
SYNVER: A SYSTF~ FOR THE AUTOMATIC SYNTHESIS AND VERIFICATION OF SYNCHRONIZATION PROCESSES

Patricia Oriffiths
Center for Research in Computing Technology

Harvard University

Key Words and Phrases: synchronization, assertions,
automatic synthesis, verification

ABSTRACT

The automatic synthesis of systems of synchron-
ized processes and the proof of the synchronization's
correctness is discussed. A general system, SYNVER,
is proposed. Its input is a problem description and
its output is a set of communicating processes
proven correct. A hlgh-level assertion language is
presented in which certain types of synchronization
problems may be described in a natural but formal
way. Heuristics are developed for SYNVER so that
it may infer from the problem description what data
structures and what operations are necessary to
realize the described synchronization. From this
information, the code pertaining to synchronization
is synthesized. Finally, SYNVER applies verifica-
tion techniques to prove that the assertions made
about the synchronization of the processes are not
only consistent, but are also realized by the code
synthesized.

OVERVIEW

This paper addresses the synthesis and verifi-
cation of the synchronization aspects of concurrent
communicating processes. Our proposed system,
SYNVER, consists of independent modules, namely a
synthesizer and a verifier; users of the verifi-
cation stage have not necessarily used th% syn-
thesizer. SYNVER's input is a problem description,
written in a very high level assertion language.
SYNVER's output is a set of communicating processes
whose synchronization has been proven correct.
SYNVER deals with synchronization problems where
the inter-process communication is separable from
the independent, asynchronous computations.
Typical examples of these are mutual exclusion pro-
blems such as cigarette smokers (Parnas [16]) and
dining philosophers. For these problems the syn-
chronization portions of a program can be factored
from the internal computation portions. Factoring
of this nature is a goal in structured programming
where procedural encapsulation is intended to mini-
mize the assumptions one component makes about
another (Zilles [23]). Our problem specification
language and the code synthesized reflect this
approach in that they isolate the communicating
portions of a system of processes from the

asynchronous portions. In this paper we do not
handle message-passing (as in some producer-
consumer types of synchronization problems)
although we believe that it also could be made
tractable by an extension of our approach.

For SYNVER we chose a set of synchronization
primitives to make the code produced by the synthe-
sizer easy to verify. Three phases of activity
are involved in using SYNVER:

i) Synchronization problems are formulated in a
problem description language in a manner
suitable for automatic program synthesis.

2) SYNVER accepts this problem description and
automatically synthesizes the programs which
will be used as the synchronization portions
of the problem solution.

3) The synchronization portions output by the
synthesizer, or other similar portions of
hand-written solutions, are proven correct.

In the following sections we discuss in detail
the choice of a target vehicle for synthesis and
each of the three phases of activity.

CPOICF OF TARGET VEHICLE

Before discussing the synthesizing phase of
SYNVER, we must choose a set of synchronization
primitives to be used in the code generated. A
variety of sets of primitives are available, each
with advantages and disadvantages. The criteria
we used for choosing among these sets are:

(i) The semantics of the primitives must be
well-specified.

(2) Typical members of the class of problems
we wish to handle, such as mutual exclusion,
must be easily solvable using the primitives.

(3) Tt should be possible to synthesize programs
using the primitives.

(4) The primitives should allow a clear dis-
tinction between variables and instructions
involved in communication between processes
and those relevant only to the internal
logic of the program.

This work was supported by the Advanced Research
Projects Agency under Contract F19628-74-C-0083.

With respect to these criteria we considered
the approaches and primitives of DiJkstra [5],
Habermann [8], Carl [27, Nansen [9], Saal and
Riddle [20], Fisher [6], Thomas [21], Noare [I0],

167

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800182.810398&domain=pdf&date_stamp=1974-01-01

and Prenner [19]. Both Prenner's control facility
and Hoare's monitors satisfy these criteria.
Prenner's facility, which is available at Harvard,
was selected.

Prenner's CI facility was chosen as a model in
which one can transact with processes explicitly in
a way which clearly distinguishes communication
variables and code from those which are asynchro-
nous. Hoare's model also provides this ability.
One can easily interchange the CI and monitors in
the sequel without any change to the assertion lan-
guage. Indeed SYNVER may be used with any model of
process handling which satisfies the above criteria.

