
HARDWARE IMPLEMENTATION OF LOOP
TRACE AND MICROPROGRAM SYNTHESIS

DR. A.M. ADB-ALLA and LAIRD H. MOFFETT
George Washington University and Naval Research Laboratory

Washington, D.C., U.S.A.

The modification or tuning of the microcode in a computer that utilizes a writable
control store is one method whereby a program's execution time can be improved. A
method for automatically performing a microcode tuning or synthesis has been developed
by Drs. Karlgaard and Abd-alla and is discussed in detail in [i]. Presented is an
extension of this effort which allows microcode synthesis to be performed "on-the-fly?
This is accomplished by: (l) performing the required program trace with a hardware
modification, (2) eliminating the statistics generation requirement, and (3) perform-
ing the synthesizing by using a microprogram rather than software. The implementa-
tion of this technique is described in this paper.

i. INTRODUCTION

An automatic microcode tuning procedure has
been developed Ill whereby the execution
time required to perform operations in a
loop of a program could be reduced. Fur-
ther work is being pursued on this topic
to allow this tuning to be accomplished
"on-the-fly," during run time. This paper
presents briefly: the tuning algorithm
developed in l 1 l, the drawbacks of this
method for not allowing the tuning to be
performed "on-the~fly," a method of per-
forming the trace to generate the required
statistics, an approach to performing the
actual synthesis, and future effort to be
performed by the authors in examining the
utility of the technique.

2. HEURISTIC SYNTHESIS ALGORITHM

A synthesis procedure was presented[~
whereby the time required to perform opera-
tions in a program loop could be reduced.
Basically this method required a trace of
the program in order to gather data con-
cerning the program operation. This data
would enable one to detect the presence of
loops, the number of times a specific mem-
ory location has been addressed within the
loop, and whether that address was an in-
struction or an operand location. Then,
as shown in fig. I, from statistics gener-
ated from the collected data the loop
boundaries were determined and the most
often used memory locations holding data
referenced within the loop were determined.
Those were placed in the GP microregisters
and a new set of microinstructions were
created which utilized a micro-operation
stream equivalent to a register-to-regis-
ter stream. After the loop was completed,
a restore operation was performed. The
synthesized microcode, along with the pre-
load and restore operations, would then
be called by a macro developed by the
assembler or compiler. When this internal
macro was called during program execution,
the GP micro registers would be preloaded,
the tuned microcode for the loop executed

150

and the system restored for a contuatlon of
the rest of the execution. This method has
shown loop execution to be increased by a
factor of 8 for a data movement program.

ALGORITHM STEPS

I
Determine Loop Bounds
for Highest Frequency
Loop

1

I
Assign Highest Fre-
quency data references
within the loop to
working storage regis-
ters

Create Working
Register
Preload Micro-

I operations

Create Register-to-
Register Equivalent
Instruction Stream

Translate Register-to-
Register Stream to
Micro-0peration Stream

i
Optimize Micro-
operation Stream

I
Create Main Memory
Restore Micro-
operations

Delete unnecessary
proloads and restores
where applicable

SYNTHESIZED
MICROCODE

Preload

Instruction
Body

l Restore
To Control
Storage

Figure 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800181.810305&domain=pdf&date_stamp=1975-01-01

The primary drawbacks to utilizing this pro-
gram in an on-line manner are that: (a) A
trace program to generate usage data in-
creases the amount of overhead for the pro-
gram, (b) A program to generate the statis-
tics must be run prior to selection of the
data to be placed in the GP microregisters,
(c) The synthesis is performed in software
rather than by a microprogram.

3. PERFORMING THE TRACE AND GENERATING

THE REQUIRED STATISTICS

If one can perform a trace which does not
increase the program exectuion overhead
and can generate the statistics as the pro-
gram is operating, then two major hurdles
have been removed. This would allow the
algorithm to be truly automatic. An ap-
proach to accomplishing this is to perform
the trace and statistics calculation in
hardware. This may seem very difficult at
first but a re]atively~simple scheme for
accomplishing this is described below.

It was learned that the average number of
assembly language instructions in a pro-
gram loop is 8 [2]. Therefore, if we
examine everv location as it is accessed
and maintain a file of the last 16 or 24
locations used, we will encompass most pro-
gram loops. These 16 or 24 file locations
will contain the address of the instruction
plus the address of any operands the in-
struction may utilize during its execution.
The statistics that are required for each
location accessed during the execution of
the loop are the number of times the loca-
tion is accessed, determination of whether
that location contained an instruction or
an operand, and the determination of whether
or not it is a jump instruction.

