
An Extrapolation Step-Size Monitor for Solving Ordinary Differential Equations 

N. L. Schryer 
Bell Laboratories 

Murray Hill, New Jersey 07974 

Differential Equations, Integration, Step-Control, Order-Control 

ABSTRACT 

A step-size monitor is presented for use in numerically solving ordinary differential 

equations by extrapolation methods. The monitor uses the information present in the 

extrapolation lozenge to determine the "optimal" step-size and order. This allows the 

monitor to adjust both the order and step-size to the local behavior of the solution in a 

reasonably "optimal" fashion. The monitor is particularly useful when obtaining low- 

precision solutions which require radical step-size changes. The results of this monitor 

are compared quite favorably with previous proposals. 

i. Introduction 

Bulirsch and Stoer [2] and Gragg 16] 

have considered the numerical solution of 

non-stiff ordinary differential equations 

by extrapolation methods. These tech- 

niques have been found (Fox [4], Hull 17] 

and Yu [ii]) to be reliable, robust and 

competitive with other (Gear [5]) methods. 

The problem studied in 12] and [6] is 

the numerical solution of the ordinary 

differential equation initial value prob- 

lem 

(l.l) 

dx f(t,x) a < t 

x(a) -- x a 

where f(t,x) is some smooth vector valued 

function of x and t. A brief outline of 

the ideas developed in those papers 

follows. 

There are many basic differencing 

schemes for solving (i.I), such as Gragg's 

modified mid-point rule [6] and Backwards- 

Euler methods. Most of these methods have 

the property [i0] that if they take N time- 

steps to go from t O to t I and result in an 

approximation to x(tl) which we shall de- 

note by T(h) where h = (tl-to)/N, then 

(1.2) 
Jr 

T(h) : T + ~ Tjh 

j=l 

where T = x(tl), 7 is a positive constant 

depending on the basic difference scheme 

used, and the T. are unknown constants 
J 

independent of h. For Oragg's modified 

mid-point rule 7 = 2 for Backwards-Euler 

methods 7 = i. 

Let a sequence of h's be defined by 

(1.3) h i = ho/N i i = 1,2,3 .... 

where h 0 = tl-t 0 and the N i form a monotone 

increasing sequence of positive integers. 

Bulirsch and Stoer showed in [i] that given 

an operator T(h) satisfying (1.2), and such 

140 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800182.810394&domain=pdf&date_stamp=1974-01-01


sequence h i , then the value at h = 0 of 

the polynomial of degree m which inter- 

polates T(hi) for i : 0 ..... m, is given by 

T O which is determined from the recursion m 

i 
T O = T(hi) for 0 ! i ! m 

(1.~) 

T~ = _i+l i+l i 
J Tj-1 + (Tj_l-Tj_l)/{(hi/hi+j)7-1} 

for 0 ! i ! m-j, 1 i J ! m. 

If the TT are organized into a lozenge of O 
the form 

T(h o) = ToO 
0 

T I 

T(hl ) = To1 %0 
Tll T30 

T(h2) = TO2 T21 T~ ° 

T(h3) = TO3 T22 

TI3 

T(h4) = TO4 T23 

TI~ 

T(h5) = T05 

T12 T31 T50 
T~ I 

T32 

then (1.4) expresses each element of the 

j-th column (j>0) in terms of its two 

neighbors in column j-l. They also showed 

that the error obeys 

(1.5) r T~-Tr !Mj+l (hi'''hi+j) 7 

for some constants Mj+ I. A similar result 

is established for interpolation by 

rational functions [i]. In (I.~) m is 

called the level of extrapolation, while 

from (1.5) we see that the order in column 

j is (j+l)7. The value ho=tl-t 0 is 

referred to as the time-step while the h. m 
are called sub-steps. Extrapolation 

approximates the x(tl) values accurately, 

but does not accurately approximate 

X(to+nhi) for O<n<N i. Thus, by extra- 

polating the results of a basic ordinary 

differential equation solver, a process of 

arbitrarily high order can be obtained. 

However, the original proposal in [2] 

had a number of built-in inefficiencies. 

