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ABSTRACT 

The automatic synthesis of systems of synchron- 
ized processes and the proof of the synchronization's 
correctness is discussed. A general system, SYNVER, 
is proposed. Its input is a problem description and 
its output is a set of communicating processes 
proven correct. A hlgh-level assertion language is 
presented in which certain types of synchronization 
problems may be described in a natural but formal 
way. Heuristics are developed for SYNVER so that 
it may infer from the problem description what data 
structures and what operations are necessary to 
realize the described synchronization. From this 
information, the code pertaining to synchronization 
is synthesized. Finally, SYNVER applies verifica- 
tion techniques to prove that the assertions made 
about the synchronization of the processes are not 
only consistent, but are also realized by the code 
synthesized. 

OVERVIEW 

This paper addresses the synthesis and verifi- 
cation of the synchronization aspects of concurrent 
communicating processes. Our proposed system, 
SYNVER, consists of independent modules, namely a 
synthesizer and a verifier; users of the verifi- 
cation stage have not necessarily used th% syn- 
thesizer. SYNVER's input is a problem description, 
written in a very high level assertion language. 
SYNVER's output is a set of communicating processes 
whose synchronization has been proven correct. 
SYNVER deals with synchronization problems where 
the inter-process communication is separable from 
the independent, asynchronous computations. 
Typical examples of these are mutual exclusion pro- 
blems such as cigarette smokers (Parnas [16]) and 
dining philosophers. For these problems the syn- 
chronization portions of a program can be factored 
from the internal computation portions. Factoring 
of this nature is a goal in structured programming 
where procedural encapsulation is intended to mini- 
mize the assumptions one component makes about 
another (Zilles [23]). Our problem specification 
language and the code synthesized reflect this 
approach in that they isolate the communicating 
portions of a system of processes from the 

asynchronous portions. In this paper we do not 
handle message-passing (as in some producer- 
consumer types of synchronization problems) 
although we believe that it also could be made 
tractable by an extension of our approach. 

For SYNVER we chose a set of synchronization 
primitives to make the code produced by the synthe- 
sizer easy to verify. Three phases of activity 
are involved in using SYNVER: 

i) Synchronization problems are formulated in a 
problem description language in a manner 
suitable for automatic program synthesis. 

2) SYNVER accepts this problem description and 
automatically synthesizes the programs which 
will be used as the synchronization portions 
of the problem solution. 

3) The synchronization portions output by the 
synthesizer, or other similar portions of 
hand-written solutions, are proven correct. 

In the following sections we discuss in detail 
the choice of a target vehicle for synthesis and 
each of the three phases of activity. 

CPOICF OF TARGET VEHICLE 

Before discussing the synthesizing phase of 
SYNVER, we must choose a set of synchronization 
primitives to be used in the code generated. A 
variety of sets of primitives are available, each 
with advantages and disadvantages. The criteria 
we used for choosing among these sets are: 

(i) The semantics of the primitives must be 
well-specified. 

(2) Typical members of the class of problems 
we wish to handle, such as mutual exclusion, 
must be easily solvable using the primitives. 

(3) Tt should be possible to synthesize programs 
using the primitives. 

(4) The primitives should allow a clear dis- 
tinction between variables and instructions 
involved in communication between processes 
and those relevant only to the internal 
logic of the program. 

This work was supported by the Advanced Research 
Projects Agency under Contract F19628-74-C-0083. 

With respect to these criteria we considered 
the approaches and primitives of DiJkstra [5], 
Habermann [8], Carl [27, Nansen [9], Saal and 
Riddle [20], Fisher [6], Thomas [21], Noare [I0], 
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and Prenner [19]. Both Prenner's control facility 
and Hoare's monitors satisfy these criteria. 
Prenner's facility, which is available at Harvard, 
was selected. 

Prenner's CI facility was chosen as a model in 
which one can transact with processes explicitly in 
a way which clearly distinguishes communication 
variables and code from those which are asynchro- 
nous. Hoare's model also provides this ability. 
One can easily interchange the CI and monitors in 
the sequel without any change to the assertion lan- 
guage. Indeed SYNVER may be used with any model of 
process handling which satisfies the above criteria. 

