 receives the
termination signal it activates the next QPU on
which the module corresponding the second command
is placed and waits for the signal.

P1 repeats this action until finally it receives the
termination signal which is sent by the QPU on which
the module corresponding the last command is placed.
P1 then deletes data A, B and C and sends the termi-
nation signal to PROGX which in turn informs its
caller that the whole operation is completed.

Next we will consider the case in which P1 activates
PYE (QPU #51). Although PYE wants to call P2 (QPU
#13), it does net know where P2 is because there is
no static link between PYE and PY. PYE therefore
gives an request call instruction to its parent PI.
After P1 recognizes validity of the request by chec-
king the call attributes in M D, it then gives an
request call instruction to its parent PROGX which
in turn checks its validity using MD and sends P1
the QPU number and ID number of PY.

Then, P1 records the information in its own MD and
transfer the QPU number and ID number of P2 to re-
quester PYE, thus completing the dynamic linkage
between PYE and PY. In addition, we may say that
our module directory or data directory is a kind of
capability list Eli , ~2] .

Now assume that PI activates IF (QPU #52). IF
immediately initiates = (QPU #55) which in turn
gives a request access instruction concerning data
A and B to its parent IF. =(QPU #55) finally gets
the QPU numbers and ID numbers of A and B after fol-
lowing the similar progress as mentioned above in

22

the c a s e o f request c a l l instruction.

When = (QPU #55) gives transfer data instructions to
A (QPU #101) and B (QPU #102), each of them first
checks ID number attached to each instruction.
Generally ID number of data or module is kept in the
QPU on which the data or module is placed. Therefore
if ID number is always added to communication inst-
ructions the receiving QPUs may be able %o detect
the erroneous or illegal access.

Returning to the subject, when = (QPU #55) receives
both values from A and B it compares them and inform
the parent IF of the result. If the result is "i"
B IF initiates = (QPU #56) otherwise = (QPU #57).
Actions of the modules such as = (QPU #56), = (QPU
#57) and + (QPU #58) may be also presumed. Here
operand T of = (QPU #57) means the value which +
(QPU #58) returns.

As already mentioned, in our system every linkage
between QPUs is always examined its validity by the
loader or higher level QPUs whether it is static or
dynamic. Besides communication errors between QPUs
are prevented by the use of ID numbers. Thus the
security of data access and module activation is
improved in cur system.

On the other hand, there is the possibility of the
lowering of access efficiency in the case of sub-
scripted variables, elements of structured data or
AUTOMATIC inner data. To avoid this situation one
may specify the data allocation using MAP declara-
tion in such a manner that these data are allocated
on the continuously numbered QPUs. Then it will be
possible te locate necessary QPUs based on a re-
presentative QPU number without any intervention of
antecedent QPUs. In this case, however, it is
inevitable that data security goes down because the
same]3) number must be given to each member of the
data group.

5. SIGNIFICANCE OF OUR SYSTEM

At present it seems difficult either technically or
economically to construct the system based on our
method described in this paper. But we may expect
in near future that the progress of LSI, hardware
and software technology enables us to implement the
system based on our method.

The significance of our system then is as follows:

(1) Sharp raise of marginal developing size of OS

At present the structured programming or the use of
higher level systems programming languages is propo-
sed in order to deal with operating systems which
show a tendency to grew larger scale. It is unques-
tionable that these tools can relax the serious
situation to a certain extent. But they do not seem
good enough to solve the problem fundamentally.

To the contrary, our method enables the system to be
implemented without any transformation of its (so to
speak) three-dimensional logical structure, and then
the whole system becomes transparent to designers.
Therefore the upper limit of the system size may be
drastically raised in our method.

(2) Ease of growth or extension

As mentioned above, since the whole system is con-
structed in a three-dimensional and transparent man-
ner, it is easy to modify or extend the system in
order to adapt it to the change in the situation.

(3) Improvement of system security

The system is divided into very small parts and is
distributed on the large number of QPUs. Thus each
data or module on the QPU becomes a unit of protec-
tion.

Moreover the implemented hierarchical structure
keeps in itself the execution locus of the system.
These feature seems to improve the system security.

(4) Improvement of man-machine interface

As is evident from (i), sharp raise of the marginal
size of OS makes a room for introduction of more
intelligent features into the system so that we may
further push the man-machine interface to the human
side.

(5) Contribution to the relevant area

If the QPU would have any relation with the neuron
our system might contribute in some degree to the
relevant area such as bionics, nervous-physiology,
pattern recognition and artificial intelligence.