First, the method attempted to use a 

fourteenth order process, no matter what 

error tolerance was prescribed. This re- 

sulted in gross inefficiency when very 

little, say only 1%, accuracy was desired. 

A second problem [4] was that if the 

initial step-size chosen was far too small 

or large, then the number of function 

calls needed to solve a problem often rose 

dramatically. 

Thus, a step-size monitor was needed 

which 

(a) is stable against an initially too 

large or small choice for the 

time-step 

and 

(b) uses the smallest time step 

(lowest order) consistent with 

"minimal" cost. 

Requirement (b), at first glance, appears 

to be inconsistent in that small time-steps 

usually mean excessive cost. However, as 

we shall see later, it fs not inconsistent 

at all. It merely tries to balance the 

need to accurately approximate the solution 

at as many t I points as possible, in order 

to get a decent picture or plot of it, and 

the need to conserve dollars. 

In [9] Stoer presented a step-size 

monitor which meets both objectives (a) 

and (b) above admirably well for a very 

wide range of problems. By making a rea- 

sonable assumption about the growth of the 

derivatives of the solution being obtained, 

he developed a formula for obtaining the 

"optimal" level (order) of extrapolation 

to be used, as a function of the relative 

accuracy desired. Thus, for a given rela- 

tive accuracy tolerance, a fixed-order 

technique was used. The resulting fixed- 

order, variable step-size algorithm was a 

141 



great improvement over the original propos- 

al in [2]. However, there are situations 

in which the growth assumptions of [9] are 

not satisfied and for which that monitor 

gives less than satisfactory results. The 

reason for this is that when the solution 

being obtained has both "smooth" and 

"steep" regions, then the optimal order in 

these regions is typically "high" and 

"low~', respectively. Thus, when entering 

a "steep" region, a fixed order method can 

not decrease its step-size as rapidly as 

it ought to. This wastes function evalu- 

ations when a "steep" region is approached. 

In [9] Stoer uses two different error 

estimation procedures. The first is the 

very reliable scheme used in [2] and the 

second is unreliable. The first error 

estimation scheme of [9] estimates, 

roughly, the error in T~ to be [ T~+I-T~ I . - - 
J J J 

The second one estimates the error in 
mi+l mi 

T% +!J to be I w.0 -w'J I *f''lj where fid ~ > 0 

can be very small numbers. So even though 

I T%÷I-T% I may be large, the second scheme 
J J 

may erroneously think the error in T% +I is 
0 

quite small. The reliable error estima- 

tion procedure of [2] will be used in this 

paper. All comparisons made to the results 

of [9] will be made to the results using 

that same error estimation procedure. 

Work is continuing on making the second 

error estimator of [9] more reliable while 

retaining its ability to detect conver- 

gence earlier than the procedure used 

here. This may reduce the cost of extra- 

polation methods to 60% of their current 

cost. 

This paper describes a simple step- 

size and order monitoring scheme which 

usually performs slightly better than the 

fixed-order step-size monitor given in 

[9], and in some cases much be~ter. 

Section 2 describes the proposed monitor. 

Rather than make the growth assumption of 

[9], the proposal is to let the current 

extrapolation lozenge tell us what size 

lozenge is actually optimal. Section 3 

considers two examples. The first example 

arises in the numerical solution of a 

coupled system of two parabolic partial 

differential equations and is exceedingly 

"stiff". The process extrapolated there is 

a Backwards-Euler time differencing scheme. 

The second is a non-stiff moon-earth- 

spaceship problem taken from [2]. In this 

example, the process extrapolated is 

Gragg's modified mid-point rule. For the 

first example, the present monitor uses one 

third the time and function evaluations as 

that used by the monitor of [9], when 

obtaining the solution to 1%. For the 

second example, the results of the two 

monitors are essentially identical when 

solving to a relative error of l0 -ll. 

However, when solving to l0 -3 the present 

monitor uses 639 function calls compared 

with ii00 for [9]- 

2. The Proposed Step-Size Monitor 

In [9] Stoer attempts to minimize the 

"cost per unit time step" used by the 

extrapolation procedures. The work, or 

number of function evaluations, needed to 

compute T(hi) is proportional to N i. So 

the work needed to compute the first column 

of a lozenge based on ho, .... h k is propor- 

tional to 

(2.1) W k = N O + ... + N k- 

Let h~ k) be the largest value of h 0 such 

that convergence will be attained in the 

lozenge based on ho,...,h k. Then the cost 

per unit time step for the k level lozenge 

is 

(2 .2 )  C k = Wk/h~k) .  