Prenner's facility permits multiple processes
and multiple processors. Processes communicate and
pass control by means of control primitives in an
extensible language, ECL. A distinguished process,
the control interpreter (CI), exists to provide
mutual exclusion and explicit scheduling of pro-
cesses. To communicate with each other, processes
make a call on the primitive CIA, (which stands for
Control Interpreter Apply), specifying a function
call (which we will call a synch function) to be
evaluated without interruption in the environment
of the CI. Any other CIA calls are deferred until
such an evaluation has terminated. Hence the CI pro-
vides for the indivisible evaluation of synch func-
tlon bodies. In these bodies, queues of waiting
processes may be referenced explicitly, thus allow-
ing the user to control scheduling of processes in
order to achieve synchronization. The local data
structures of the CI comprise a global "state of the
system" with respect to inter-process communication.
The synch function modifies these structures, thus
treating the CI as a sort of "control switchyard"
where the entire system of processes changes state.

PROBLEM SPECIFICATION

State diagrams, Petri nets, occurrence graphs,
and other graph-theoretlc formulations have been
used to provide precise descriptions of synchron-
ization problems, but they are not necessarily
appropriate tools for high-level problem specifica-
tion. (Belpaire and Wilmotte [I], Cerf [2], Gilbert
and Chandler [7], Holt [ii], Lipton [14], Patll
[17] [18]). There are several difficulties with
these methods. For example, they are not high
level, they are not intuitive, and some of them
(state diagrams, Petri nets) have been proven in-
adequate to express certain synchronization problems.

To be a good medium for problem specification,
a formalism must:

(1) be independent of any programming language
or implementation,

(2) provide a natural, intuitive way of express-
ing the problem for humans,

(3) be sufficiently precise so that it is
possible to prove that some program code
solves the problem, and

(4) be suitable for input to an automatic system
which synthesizes code to solve the problem.

For the kinds of problems we consider, it is
appropriate t o view the synchronizing primitives as
changing the overall state of the system of commun-
icating processes, as comprised by the values of the
CI's local variables. For these kinds of problems
there areusually only a small number of interest-
ing (and legitimate) states that the set of commun-
icating processes can be in. These global states a~e
most often related to which processes are executing

their critical sections. Our assertion language is
one in which we can not only describe these global
states but also specify how synch functions forc~ the
set of processes to make transitions among these stams.

The problem description supplied to the synthe-
sizer consists, for each type of process in the
system, of a process type name and its asynchro-
nous code intermixed with CIA calls at the points
of contact between processes. We propose two
kinds of assertions to describe the actions or the
impact that the user expects of the synch functions.

We illustrate the two kinds of assertions with a
very simple example of a mutual exclusion problem
description, where at most one process at a time
should be evaluating its critical section. (Note
that the syntax we use is informal at this point):

(letting Kffinumber of processes evaluating
their critical sections.)

ASSERT("either K=0 or K=I"); (SI)
CIA("enter-critical-section") ; (S2)
ASSERT("if KIn0 then let K-l, otherwise wai~); ($3)
<critical section> ($4)
ASSERT("K=I"); ($5)
CIA("leave-critlcal-sectlon");
ASSERT("If K=I then

if a process is waiting then
start it up and Kml,

else K=0");

The first and third assertions are I-assertions,
the latter one indicating what state holds throughout
the critical section. The second and fourth asser-
tions are R-assertlons, dictating the actions to be
performed by the respective synch functions. Notice
that we use the value of the variable K to describe
the possible states of the system. Here we specify
(through assertions) the desired synchronization. For
the purpose of describing synchronization, the asynch-
ronous computations of a program (including the
actions in the critical section) are irrelevant.