This can be accomplished by the use of a
content addressable memory (CAM) and a high
speed random access memory (RAM) used in
conjunction with the microstoreo See fig.~.

' I
Address
Counter

Comparator Lll0 I

Program ~ I I

Counter ~ - I

i I C RAM __ IReg ister
cJ0s~i

C = Count
J = Jump
0 = Operand
S = Status

Field
I = Indirect --

Content
Addressable
Memory

Flag ~ Random
Register Access

Memory

Figure 2a TRACE HARDWARE

RAM FIELD FUNCTIONAL DESCRIPTION

If Flag set, set count to]
Set to 1 if a jump instruction

Set to 1 if an operand
If comparison true adjust

mapper to execute from
synthesizer routine

FIGURE 2b Random Access Memory

The basic approach is as follows: as the
computer reads an instruction from memory,
the Content Addressab]e Memory is simultan-
eously searched using the location being

addressed, i.e., contents of program coun-
ter as a target.

If there is a match, a flag in the CAM
would be set corresponding to a repeated

location. For each CAM word there is a
corresponding word in the random access
memory. Contained in that word is: (a) the
count or whether that location has been
recent]y addressed, (b) whether or not it
is a jump instruction, (c) whether it is an
instruction or an operand, (d) whether the

instruction contains an indirect address,
and (e) computer status information. The
accessed RAM data is compared to]]0 (count,
jump and no operand) and if it is equal,
the synthesis phase may be initiated. If
it is not equal to II0, the count field is
set to 1 and the word is stored back in the
RAM location.

If there is no match, then the next avail-
able space in the CAM is loaded with that
addressed location. (This space is deter-
mined by the CAM/RAM address counter which
is modulo the number of words in the CAM.)
The corresponding]ocation in the RAM has
its count set to 0 and its jump, operand,
indirect and status locations set accor-

dingly.

Whether the accessed location is an instruc-
tion or operand location can be determined
by the computer phasing. To determine if

it is a jump instruction or if the instruc-
tion contains an indirect either the in-
struction decoder has to set a flag or it
can be determined in the microcode. The
status information can be determined by
examining the pertinent flip-flops and
registers. This hardware will then gener-
ate the loop statistics required for syn-
thesis. Notice that the above hardware
will require the loop to be computed twice
with the standard microcode before the syn-
thesis phase of the tuning process begins.

4. PERFORMING THE SYNTHESIS

The synthesis procedure begins when the
comparison of the data in the random access
memory matches 110. The jump instruction
is completed and the address of the next
instruction is compared with contents of
the CAM. If there is a match then the

151

program is placed under the control of the
synthesis microprogram.

There are various levels of synthesis that
can be performed. One method is a complete
synthesis as performed in [i], where oper-
and data is placed in microregisters. This
required a new microprogram to be written
for each instruction that utilized that
data.

Another method is to place items in micro-
registers as before but only synthesize
the instructions that would provide a sig-
nificant improvement ratio such as double
memory access instructions like an incre-
ment instruction. In this way, less over-
head would be spent in synthesizing the
loop and the improvement ratio would not
be seriously reduced.

A third method that reduces the synthesis
overhead greatly but also reduces the im-
provement ratio is to synthesize a pointer
list that points to the location of the
beginning of the microprogram for that
particular instruction. See fig. 3.

I Transfer Control
to Pointer Routine

I ccess Instruction
in Loop

I
Determine the
Initial Address of
the Microprogram

I
Insert this Address I
in the Microstore]
Load Register I

Combine with
Remainder of
Pointer
Instruction

Load Instruction 1
in Microstore

~o

Begin Operation from
Pointer Fi]e

Figure 3 Synthesis Algorithm

152

In this approach, the instruction access
time is reduced by the difference of the
speeds between the main memory and the
microstore. The savings here is in the
synthesis time. Only pointers have to be
implemented. A complete new routine does
not have to be developed.

To load new instructions into the micro-
store requires 3 or 4 machine cycles. (A
modified HP2100A, a machine that has a
writable control store, was used as the
basis for the numerical estimates.) The
calculation to modify each of the instruc-
tions and to set up the microregisters with
the data requires more specific calculations
and a modification of each of the micro-
programs. On the HP2100A in real time, i.e.
on-the-fly, this synthesis procedure is
prohibitive. Therefore, the method chosen
as most practical to examine through sim-
ulation is the third or pointer method.