In this section we show how to com- 

pute the optimal step-sizes h~ k)" given the 

elements of the current lozenge. We shall 

then "optimize" the cost per unit time- 

step, using the information provided by the 

lozenge. This allows the order and time- 

step to change as the ongoing numerical 

solution process dictates it should. 

142 



It should be noted that both the 

original proposal [2] and the updated one 

in [9] assume that the most accurate value 

in the lozenge is at its tip. Thus, they 

only check the tip for convergence, ignor- 

ing all lower order columns. In many 

applications, especially those where the 

step-size varies radically, the best value 

in the lozenge is often not anywhere near 

the tip. So we test all columns of the 

lozenge for convergence, not just the 

last. This certainly does not slow the 

convergence process down, and in many 

cases results in a substantial improvement 

over just testing the last column. 

Before proceeding, we need some error 

estimates and information on the rates of 

convergence of columns in the lozenge. 

Assume that we have a lozenge T~, 

i=O,...,M-j, j=0,...,M, with M>O. Let T 

be the true solution, Then [3] shows that 

for sufficiently small h0, 

I fh Y-d I 
L \ i+j+l] J 

and we can estimate the error c~= I T~-T I 

in T~. We also know from [3] a~d [9] that 
J 

for sufficiently small h0, 

(2.4) ~j = h~ D j (h i . . .h t+ j )  ~ 

where the D. are constants, 7 is the order 
J 

of the basic process being extrapolated 

and ~ is a constant. When extrapolating 

Gragg's modified mid-point rule, y=2 and 

~=i. When extrapolating a Backwards-Euler 

time differencing process, ~=i=7. Thus, 

we can both estimate the accuracy of each 

element in the lozenge and tell how rapid- 

ly each column in the lozenge is converg- 

ing. 

Given a lozenge T~ 3 we can now deter- 

mine the optimal sub-lozenge and step-size 

for the next time-step. This argument 

will assume that the constants Dj in (2.4) 

do not change from the current time step to 

the next. If we want convergence to within 

an absolute error tolerance ~ in column j, 

with k levels of extrapolation, then by 

(2.4) we must have an initial step-size, 

call it h~ k'j) ~ so that 

But by (2.3) and (2.4) we have from the 

current lozenge that 

Inserting (1.3) into these equations we 

obtain 

1 

(2.5) h(0k" J ) 
0 -l-j 

I 

"'Nk I~ 
[- Nk_j" B+(j+I)7 
@M-l-j" "NM- 

and from this we can look for the largest 

h~ k'j) This gives 

h6k)" = max h6k'J)," k=0 . . . . .  M - 1 .  

oKjKk 

h~ k) is the largest h 0 that will guarantee 

convergence in the lozenge based on 

h 0 .... ,h k. Since the W k are given by 

(2.1), (2.6) enables us to compute the 

actual cost per unit time step, C k, 

k=O, .... M-I, if we are given the lozenge 
T i j. 

There is a problem in deciding which 

size sub-lozenge is "optimal". Most step 

sequences h i have N i % b i where bbl is some 

constant. Typically b =v~ or 2. This 

means that Wk+ I = b,W k. Also, if a lozenge 

143 



based on ho,...,h k converges, then, 

roughly, so does one based on 

b.ho,...,b hk+ I. This follows since if we 

let h0~b.h and i~i+l in (2.4), then the 

error goes from e to b~e = e. Thus, 

h~k+l)v % b.h~ k)~ and Ck+ 1% C k. So, in 

general, since all sufficiently large k 

give about the same cost C k, there is no 

k so that C k is minimal. This leads to 

the definition that a lozenge of size k is 

sub-optimal if the largest h~ k'j)" for that 

lozenge has j=k. That is, if no column 

below column k can be used to obtain h$ k), ~ 

then column k is needed to make the step- 

size for the lozenge as large as possible 

and thus minimize C k. The largest sub- 

optimal lozenge can then be called optimal. 