Prenner's facility permits multiple processes 
and multiple processors. Processes communicate and 
pass control by means of control primitives in an 
extensible language, ECL. A distinguished process, 
the control interpreter (CI), exists to provide 
mutual exclusion and explicit scheduling of pro- 
cesses. To communicate with each other, processes 
make a call on the primitive CIA, (which stands for 
Control Interpreter Apply), specifying a function 
call (which we will call a synch function) to be 
evaluated without interruption in the environment 
of the CI. Any other CIA calls are deferred until 
such an evaluation has terminated. Hence the CI pro- 
vides for the indivisible evaluation of synch func- 
tlon bodies. In these bodies, queues of waiting 
processes may be referenced explicitly, thus allow- 
ing the user to control scheduling of processes in 
order to achieve synchronization. The local data 
structures of the CI comprise a global "state of the 
system" with respect to inter-process communication. 
The synch function modifies these structures, thus 
treating the CI as a sort of "control switchyard" 
where the entire system of processes changes state. 

PROBLEM SPECIFICATION 

State diagrams, Petri nets, occurrence graphs, 
and other graph-theoretlc formulations have been 
used to provide precise descriptions of synchron- 
ization problems, but they are not necessarily 
appropriate tools for high-level problem specifica- 
tion. (Belpaire and Wilmotte [I], Cerf [2], Gilbert 
and Chandler [7], Holt [ii], Lipton [14], Patll 
[17] [18]). There are several difficulties with 
these methods. For example, they are not high 
level, they are not intuitive, and some of them 
(state diagrams, Petri nets) have been proven in- 
adequate to express certain synchronization problems. 

To be a good medium for problem specification, 
a formalism must: 

(1) be independent of any programming language 
or implementation, 

(2) provide a natural, intuitive way of express- 
ing the problem for humans, 

(3) be sufficiently precise so that it is 
possible to prove that some program code 
solves the problem, and 

(4) be suitable for input to an automatic system 
which synthesizes code to solve the problem. 

For the kinds of problems we consider, it is 
appropriate t o  view the synchronizing primitives as 
changing the overall state of the system of commun- 
icating processes, as comprised by the values of the 
CI's local variables. For these kinds of problems 
there areusually only a small number of interest- 
ing (and legitimate) states that the set of commun- 
icating processes can be in. These global states a~e 
most often related to which processes are executing 

their critical sections. Our assertion language is 
one in which we can not only describe these global 
states but also specify how synch functions forc~ the 
set of processes to make transitions among these stams. 

The problem description supplied to the synthe- 
sizer consists, for each type of process in the 
system, of a process type name and its asynchro- 
nous code intermixed with CIA calls at the points 
of contact between processes. We propose two 
kinds of assertions to describe the actions or the 
impact that the user expects of the synch functions. 

We illustrate the two kinds of assertions with a 
very simple example of a mutual exclusion problem 
description, where at most one process at a time 
should be evaluating its critical section. (Note 
that the syntax we use is informal at this point): 

(letting Kffinumber of processes evaluating 
their critical sections.) 

ASSERT("either K=0 or K=I"); (SI) 
CIA("enter-critical-section") ; (S2) 
ASSERT("if KIn0 then let K-l, otherwise wai~); ($3) 
<critical section> ($4) 
ASSERT("K=I"); ($5) 
CIA("leave-critlcal-sectlon"); 
ASSERT("If K=I then 

if a process is waiting then 
start it up and Kml, 

else K=0"); 

The first and third assertions are I-assertions, 
the latter one indicating what state holds throughout 
the critical section. The second and fourth asser- 
tions are R-assertlons, dictating the actions to be 
performed by the respective synch functions. Notice 
that we use the value of the variable K to describe 
the possible states of the system. Here we specify 
(through assertions) the desired synchronization. For 
the purpose of describing synchronization, the asynch- 
ronous computations of a program (including the 
actions in the critical section) are irrelevant. 

The first kind of assertion is the invariant asser- 
tion, I-assertlon, which immediately precedes CIA 
calls and describes the state of the entire system 
throughout the evaluation of a particular code section. 
ASSERT(II,I2,...,In) requires the IJ's to be formulas 
or names of formulas in quantlfier-free logical ex- 
pressions. These IJ's are the descriptions of the 
possible states of the entire system of communicating 
processes. Hence, we constrain that only one IJ may be 
true at a time. The formula Ii v I2 v ... v In is 
asserted to be true throughout the evaluation of a 
particular section code. This code begins a t  the last 
lexlcal occurrence of a CIA call in that process's 
code and terminates at the point where the assertion 
is placed. (e.g. throughout <critical section> above). 
Note that it does not matter what other CIA calls 
other processes may make during that evaluation. 
One can interpret this as specifying that through- 
out the evaluation of this section of code, the 
states of the system are restricted to be members 
of the set of states described by Ii ... In. 