The first kind of assertion is the invariant asser-
tion, I-assertlon, which immediately precedes CIA
calls and describes the state of the entire system
throughout the evaluation of a particular code section.
ASSERT(II,I2,...,In) requires the IJ's to be formulas
or names of formulas in quantlfier-free logical ex-
pressions. These IJ's are the descriptions of the
possible states of the entire system of communicating
processes. Hence, we constrain that only one IJ may be
true at a time. The formula Ii v I2 v ... v In is
asserted to be true throughout the evaluation of a
particular section code. This code begins a t the last
lexlcal occurrence of a CIA call in that process's
code and terminates at the point where the assertion
is placed. (e.g. throughout <critical section> above).
Note that it does not matter what other CIA calls
other processes may make during that evaluation.
One can interpret this as specifying that through-
out the evaluation of this section of code, the
states of the system are restricted to be members
of the set of states described by Ii ... In.

The second kind of assertion is the result
assertion, R-assertlon, which is placed immediately
following a CIA call. Result assertions specify the
transitions between the states of the system that
a particular CIA call should effect. It should
be clear that only CIA calls can cause a change
of states. Result assertions consist of a serJes

168

of conditionals, separated by commas. These
conditionals describe what the CIA cal~ should
have accomnlisheP when control returns to the
process, based on which disJunct of the invariant
assertion precedin~ the CIA call was true at the
time the CI was activated for that CIA call. ~,e
format is as foll~: <possible current state> ==>
<next state> AND <control actions>.

As the complete syntax of these conditionals is
beyon@ the scone of this paper, we will discuss
examples from a typical case, the second readers
and writers problem (Courtols [3]). The problem
states that any number of readers may access a
table, or one writer may access it, but readers and
writers may not access it at the same time.
Writers have priority; if a writer has requested
access, no further readers may be given access
until that writer has finished writing. For the
following discussion, let If, T2, 13, 14 be the
names of the states, which we will call invariants.
Ii means no writers, no readers in the table;
12 means one writer, no readers;
13 means k>0 readers, no writers, no waiting

writers;
14 means k>0 readers, no writers, writers waiting.
Clearly these are the interesting states of the
readers and writers problem. The code for the
reader process begins with
ASSERT(II,12,13,14);
CIA("startr");
We wish evaluation of the reader process to pro-
ceed only if II or 13 are true upon activation of
the CI. (Note we define the terminology "lJ is
true" to mean "it is the case that the state of the
entire system is described by lJ"). Then the
result assertion is:

ASSERT(If ==>13 AND PROCEED,
12 ==>12 AND WALT,
13 ==>13 AND PROCEED,
14 ==>I4 AND WALT);

==> is essentially a binary conditional operator
whose left operand is a state description which may
be true when the CI is activated for that CIA call.
The right operand consists of the state description
which is to be true after the evaluation of the synch
function, together with other conJuncts giving
actions to be taken with respect to control. The
semantics of ==>are, if the left-hand-slde (lhs) is
true, then change states, performing the actions
specified by the rlght-hand-side (rhs) and exit the
synch function. The result assertion specifies
that these conditionals are to be considered in order
of appearance, as in a LISP conditional, and as soon
as a true lhs is found, no others are to be consid-
ered. A true lhs will always be found since the
union of the lhs operands is required to be the set
of dlsJuncts of the preceding invariant assertion.
We permit the lhs TRUE as syntactic sugar for "all
the other dlsJuncts of the preceding invarlant
assertion not explicitly found on a lhs in this
result assertion." The conjuncts PROCEED or WAlT
indicate whether or not control is to be transferred
back to the process performing the CIA, The syntax
may be read as: if Ii is true then let 13 be true
and proceed.

We also permit Boolean expressions on the

variables of the invarJants to appear on the lhs of
==>. An example is I3 AND (K=I) ==> Ii AND PROCEED.

So far we have seen how a synch function can
act like a generalized P operation, in that it may
test and change state descriptions and cause the
calling process to wait or proceed, but not how it
may act llke a generalized V operation, permitting
other waiting processes to proceed. This is done
by allowing result assertions to specify sets of
processes, called waitsets, to which processes
which are required to WAlT may belong. A process
may belong to at most one waltset at a time. Then
we have a conjunct of the rhs of ==> called STARTUP.
The syntax is

STARTUP([ALL] <process type> OUTOF <waitset name>),

which removes (all) process(as) of type <process
type> from the waltset <waltset name> and allows
them to be scheduled for execution.