That is, any larger lozenge would use the 

same columns as the optimal one in order 

to produce the same cost per unit time- 

step. 

The above definition of optimality 

leads to the following algorithm, which 

assumes that a lozenge is given, for ob- 

taining the optimal lozenge size (order) 

and time-step. 

(a) Compute the e~ -1-j using (2.3). 

(b) Compute the costs C k, k=O ..... M-I 

using (2.5) and ( 2 . 6 ) .  
(c) F ind  the  op t ima l  sub - lozenge  s i z e ,  

kopt" 

This  g ive s  t he  op t ima l  t i m e - s t e p  hO k°p t )  f 

and lozenge  s i z e  Mop t = kop t + 1. This  
va lue  off Mop t i s  needed in  o rde r  to  use  
(2.3) in estimating the error in column 

kopt. 
Another problem arises here. So far, 

the size of the first lozenge computed 

will dominate all successive lozenge sizes 

because Mop t = kop t + I ~ M. So some way 

must be found to let M increase, if it 

ought to. The only way to do that is to 

sample the error in column kop t + I. This 

requires Mopt = kopt + 2 levels of extra- 

polation and, using (2.5), a step-size 

~(kop t ) (kopt +l'j ) 
(2 .7)  50 = max h 0 

0~j~kop t 

will give convergence in the lozenge based 

~(kop t )  ~kopt)  
on h 0 ,...,~ This choice of 

opt 

~kopt)  
for the next h 0 should, if Mopt=~4, 

require M+I levels of extrapolation for the 

next time step. Specifically, this mecha- 

nism will increase M by i until k=M-I is no 

longer optimal and then stop increasing M. 

A final heuristic modification of the 

~ kop t ) is adopted. !n the same spirit as 

the assumption that the constants D. in 
J 

(2.A) will not change radically from the 

current time step to the next, we assume 
that if L--min(k new " old., ~old cnew 

opt,~opt-±) and ~L < VL 
then the same thing will happen on the next 

time-step. Thus we choose 

~kopt) ~old1~new, 
(k°pt)=~ min(l,~L /u L ) ( 2 . 8 )  H o 

( ) 
This tries to make ho=H0 k°pt more nearly 

optimal for the next time step. 

The above algorithms allow the lozenge 

from one time step to predict the optimal 

~kopt ) 
M and h 0, namely Mop t and H , for the 

next time step. This assumes that the 

solutions's structure, the constants D. in 
0 

(2.4), do not change too radically from 

this time step to the next. In practice 

of course, this is not always the case. 

Sometimes the predicted h 0 will turn out to 

be far too large for convergence to occur 

in a reasonably finite lozenge. Some way 

must be found to discover this fact before 

the lozenge gets very large, and very 

expensive, and we are forced to throw away 

all this dearly obtained information, lower 

the step-size h 0 and start all over again. 

Such restarts can add a significant over- 

head cost to a run. The following mecha- 

nism is proposed to handle this problem. 

A similar method was used in [9] to predict 

restarts. When in the next time step 

144 



M = Mopt' the predicted optimal level, and 

convergence has not yet occurred, then 

the Mop t, call it M*, and ~k*),'_ compute 

k* = M*-2, based on the current lozenge. 

Then, if the solution can be carried out 

more efficiently over a time interval of 

length h 0 by using a step-size ~Ik*), 

rather~than h O, restart the process using 

ho = ~k*). This can be stated as: If 

h 0 
(s.9) w M + wz~ --< w M, 

~k~) 

where M' > M is the smallest integer which 

will guarantee convergence in the first 

M-I columns of the lozenge based on 

ho,...,hM,, then restart. The value of M' 

may be found using the relations 

~M-l-jj : h~ Dj(~_l_j...h~_l )7 

and 

_ )7 > h~ 0 Dj(hM,_l_j...hM,_l 

giving 

[?M,-1-j 

M' is simply increased from M' = M+I until 

(2.10) holds for some j. 