5. IMPROVEMENT USING THIS TECHNIQUE

The major disadvantages of this scheme are
the time required to actually perform the
synthesis and the restore for continuation
and the additiona] hardware required for
statistics generation. The question imme-
diately arises as to the trade-offs in the
implementation. If it can be shown to be
thruput effective then the additional hard-
ware is justifiable. To determine this
requires some analysis, a detailed simu-
lation of the scheme and an investigation
into typical loop profiles.

To begin with a determination of the cross-
over point between performing the algorithm
and not performing the algorithm in an op-
erating situation is required.

A simple analysis to determine the cross-
over point is presented below. Let us
assume for simplicity that the time to per-
form the synthesis is directly proportional
to the number of instruction in the loop.

Let t
n

= time required to perform the syn-
thesis; the loop is executed once
as the synthesis is being per-
formed.

Let t 1

Let t 2

Also assume t = bt I where b> I and t I =
at 2 where a>l~

Let y = number of cycles through the loop.

Now let us examine two specific cases:

CASE 1

y = 2 Since two cycles are required (I)
before the synthesis begins, then
no time is gained or lost.

= time to execute the looD once using
unsynthesized instructions+

= time to execute the loop once using
the synthesized instructions.

CASE 2

y> 2 The time to execute the loop y (2)
times with no tuning is tly and
the time to execute the loop y
times using the algorithm is

t n + t 2 (y - 3) (3) 2t I +

To determine the break-even point:

tlY = 2t I + t + t 2 (y - 3) (4)
n
ab - 1

or y = 2 + - (5)
a - 1

To determine the values a and b will require
a simulation. Let us take an example. Let
the execution improvement be two hence a =
2 and the time to synthesize relative to
regular loop operation be a factor of 5
hence b = 5 then

y = 2 + 2.5 - 1 = ii times 6)
2 - 1

through a loop before improvement occurs.
So if the average number of t'imes through
a loop (which references a number of loca-
tions in the CAM) is greater than Ii the
method is useful.

1000i

9OO

S00

70O

600

50O

400

30O

r //
V NTmber

2 4

Time in number /
of Microcycles

/Standard

of times through Loop ,

6 8 I0 12 14 16

FIGURE 5; Number of microcycles versus
the number of times through the loop

for a linear search program. There was
86~ improvement per loop using the syn-
thesis technique.

The simulation of the pointer synthesis
technique on the HP2100A was performed for
two programs: a data move program in which
data is moved from one area of core memory
to the other, and a linear search program
where the target is sequentially stepped
through the memory locations containing
the data being searched. The basic timing
results are shown in fig. 4 and 5. As one
can observe in both cases, the crossover

I000

900

800

700

600

500

400

300

20(

I0(

Time in / /
-number of / / _-Micr°cycles //

/ y n t h e s i s

S t a n d a r d

/ Number of, times through the I / loop

2 4 6 8 I0 12 14 16

FIGURE 4; Number of microcycles versus
the number of times through the loop
for a data move program. There was a
55% improvement per loop using the syn-
thesis technique.

between the standard HP2100A and the HP
2100A with the tuning technique employed
is 8 times through the loop. The percent
improvement in per loop performance is
55 with the data move and 86 with the
linear search. Notice in the linear search
simulation the entire point set phase had
not been complete when the target had been
located. Likewise, although to a lesser
extent, with the data move because the
return jump was not executed. Making lin-
ear approximations to the graphs at the
synthesis points and placing those approx-
imations into the analytical equation
yields a crossover of 7.96 loops for the
data move program and 7.95 for the linear
search program.

An additional effort should be in elimi-
nating the data fetch from memory for re-
peated operands. This would improve the
crossover point between the standard loop
and the synthesized loop if the overhead
could be kept at a minimum.

To determine the usefulness of these meth-
ods, typical loop profiles in programs
should be analyzed. This would inc]ude the
determination of the "average" number of
instructions per loop and the "average"
number of times a single loop is executed
in a given environment.

If the "average" number of time through a
small loop is large then the synthesis pro-
cedure is a useful technique because there
would be a definite thruput improvement.

153

REFERENCES

[4Abd-alla, Dr. A.B. and Karlgaard, Dr.
D.C., "Heuristic Synthesis of Micro-
programed Computer Architecture," IEEE
Transactions of Computers, vo]. C-23,
no. 8, August 1974, 802-807.

[2]Meltzer, Dr. A.C. Private Communication

154