The second kind of assertion is the result 
assertion, R-assertlon, which is placed immediately 
following a CIA call. Result assertions specify the 
transitions between the states of the system that 
a particular CIA call should effect. It should 
be clear that only CIA calls can cause a change 
of states. Result assertions consist of a serJes 
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of conditionals, separated by commas. These 
conditionals describe what the CIA cal~ should 
have accomnlisheP when control returns to the 
process, based on which disJunct of the invariant 
assertion precedin~ the CIA call was true at the 
time the CI was activated for that CIA call. ~,e 
format is as foll~: <possible current state> ==> 
<next state> AND <control actions>. 

As the complete syntax of these conditionals is 
beyon@ the scone of this paper, we will discuss 
examples from a typical case, the second readers 
and writers problem (Courtols [3]). The problem 
states that any number of readers may access a 
table, or one writer may access it, but readers and 
writers may not access it at the same time. 
Writers have priority; if a writer has requested 
access, no further readers may be given access 
until that writer has finished writing. For the 
following discussion, let If, T2, 13, 14 be the 
names of the states, which we will call invariants. 
Ii means no writers, no readers in the table; 
12 means one writer, no readers; 
13 means k>0 readers, no writers, no waiting 

writers; 
14 means k>0 readers, no writers, writers waiting. 
Clearly these are the interesting states of the 
readers and writers problem. The code for the 
reader process begins with 
ASSERT(II,12,13,14); 
CIA("startr"); 
We wish evaluation of the reader process to pro- 
ceed only if II or 13 are true upon activation of 
the CI. (Note we define the terminology "lJ is 
true" to mean "it is the case that the state of the 
entire system is described by lJ"). Then the 
result assertion is: 

ASSERT(If ==>13 AND PROCEED, 
12 ==>12 AND WALT, 
13 ==>13 AND PROCEED, 
14 ==>I4 AND WALT); 

==> is essentially a binary conditional operator 
whose left operand is a state description which may 
be true when the CI is activated for that CIA call. 
The right operand consists of the state description 
which is to be true after the evaluation of the synch 
function, together with other conJuncts giving 
actions to be taken with respect to control. The 
semantics of ==>are, if the left-hand-slde (lhs) is 
true, then change states, performing the actions 
specified by the rlght-hand-side (rhs) and exit the 
synch function. The result assertion specifies 
that these conditionals are to be considered in order 
of appearance, as in a LISP conditional, and as soon 
as a true lhs is found, no others are to be consid- 
ered. A true lhs will always be found since the 
union of the lhs operands is required to be the set 
of dlsJuncts of the preceding invariant assertion. 
We permit the lhs TRUE as syntactic sugar for "all 
the other dlsJuncts of the preceding invarlant 
assertion not explicitly found on a lhs in this 
result assertion." The conjuncts PROCEED or WAlT 
indicate whether or not control is to be transferred 
back to the process performing the CIA, The syntax 
may be read as: if Ii is true then let 13 be true 
and proceed. 

We also permit Boolean expressions on the 

variables of the invarJants to appear on the lhs of 
==>. An example is I3 AND (K=I) ==> Ii AND PROCEED. 

So far we have seen how a synch function can 
act like a generalized P operation, in that it may 
test and change state descriptions and cause the 
calling process to wait or proceed, but not how it 
may act llke a generalized V operation, permitting 
other waiting processes to proceed. This is done 
by allowing result assertions to specify sets of 
processes, called waitsets, to which processes 
which are required to WAlT may belong. A process 
may belong to at most one waltset at a time. Then 
we have a conjunct of the rhs of ==> called STARTUP. 
The syntax is 

STARTUP([ALL] <process type> OUTOF <waitset name>), 

which removes (all) process(as) of type <process 
type> from the waltset <waltset name> and allows 
them to be scheduled for execution. 

Corresponding to this is the conjunct WAlT IN 
<waitset name>, which enters that process as a 
member of the waltset <waitset name> and also 
prevents it from continuing execution. There are 
other operations which can be performed on members 
of waitsets, such as MOVE(<process type> OUTOF 
<waltset-l> INTO <waitset-2>). Alternatively, 
a waitset may be implicit; e.g., if a process of 
type P is specified to WAIT, then to allow a pro- 
cess of type P to continue later, some process has 
a result assertion which specifies STARTUP(P). 