To start things off, when there is 

no previous lozenge to predict the proper 

value of h0, we simply force convergence 

to occur in columns 0 or 1 by setting 

M °ld to 2. For 7=1, this uses a method of 
opt 

order no greater than 2 for the first time 

step. For 7=2, the order used is no 

greater than A for the first time step. 

This results in no great expense when h 0 

is far too large to start with. 

The entire step-size and order moni- 

tor is then 

~old = 2, take h 0 as given by (a) Set Mop t 

the user. 

(b) Set M = 0. 

(c) Compute the level M extrapolation 

lozenge. 

(d) If have convergence, compute kop t 

~kopt) ~old = 
and Mopt' set h 0 = H ' opt opt 

and go to (b). 

( 2 . 1 1 )  

~old 
(e) if M < opt then go to (h). 

(f) Compute M' from (2.10) and Mop t 

based on the current lozenge. 

~(kopt) 
(g) If (2.9) holds, set h 0 = ~0 

and go to (b). 

(h) Set M = M+I and go to (c). 

3. Examples 

All examples were carried out on a 

Honeywell HIS 6070 computer in double 

precision (18 decimal digits). The first 

example considered is the numerical solu- 

tion of a large (I~ components) and very 

stiff system of ordinary differential 

equations which arises from the spatial 

discretization of a coupled system of two 

parabolic partial differential equations, 

in one space dimension. These equations 

model the motion of magnetic domain walls 

in uniaxial materials [8]. The basic 

algorithm used in [8] was a fully implicit 

Backwards-Euler differencing scheme in 

time. Thus ~=I=7. The sequence 

-{No, N 1 . . . .  } = { 1 , 2 , 3 , < 6  . . . .  } was used, 

without rounding error problems. The error 

tolerance used was a local 1% error in all 

variables. 

When an initial time step of h 0 = 10 -4 

was used, the second time step chosen by 

(2.11) was 0.13, which required 2 levels 

of extrapolation to converge. When an 

initial step size of h 0 = TO was chosen, 

in 6 function evaluations (out of a total 

of 540 needed to solve the problem) the 

extrapolation was successfully restarted 

with h 0 = 0.18. This shows the ability of 

the monitor (2.11) to recover nicely from 

145 



too small or too large an initial step- 

size. 

Figure i shows a plot of the velocity 

of the wall as a function of time. The 

behavior of the velocity as a function of 

time is typical of the general behavior of 

the solution of this problem. However, 

the velocity is not one of the variables 

obtained directly by extrapolation. 

Rather, it is derived from the results 

produced by the extrapolation process. As 

can be seen, the monitor samples the solu- 

tion nicely. This is a particularly nasty 

problem in that the optimal h 0 varies by a 

factor of more than i00 from one place to 

another and kop t varies from 0 through 3. 

The lower order and step-sizes occurred 

near the bottom of the spiky regions of 

the velocity and the larger ones occurred 

near the middle of the smoother regions. 

The results of [9] were generalized 

to cover the case of 7=i and were coded 

and tested on exactly the same problem 

solved above. The result was that it used 

more than 3 times as many (1782) function 

evaluations as the present one did. When 

the program was altered to check each 

column for convergence, rather than just 

the last, this ratio dropped to roughly 

2 (1276). 
The present monitor only failed 

(restarted) twice during the run. It 

automatically lowered both the order and 

the step-size as it stepped into the spiky 

regions. But the monitor of [9] could 

not, beZng of fixed order, thus always 

choosing too large a step-size as it 

entered the spikes. This reflects the 

fact that (2.11) actually looks at the 

entries in the lozenge and adapts to what- 

ever it finds is going on there, whereas 

[9] makes some assumptions about what is 

going on there. 

The second example is the non-stiff 

equation for the restricted three body 

problem given in [2]. The system of 

equations is 

~°= x+2~-~ x+~ x-~ t 
[ (x+t.I,)2+y2] 3/2 -~[ (x-~')2+y213/2 

T° = y-2~-~' Y Y [(x+u,)2+y213/2-Z[(x-m,)2+y213/2 

where ~ = 0.012128562765312 and the initial 

conditions are x(O) = 1.2, dx(O)/dt = O, 

y(O) = 0 and dy(O)/dt = -i.0~935750983. 