Corresponding to this is the conjunct WAlT IN
<waitset name>, which enters that process as a
member of the waltset <waitset name> and also
prevents it from continuing execution. There are
other operations which can be performed on members
of waitsets, such as MOVE(<process type> OUTOF
<waltset-l> INTO <waitset-2>). Alternatively,
a waitset may be implicit; e.g., if a process of
type P is specified to WAIT, then to allow a pro-
cess of type P to continue later, some process has
a result assertion which specifies STARTUP(P).

It is important to remember that these result
assertions merely specify what things the synch
function should do. They are never "executed";
they comprise the input to the synthesizer which
generates code which, when evaluated, realizes the
specifications given. The specifications them-
selves are non-procedural; they give no indication
of how state descriptions are to be changed or how
waiting or waitsets are to be implemented.

There is one additional facility of the
assertion language. It may be the case that for
one lhs condition, several alternatives may be
desired with differing precedence. In the readers
and writers problem, if 12 is the state description
before CIA("endw"), the terminating of a writer's
use of the table, then to give writers priority we
wish to install 12 and startup a writer process if
possible. If no writer processes are waiting, then
we wish to install 13 and startup all readers if
possible. Otherwise, we wish to install Ii and
proceed. We write the assertions as

ASSERT(I2);
CIA("endw");
ASSERT(12 ==> IF STARTUP(WRITER) POSSIBLE

THEN 12 AND PROCEED,
==> IF STARTUP(ALL READER) POSSIBLE

THEN 13 AND PROCEED,
==> Ii AND PROCEED);

Here the IF ... POSSIBLE brackets surround
operations whose execution may not necessarily be
possible. For example, if there are no waiting
writers, then we cannot perform STARTUP(WRITER),
and hence we then see if the second alternative may
be performed. This is an extension of the LISP
conditional. An omitted lhs is interpreted to be
the same as the lhs of the previous conditional and

169

the interpretation of

lhs ==> rhs-l,
==> rhs-2,...,
==> rhs-n,

is: if lhs is true then, in order, do rhs-i if
possible; else do rhs-2 if possible; ... ; else do
rhs-n if possible. We call these sets of condit-
ionals ~riority sets, as there are priorities among
the rhs alternatives.

We now describe the second readers and writers
problem in our assertion language:
(Recall K is readers in table, L is writers in
table, and M is whether writers are waiting.)

Ii IS K=0 AND L=O,
12 IS K=O AND L=I,
13 IS K>0 AND L=O AND M=FALSE,
14 IS K>0 and L=0 AND M=TRUE,
READER DOES

ASSERT(II,12,13,14);
CIA("startr");
ASSERT(If ==> 13 AND PROCEED,

13 ~=> 13 AND PROCEED,
TRUE ==> WALT);

<read>
ASSERT(13,14);
CIA("endr");
ASSERT(14 AND (K>I) =-> 14 AND PROCEED,

13 AND (K>I) m=> 13 AND PROCEED,
14 AND (K=I) =~> 12 AND PROCEED

AND STARTUP(WRITER),
13 AND (K=I) ==> Ii AND PROCEED);

WRITER DOES
ASSERT(II,12,13,14);
CIA("startw");
ASSERT(I! ==> 12 AND PROCEED,

13 ==> 14 AND WALT,
TRUE =~> WALT):

<write>
ASSERT(12);
CIA("endw");
ASSERT(12 ~=> IF STARTUP(WRITER) POSSIBLE THEN

12 AND PROCEED,
-=> IF STARTUP(ALL READER) POSSIBLE

THEN 13 AND PROCEED,
~=> Ii AND PROCEED);

Thus, a problem specification is provided in
the form of sets of assertions surrounding CIA
calls in otherwise asynchronous code of a system
of processes. These assertions are in a formal
but readable format, natural for human use and
implementation-independent. In the next section
we indicate how these assertions may be manipulat-
ed by the synthesizer in order to generate code
for the synch functions.

SYNTHESIS

Automatic synthesis of non-trivialprograms is
still in its infancy. A number of synthesizers,
for example that of Manna and Waldinger [15], have
employed mechanical theorem provers to verify a
relationship between input and output variables and
work backwards through the proof to extract a pro-
gram. Our synthesizer is more powerful within its
own expert problem domain. We assume that the
major (independent) portions are already written
and that only the synchronization (dependent)
portions of the system need to be synthesized.