It is important to remember that these result 
assertions merely specify what things the synch 
function should do. They are never "executed"; 
they comprise the input to the synthesizer which 
generates code which, when evaluated, realizes the 
specifications given. The specifications them- 
selves are non-procedural; they give no indication 
of how state descriptions are to be changed or how 
waiting or waitsets are to be implemented. 

There is one additional facility of the 
assertion language. It may be the case that for 
one lhs condition, several alternatives may be 
desired with differing precedence. In the readers 
and writers problem, if 12 is the state description 
before CIA("endw"), the terminating of a writer's 
use of the table, then to give writers priority we 
wish to install 12 and startup a writer process if 
possible. If no writer processes are waiting, then 
we wish to install 13 and startup all readers if 
possible. Otherwise, we wish to install Ii and 
proceed. We write the assertions as 

ASSERT(I2); 
CIA("endw"); 
ASSERT(12 ==> IF STARTUP(WRITER) POSSIBLE 

THEN 12 AND PROCEED, 
==> IF STARTUP(ALL READER) POSSIBLE 

THEN 13 AND PROCEED, 
==> Ii AND PROCEED); 

Here the IF ... POSSIBLE brackets surround 
operations whose execution may not necessarily be 
possible. For example, if there are no waiting 
writers, then we cannot perform STARTUP(WRITER), 
and hence we then see if the second alternative may 
be performed. This is an extension of the LISP 
conditional. An omitted lhs is interpreted to be 
the same as the lhs of the previous conditional and 
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the interpretation of 

lhs ==> rhs-l, 
==> rhs-2,..., 
==> rhs-n, 

is: if lhs is true then, in order, do rhs-i if 
possible; else do rhs-2 if possible; ... ; else do 
rhs-n if possible. We call these sets of condit- 
ionals ~riority sets, as there are priorities among 
the rhs alternatives. 

We now describe the second readers and writers 
problem in our assertion language: 
(Recall K is readers in table, L is writers in 
table, and M is whether writers are waiting.) 

Ii IS K=0 AND L=O, 
12 IS K=O AND L=I, 
13 IS K>0 AND L=O AND M=FALSE, 
14 IS K>0 and L=0 AND M=TRUE, 
READER DOES 

ASSERT(II,12,13,14); 
CIA("startr"); 
ASSERT(If ==> 13 AND PROCEED, 

13 ~=> 13 AND PROCEED, 
TRUE ==> WALT); 

<read> 
ASSERT(13,14); 
CIA("endr"); 
ASSERT(14 AND (K>I) =-> 14 AND PROCEED, 

13 AND (K>I) m=> 13 AND PROCEED, 
14 AND (K=I) =~> 12 AND PROCEED 

AND STARTUP(WRITER), 
13 AND (K=I) ==> Ii AND PROCEED); 

WRITER DOES 
ASSERT(II,12,13,14); 
CIA("startw"); 
ASSERT(I! ==> 12 AND PROCEED, 

13 ==> 14 AND WALT, 
TRUE =~> WALT): 

<write> 
ASSERT(12); 
CIA("endw"); 
ASSERT(12 ~=> IF STARTUP(WRITER) POSSIBLE THEN 

12 AND PROCEED, 
-=> IF STARTUP(ALL READER) POSSIBLE 

THEN 13 AND PROCEED, 
~=> Ii AND PROCEED); 

Thus, a problem specification is provided in 
the form of sets of assertions surrounding CIA 
calls in otherwise asynchronous code of a system 
of processes. These assertions are in a formal 
but readable format, natural for human use and 
implementation-independent. In the next section 
we indicate how these assertions may be manipulat- 
ed by the synthesizer in order to generate code 
for the synch functions. 

SYNTHESIS 

Automatic synthesis of non-trivialprograms is 
still in its infancy. A number of synthesizers, 
for example that of Manna and Waldinger [15], have 
employed mechanical theorem provers to verify a 
relationship between input and output variables and 
work backwards through the proof to extract a pro- 
gram. Our synthesizer is more powerful within its 
own expert problem domain. We assume that the 
major (independent) portions are already written 
and that only the synchronization (dependent) 
portions of the system need to be synthesized. 

The synthesizer first determines the data structures 
for the CI, and then it examines the invariant and 
result assertions to determine what changes to 
these data structures must be performed by the 
synch function. From this, code for the synch 
functions is generated. 

The synthesizer determines what data structures 
and variables are necessary as local variables to 
the CI process in order to describe the global 
state of the system of communicating processes. 
These include the variables explicitly stated in 
the invariant definitions together with those 
implied by the result assertions (for example, one 
process queue for every implicit and explicit 
waitset). The data types of these variables must 
also be determined by examining the values they 
potentially may have in the invariants. The 
collection of all these local variables will be 
called the state descriptor. 