6. CONCLUSION

14e have formerly developed a system design language
DEAPLAN based on the structuralism. In this paper
we have proposed a method in which the DEAPLAN re-
presentation of any system has been directly imple-
mented as it is without either modification or
transformation. Extremely speaking, therefore, nei-
ther compiler nor linkage editor is necessary in our
system except a kind of loader.

Our hardware consists of a large number of quantum
processing units (QPUs) which are microminiaturized
versions of the current microprocessors with WCS.
Using the ~PU network we can give the implemented
system the same structure as in the original DEA-
PLAN representation which is never given by the
conventional computer hardware.

The identify of implemented version of the system
with the original form in DEAPLAN seems to give a
more fundamental solution to the problem of the
rapid growth of operating systems compared with the
structured programming or the use of higher level
systems programming languages.

In addition, our method using only one kind of
element (~PU) similar to the neuron seems to contri-
bute in some degree to the relevant area such as
bionics, nervous-physiology, pattern recognition,
and artificial intelligence.

ACKNOLWEDGEMENT

The author wishes to express his appreciation to
Prof. K. Inoue for his useful advice given when he
has been in this company.

REFERENCES

[~ Dijkstra, E. 14.: "Notes on Structured Pro-
gramming", Technological U. Eindhoven, The
Netherlands, August, 1969

~] Organick, E. I.: "The Multics System: An
Examination of Its Structure", MIT Press, 1972

[3] Scherr, A. L. et al.: "Functional Structure
of IBM Virtual Storage Operating Systems", IBM
Syst. J. Vol. 12, No. 4, pp 368 ~ 411, 1973

[4] Rice, R. & Smith, 14. R.: "SYMBOL--A Major
Departure from Classic Software Dominated
Computing System", Prec. SJCC VoI. 38,
pp 575 ~ 587, 1971

[5] Smith, 14. R. et ah "SYMBOL--A Large Ex-
perimental System Exploring Major Hardware
Replacement of Software", Prec. SJCC Vol. 38,
pp 601 ~ 616, 1971

[6] Bashkow, T. R., Sasson, A. & Kronfeld, A. :
"System Design of a FORTRAN Machine", IEEE
Trans. on Electronic Computers, Vol. EC-16,
No. 4, pp 485 ~ 499, 1967

[7] Anderson, J. P. : "A Computer for Direct Ex-
ecution of Algorithmic Languages" FJCC,
pp 184 ~ 193, 1961

[8] Mullery, A. Po, et al. : "ADAM--A Proglem-
Oriented Symbol Processor" SJCC, pp 367 ~ 380,
1963

(9] ~elbourne, A. J., et al: "A S~all Computer for
the Direct Processing of FORTRAN Statements",
Computer Journal, Vol.8,]~I, pp 24 ~ 27, 1965

00] Weber, H.: "A Y,~eropro~rammed Implementation
ef EULER on the IBM System/360 Model 30", CACM
Vol. 10, No. 9; pp 549 ~ 558, 196Y

[II] Sugimoto, M.: "PL/I Reducer ana Direct Pro-
cessor", 24th National Conf. of ACM, pp 519 ~
538, 1969

[12] Thurber, K. J., et al. : "Systems Design for s
Cellular APL Computer", i~m:~: Trans. on Compu-
ters Vol. C-19, No. 4, pp 291 ~ 300, 1970

03] Zaks, R. et al. : "A Pirmware APL Time-Sharing
System", SJCC, pp 179 ~ 190, 1971

~4] Hassit, A., et al. : "Implementation of a High
Level Language Machine", 4th Annual Workshop
on Microprogramming, 1971

[15] Shapilo~ M. 0.: "A SNOBOL Machine: A High-
Level Language Processor in a Conventional
Hard,re Framework"

~6] Wilner 14. T.: "Design of Burroughs B 1700",
FJCC pp 489 ~ 497, 1972

[17] Wilner, W. T. : "Burroughs B 1700 Memory Uti-
lization", FJCC, pp 579 ~ 589, 1972

[18] Prec. of the international symposium on ex-
~ensible languages, SIGPLAN Notices Vol. 6,
No. 12, 1971

[19] Prec. of the international symposium on very
high level languages, SIGPLAN Notices Vol. 9,
No. 4, 1974

[20] Hayashi, T.: "DEAPLAN--A Design and Implemen-
tation Languages for Operating Systems",
Journal of the Information Processing Society
of Jpana. Vol. 14, 1974

~$1] Dennis, J. B. & Van Horn, E. C.: "Program-
ming Semantics for Multiprogrammed Computa-
tions", CACM Vol. 9, No. 3, pp 143 ~ 155, 1966

[22] Wulf, 14. et al.: "HIDR~: The Kernel of a
Multiprecessor Operating System", CACM,
Vol. 17, No. 6, pp 337 ~ 345, 1974

23