The synthesizer first determines the data structures
for the CI, and then it examines the invariant and
result assertions to determine what changes to
these data structures must be performed by the
synch function. From this, code for the synch
functions is generated.

The synthesizer determines what data structures
and variables are necessary as local variables to
the CI process in order to describe the global
state of the system of communicating processes.
These include the variables explicitly stated in
the invariant definitions together with those
implied by the result assertions (for example, one
process queue for every implicit and explicit
waitset). The data types of these variables must
also be determined by examining the values they
potentially may have in the invariants. The
collection of all these local variables will be
called the state descriptor.

The synthesizer then examines the invariant
and result assertions and uses a combination of
straightforward deductions and heuristic guesses
to determine how (and under what conditions) the
state descriptor changes. For each synch function,
we consider the state descriptor changes required.
Some may be straightforward, for example, comple-
menting a Boolean variable whenever the process
performing the CIA call may proceed. The changes
to integers are the most difficult (reals are not
considered). To determine what changes are made
to an integer, a record is made of all the values
it may assume (these are kept on a list associated
with each variable), and the synthesizer guesses
a consistent way of changing from one value to
another.

The primary heuristics the synthesizer uses
are consistency and simplicity - that a synch
function is consistent in its use of a variable,
and that this usage is usually simple. This can
be done because we are dealing with "state of the
system" variables, not arbitrary ones, and with
synchronization problems, where the usual uses for
integers consist of counts of how many processes
are in a critical section, etc. Consistency implies
that it is quite unlikely that there are synch
functions which specify that if Ii is true then
X<-X+I, but if 12 is true then X<-X/225. Thus we
can reduce the number of hypotheses about how a
variable may be changed by assuming for a given
synch function that the variable value is changed
in the same way for all conditionals that require
it to be changed at all. Thus we obtain, using
consistency and simplicity, the guess that
X<-X+I from the result assertion

ASSERT((X=O) ==> (X=I) AND PROCEED,
(X=I) ==> (X=2) AND PROCEED,
(X>0) ==> (X>0) AND PROCEED);

rather than the more complex if X~O then X<-I
else X<-2.

The synthesizer also uses typical arithmetic
heuristics to formulate more complex guesses. One
such example is that if some formula holds for a
synch function's conditir~nals where K=0, but not
when K~0, then add to the formula a term K*X. Thus
the new formula holds for at least the same set of
conditionals and perhaps for some others as well.

170

King [12], Deutsch [4], and Wegbreit [22] discuss
these kinds of heuristics in greater detail.

It is certainly possible that our heuristics
will not work and SYNVER must appeal to the user
at an interactive level for hints on how to change
variables, or even perhaps to provide entire code
sections. The ultimate hint is, of course, a
complete set of all the desired synch functions, at
which point SYNVER moves immediately to the veri-
fication phase and performs proof-checking. As
the state of the art of synthesizing improves, this
interactive level may become less necessary.

Finally the synthesizer must infer from the con-
tents of the IF ... POSSIBLE brackets in a prior-
ity set what tests to make on the state descriptor
in order to determine whether or not it is possible
to do a given rhs. In most cases, this is a test

Variables: K:INT, L,M:BOOL, READER,

STARTR <-EXPR()
BEGIN
NOT L AND NOT M => K<-K+I;
ENTERL(LASTRUN,READER);
LASTRUN<-NIL;
END;

of whether the appropriate waltset is empty.

Once these determinations have been made and the
consistency of the guesses validated, code may be
generated to realize them, and code added to do
the appropriate manipulation within the CI to dis-
allow control passage if a process is to WAlT and
pass control only to those processes which are to
PROCEED or STARTUP.

}{ere we produce in ECL, which is somewhat ALGOL-
llke, the (slightly hand-optlmlzed for readability)
result of SYNVER on the problem description of the
readers and writers problem. LASTRUN represents
the process performing the CIA call. Setting
LASTRUN to NIL prevents that process from continu-
ing execution. Performing ENTERL and REMOVEF
enter and remove processes from queues, and
INACTIVEQ is the queue from which the scheduler
selects processes to be run.