The synthesizer then examines the invariant 
and result assertions and uses a combination of 
straightforward deductions and heuristic guesses 
to determine how (and under what conditions) the 
state descriptor changes. For each synch function, 
we consider the state descriptor changes required. 
Some may be straightforward, for example, comple- 
menting a Boolean variable whenever the process 
performing the CIA call may proceed. The changes 
to integers are the most difficult (reals are not 
considered). To determine what changes are made 
to an integer, a record is made of all the values 
it may assume (these are kept on a list associated 
with each variable), and the synthesizer guesses 
a consistent way of changing from one value to 
another. 

The primary heuristics the synthesizer uses 
are consistency and simplicity - that a synch 
function is consistent in its use of a variable, 
and that this usage is usually simple. This can 
be done because we are dealing with "state of the 
system" variables, not arbitrary ones, and with 
synchronization problems, where the usual uses for 
integers consist of counts of how many processes 
are in a critical section, etc. Consistency implies 
that it is quite unlikely that there are synch 
functions which specify that if Ii is true then 
X<-X+I, but if 12 is true then X<-X/225. Thus we 
can reduce the number of hypotheses about how a 
variable may be changed by assuming for a given 
synch function that the variable value is changed 
in the same way for all conditionals that require 
it to be changed at all. Thus we obtain, using 
consistency and simplicity, the guess that 
X<-X+I from the result assertion 

ASSERT((X=O) ==> (X=I) AND PROCEED, 
(X=I) ==> (X=2) AND PROCEED, 
(X>0) ==> (X>0) AND PROCEED); 

rather than the more complex if X~O then X<-I 
else X<-2. 

The synthesizer also uses typical arithmetic 
heuristics to formulate more complex guesses. One 
such example is that if some formula holds for a 
synch function's conditir~nals where K=0, but not 
when K~0, then add to the formula a term K*X. Thus 
the new formula holds for at least the same set of 
conditionals and perhaps for some others as well. 

170 



King [12], Deutsch [4], and Wegbreit [22] discuss 
these kinds of heuristics in greater detail. 

It is certainly possible that our heuristics 
will not work and SYNVER must appeal to the user 
at an interactive level for hints on how to change 
variables, or even perhaps to provide entire code 
sections. The ultimate hint is, of course, a 
complete set of all the desired synch functions, at 
which point SYNVER moves immediately to the veri- 
fication phase and performs proof-checking. As 
the state of the art of synthesizing improves, this 
interactive level may become less necessary. 

Finally the synthesizer must infer from the con- 
tents of the IF ... POSSIBLE brackets in a prior- 
ity set what tests to make on the state descriptor 
in order to determine whether or not it is possible 
to do a given rhs. In most cases, this is a test 

Variables: K:INT, L,M:BOOL, READER, 

STARTR <-EXPR() 
BEGIN 
NOT L AND NOT M => K<-K+I; 
ENTERL(LASTRUN,READER); 
LASTRUN<-NIL; 
END; 

of whether the appropriate waltset is empty. 

Once these determinations have been made and the 
consistency of the guesses validated, code may be 
generated to realize them, and code added to do 
the appropriate manipulation within the CI to dis- 
allow control passage if a process is to WAlT and 
pass control only to those processes which are to 
PROCEED or STARTUP. 

}{ere we produce in ECL, which is somewhat ALGOL- 
llke, the (slightly hand-optlmlzed for readability) 
result of SYNVER on the problem description of the 
readers and writers problem. LASTRUN represents 
the process performing the CIA call. Setting 
LASTRUN to NIL prevents that process from continu- 
ing execution. Performing ENTERL and REMOVEF 
enter and remove processes from queues, and 
INACTIVEQ is the queue from which the scheduler 
selects processes to be run. 