The motion is periodic with period 

T = 6.192169331396 and the solution is 

obtained over one period. When the 

= i0 -II relative error convergence 

criterion of that paper was used, the 

results of both (2.11) and [9] were basi- 

cally identical (41~% vs. 4320 function 

evaluations). Here extrapolation of 

Gragg's modified mid-point rule was used, 

so 7=2 and ~=i, and the sequence 

- . . . .  } : . . . .  } w a s  used. 

When the same problem was solved with 

= 10 -3 the result was that (2.11) 

required 639 function calls and [9] re- 

quired II00. 

These examples, taken from widely 

diverse backgrounds and solved to sub- 

stantially different error tolerances, are 

typical of the observed relative behavior 

of (2.11) and [9]. For smooth problems 

they behave in almost exactly the same 

manner (the assumption of [9] holds quite 

well). For non-smooth problems solved to 

low precision, (2.11) may be substantially 

faster. For non-smooth problems solved to 

high precision, the two monitors behave 

very similarly. 

The last two observations are easily 

understood. When a solution is desired to 

low precision, but for which the optimal 

order varies over the "low" order range 

(say from I to 4), then varying the order 

results in a substantial change in the 

procedure. However, when the same solution 

is obtained to "high" precision, the opti- 

mal order may vary from I0 to 14, and the 

relative savings are not as pronounced. 

In all cases run, the execution-time 

overhead of (2.11) has never exceeded 6%, 

146 



and for the very large problem of [8] (200 

variables) was only 0.4%. The low over- 

head of the present monitor allows its 

increased efficiency in terms of function 

evaluations to also make it more efficient 

in terms of execution time. 

"[Ii] T. Yu, "Comparison of Numerical 
Methods for Ordinary Differential 
Equations", Tech. Report CNA-73, 1973, 
University of Texas at Austin. 

References 

[I] R. Bulirsch and J. Stoer, 
"Fehlerabschatzungen und Extrapolation 
mit rationalen Funktionen bei 
Verfahren yon Richardson-Typus", 
Num. Math. 6, 413-427 (1964). 

[2] R. Bulirsch and J. Stoer, "Numerical 
Treatment of Ordinary Differential 
Equations by Extrapolation Methods", 
Num. Math. 8, 1-13 (1966). 

[3] R. Bulirsch and J. Stoer, "Asymptotic 
Upper and Lower Bounds for Results of 
Extrapolation Methods", Num. Math. 8, 
93-104 (1966). 

[4] P. A. Fox, "A Comparative Study of 
Computer Programs for Integrating 
Differential Equations", Comm. ACM 
15, 941-948 (1972). 

[5] C. W. Gear, "The Automatic Integration 
of Ordinary Differential Equations", 
Comm. ACM I_~, 176-179 (1971). 

[6] W. B. Gragg, "Repeated Extrapolation 
to the Limit in the Numerical Solu- 
tion of Ordinary Differential 
Equations", Thesis, UCLA (1963). 

[7] T, E. Hull, W. H. Enright, B. M. 
Fellen and A. E. Sedgwick, 
"Comparing Numerical Methods for 
Ordinary Differential Equations", 
Technical Report 29, 1971, Department 
of Computer Sciences, University of 
Toronto. 

[8] N. L. Schryer and L. R. Walker, "On 
the Motion of 180 ° Domain Walls", 
submitted to the J. of Appl. Physics. 

[9] J. Stoer, "Extrapolation Methods for 
the Solution of Initial Value 
Problems and their Practical 
Realization", Conference on the 
Numerical Solution of Ordinary 
Differential Equations, University of 
Texas at Austin, 1972. 

<i0] H. J. Stetter, "Asymptotic Expansions 
for the Error of Discretization 
Algorithms for Non-Linear Functional 
Equations", Num. Math. 7, 18-31 
( 1965 ). 

147 



3ooTi 
200 

I 0 0  

0 

- I 0 0  

-200 

- 3 0 0  - 

0 
I I I I I 

4 
I I 

8 
I I I 

FIG. I 

I 

12 
I I 

16 
I I L 

v 

2O t 

1 4 8  