WRITER: process queues

if II or 13 then 13
else wait

ENDR<-EXPR()
BEGIN
K<-K-I;
(K=O) AND M ->

BEGrN
L<-TRUE;
ENTERL(REMOVEF(WRITER),INACTIVEQ);
END;

END;

decrement no. of readers
if no readers in table
and writer waiting, then
12 and startup waiting
writer

STARTW<-EXPR ()
BEGIN
NOT L AND K=0 -> L<-TRUE;
K>O AND NOT M -> M<-TRUE;
ENTERL(LASTRUN,T4RITER);
LASTRUN<-NIL;
END;

if Ii then 12
else set waiting
writer flag, if necessary
and wait

ENDW -EXPRO
BEGIN
WRITER=NIL =>

BEGIN
L<-FALSE;
TILL READER=NIL DO

BEGIN
ENTERL(REMOVEF(READER),INACTIVEQ);
K<-K+I;
END;

END;
ENTERL(REMOVEF(WRITER),INACTIVE0);
END;

if no writers waiting
then 13
or II and

startup waiting readers

if any

else startup writer

171

VERIFICATION

As in the case of synthesis, we are concerned
only with the synchronization portions of the
system. Unlike proving programs correct, we have
no halt box with which we may associate an out-
put assertion. Instead we have two kinds of
assertions sandwiching the points of contact
between processes. The result assertions state
something about the impact of this contact on the
entire system. The invariant assertions indicate
restrictions on the results of contacts made by
other processes concurrent with the evaluation of
a section of code in the given process. It is
clear then, that the specification of result
assertions in each process must be consistent with
the invariant assertions of the other processes.
In addition, the actions specified by the result
assertions must be correctly realized by the synch
functions.

Hence, verifying that the synchronization por-
tions of the system are correct is equivalent to
verifying that the given assertions hold when the
synch functions generated are used. To do this,
we propose to adapt Levitt's technique for P and V
[13]. The synch functions' code can be written in
terms of CHOICE and SPLIT nodes, from which verifi-
cation conditions can be obtained for all paths of
control between invariant assertions.

In this way, we prove

(I) that the result assertions are satisfied
by the appropriate synch functions, and

(2) that the invariant assertions actually
do hold throughout the asynchronous code
sections with which they are associated.

(i) follows from the soundness of the synthesizer,
if that phase was used.
Together (i) and (2) prove that the synchroniza-
tion is correct.

In essence correctness of synchronization is
established with respect to a set of user-supplied
assertions. We show the equivalence between a pro-
cedural description of a problem (the code generated)
and a non-orocedural description (the assertions given).
Other correctness proofs, involving more than correct-
ness of synchronization, are facilitated by the func-
tions generated by the synthesizer, because they are
very straightforward. The code generated contains no
procedure calls, is GOT0-1ess, and contains FOR loops
only rarely.

CONCLUSIONS AND FUTURE WORK

We have proposed an automatic synthesis system
for synchronization processes, including the
areas of problem specification, synthesis, and
verification. Our system consists of independent
modules; users of the verification stage have not
necessarily used the synthesizer. Owing to its
modular nature, the system is also manageable in
size; the modules are self-contained and there-
fore easier to understand and to use.

We have shown how automatic program verification
and synthesis can be made more tractable by re-
stricting the problem domain. Problem-speclflca-
tion is much simpler when we are concerned only
with specifying flow of control and manipulation

of a few integers and bools, rather than arbitrary
data structures. In addition the choice of an
appropriate target vehicle in which to express
programs, Prenner's CI facility, has simplified
the design of the system. Both synthesis and
verification are clearer and less complex when the
CI concept is used, than when other primitives are
tried.

We have accomplished this without restricting
ourselves to trivial problems. We permit any con-
trol configurations between concurrent processes
and make no limitations on the procedural aspects
of problem-solvlng. Our only restriction is on
the type of problems to be considered, namely
those of synchronization of concurrent processes in
a multi-processor environment.

Finally, we have formulated for a specific
problem domain, a high-level tool for problem
specification which is both natural and non-pro-
cedurally oriented.