WRITER: process queues 

if II or 13 then 13 
else wait 

ENDR<-EXPR() 
BEGIN 
K<-K-I; 
(K=O) AND M -> 

BEGrN 
L<-TRUE; 
ENTERL(REMOVEF(WRITER),INACTIVEQ); 
END; 

END; 

decrement no. of readers 
if no readers in table 
and writer waiting, then 
12 and startup waiting 
writer 

STARTW<-EXPR ( ) 
BEGIN 
NOT L AND K=0 -> L<-TRUE; 
K>O AND NOT M -> M<-TRUE; 
ENTERL(LASTRUN,T4RITER); 
LASTRUN<-NIL; 
END; 

if Ii then 12 
else set waiting 
writer flag, if necessary 
and wait 

ENDW -EXPRO 
BEGIN 
WRITER=NIL => 

BEGIN 
L<-FALSE; 
TILL READER=NIL DO 

BEGIN 
ENTERL(REMOVEF(READER),INACTIVEQ); 
K<-K+I; 
END; 

END; 
ENTERL(REMOVEF(WRITER),INACTIVE0); 
END; 

if no writers waiting 
then 13 
or II and 

startup waiting readers 

if any 

else startup writer 
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VERIFICATION 

As in the case of synthesis, we are concerned 
only with the synchronization portions of the 
system. Unlike proving programs correct, we have 
no halt box with which we may associate an out- 
put assertion. Instead we have two kinds of 
assertions sandwiching the points of contact 
between processes. The result assertions state 
something about the impact of this contact on the 
entire system. The invariant assertions indicate 
restrictions on the results of contacts made by 
other processes concurrent with the evaluation of 
a section of code in the given process. It is 
clear then, that the specification of result 
assertions in each process must be consistent with 
the invariant assertions of the other processes. 
In addition, the actions specified by the result 
assertions must be correctly realized by the synch 
functions. 

Hence, verifying that the synchronization por- 
tions of the system are correct is equivalent to 
verifying that the given assertions hold when the 
synch functions generated are used. To do this, 
we propose to adapt Levitt's technique for P and V 
[13]. The synch functions' code can be written in 
terms of CHOICE and SPLIT nodes, from which verifi- 
cation conditions can be obtained for all paths of 
control between invariant assertions. 

In this way, we prove 

(I) that the result assertions are satisfied 
by the appropriate synch functions, and 

(2) that the invariant assertions actually 
do hold throughout the asynchronous code 
sections with which they are associated. 

(i) follows from the soundness of the synthesizer, 
if that phase was used. 
Together (i) and (2) prove that the synchroniza- 
tion is correct. 

In essence correctness of synchronization is 
established with respect to a set of user-supplied 
assertions. We show the equivalence between a pro- 
cedural description of a problem (the code generated) 
and a non-orocedural description (the assertions given). 
Other correctness proofs, involving more than correct- 
ness of synchronization, are facilitated by the func- 
tions generated by the synthesizer, because they are 
very straightforward. The code generated contains no 
procedure calls, is GOT0-1ess, and contains FOR loops 
only rarely. 

CONCLUSIONS AND FUTURE WORK 

We have proposed an automatic synthesis system 
for synchronization processes, including the 
areas of problem specification, synthesis, and 
verification. Our system consists of independent 
modules; users of the verification stage have not 
necessarily used the synthesizer. Owing to its 
modular nature, the system is also manageable in 
size; the modules are self-contained and there- 
fore easier to understand and to use. 

We have shown how automatic program verification 
and synthesis can be made more tractable by re- 
stricting the problem domain. Problem-speclflca- 
tion is much simpler when we are concerned only 
with specifying flow of control and manipulation 

of a few integers and bools, rather than arbitrary 
data structures. In addition the choice of an 
appropriate target vehicle in which to express 
programs, Prenner's CI facility, has simplified 
the design of the system. Both synthesis and 
verification are clearer and less complex when the 
CI concept is used, than when other primitives are 
tried. 

We have accomplished this without restricting 
ourselves to trivial problems. We permit any con- 
trol configurations between concurrent processes 
and make no limitations on the procedural aspects 
of problem-solvlng. Our only restriction is on 
the type of problems to be considered, namely 
those of synchronization of concurrent processes in 
a multi-processor environment. 

Finally, we have formulated for a specific 
problem domain, a high-level tool for problem 
specification which is both natural and non-pro- 
cedurally oriented. 

One limitation of the system is that the CI 
facility provides a global lock, which is not 
necessary in all types of synchronization and can 
degrade system performance. Therefore we suggest 
as a topic for future investigation, an optimi- 
zation phase of SYNVER (to follow the synthesis 
and verification phases), which translates synch 
functions to employ more efficient (but harder to 
synthesize or verify) primitives such as P and V. 
The author has partially formulated a technique 
which transforms CI solutions such as Readers and 
Writers to P and V solutions which are comparable 
to the hand-coded Courtois solution. More work is 
necessary to adapt the techniques to all cases, and 
to determine if a P and V solution is always 
possible. 
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