One limitation of the system is that the CI
facility provides a global lock, which is not
necessary in all types of synchronization and can
degrade system performance. Therefore we suggest
as a topic for future investigation, an optimi-
zation phase of SYNVER (to follow the synthesis
and verification phases), which translates synch
functions to employ more efficient (but harder to
synthesize or verify) primitives such as P and V.
The author has partially formulated a technique
which transforms CI solutions such as Readers and
Writers to P and V solutions which are comparable
to the hand-coded Courtois solution. More work is
necessary to adapt the techniques to all cases, and
to determine if a P and V solution is always
possible.

REFERENCES

i. Belpaire, G. and Wilmotte, J-P. An Approach to
Concepts of and Tools for a Theory of Parallel
Processes. Report 57, Institut de Mathematique
Pure et Appliquee, Universite Catholique de
Louvain, Dec. 1972.

2. Cerf, V.G. Multiprocessors, Semaphores, and a
Graph Model of Computation. Doc. diss. UCLA,
April 1972.

3. Courtols, P.J. et al. Concurrent Control with
'Readers' and 'Writers' Comm. ACM Vol. 14,
No. 10 (October 1971), pp. 667-668.

4. Deutsch, L.P. An interactive program verifier.
Ph.D. Th. Dept. Computer Sci., U. of Calif.,
Berkeley, June 1973.

5. DiJkstra, E.W. Cooperating Sequential Pro-
cesses. In Pro~rammlng Languages, (F. Genuys,
ed.), Academic Press, New York, 1968, pp. 43-
112.

6. Fisher, D.A. Control Structures for Programming
Languages. Doc. dlss., Carnegle-Mellon U.,
June 1970.

7. Gilbert, P. and Chandler, W.J. Interference
Between Communicating Parallel Processes.
Comm. ACM Vol. 15, No. 6 (June 1972), pp. 427-
437.

172

8. Habermann, A.N. Synchronization of Communica-
ting Processes. Comm. ACM Vol. 15, No. 3
(March 1972), pp. 171-176.

9. Hansen, P. A Comparison of Two Synchronizing
Concepts. Acts Informatica I (1972), pp. 190-
199.

i0. Hoare, C.A.R. Monitors: an Operating System
Structuring Concept. Internal Report, The
Queens Univ. of Belfast (1973).

II. Holt, A.W. et al. Final Report for the Infor-
mation System Theory Project. Applied Data
Research Inc., New York, 1968.

12. King, J. A program verifier. Doc~ diss.
Computer Sci. Dept. Carnegle-Mellon U., 1969.

13. Levitt, Karl N. The application of program-
proving techniques to the verification of synch-
ronization processes. Fall Joint Computer
Conf. 1972, pp. 33-47.

14. Lipton, R.J. On Synchronization Primitive
Systems. Doc. diss., Carnegle-Mellon U.,
June 1973.

15. Manna, Z. and Waldlnger, R.J. Towards Auto-
matic Program Synthesis. Comm. ACM Vol. 14,
No. 3 (March 1971), pp. 151-165.

16. Parnas, D.L. On a Solution to the Cigarette
Smoker's Problem (without conditional state-
ments). Dept. Comp. Sci. Carnegle-Mellon U.,
July 1972.

17. Patil, S. Coordination of Asynchronous Events,
Doc. dlss., MIT, 1970.

18. Patll S. Limitations and Capabilities of
Dijkstra's Semaphore Primitives for Coordin-
ation among Processes. Project MAC, Compu-
tational Structures Group Memo 57, Feb. 1971.

19. Prenner, C.J. Multi-path Control Structures
for Programming Languages. Ph.D. Th., Harvard
U., May 1972.

20. Saal, H. and Riddle, W. Communicating Sema-
phores. Comp. Scl, Dept. Stanford U. STAN-
CS-71-202 (Feb. 1971).

21. Thomas, R.H. A Model for Process Representat-
ion and Synthesis. Doc. diss., MIT, 1971.

22. Wegbreit, B. The synthesis of loop predicates.
Comm. ACM Vol. 17, No. 2 (Feb. 1974)
pp. 102-112.

23. Zilles, S. Procedural encapsulation: A Ling-
uistic Protection Technique. Sigplan Notices
Vol. 8, No. 9 (September 1973), pp. 142-146.

173

