
The Simon Fraser One Track Universal
Curriculum For Computing Science

by
T.D. Sterling, Ph.D. and J.J. Weinkam, D.Sc.

Computing Science Program
Simon Fraser University
Burnaby, B.C. V6A IS6

Almost every academic discipline has some
potential applicability to any other field of
endeavor we might consider. However, there are
three disciplines that share the distinction
that they are widely applied in virtually every
field of human endeavor. In order of seniority,
there are: Mathematics, Statistics and Comput-
ing Science.

We wish to consider the problems that this
situation creates with respect to how these
subjects should be taught to a wide selection
of students and how a curriculum can be con-
structed to appeal to a diversity of backgrounds
and needs.

The Fundamental Problem is the Variety
of the Demand

Severe obstacles are faced by any mathe-
matics, statistics, and computing science cur-
riculum designed to satisfy the educational aims
and the academic substance of the university
community. These obstacles largely are the
same for the three disciplines, although we shall
discuss them primarily with respect to Computing
Science. They appear to be:

i. Wide ranging demands are made on the con-
tent of a Computing Science curriculum.
There is the increasing computerization
of biological, management, and social
sciences. The humanities have been drawn
into the use of computers mainly through
numerical taxonomy, text processing, com-
puter produced sound, speech, and music,
and the flourishing application of graph-
ics to a wide variety of artistic produc-
tions. Engineering and physical sciences
use computers, as a matter of course, as
the primary computational tool.

~. Students study Computing Science for many
different purposes. There are a large
number of students who expect to earn a
living by working in some phase of com-
puting (as programming technicians, anal-
ysts or software engineers). There are

students who wish to follow an academic
and~or professional career in Computing
Science. Then there are students who
just want to learn something about com-
puting to broaden their perspective.

3.

4.

Students come to a Computing Science pro-
gram with a wide variety of backgrounds.
In some instances, students have had in-
troductory courses in high school. Some
even have worked as programmers before
coming to the university (and some of
them may have achieved considerable so-
phistication in programming). Other
students have a fair background in an-
cillary topics such as numerical methods
and~or statistics; others may be seriously
deficient in these topics with no intention
of undertaking further studies in these
fields.

Just as a~l other disciplines, Computing
Science must strive for an economy of
intellectual content and certainly for an
economy in the use of staff.

The Mathematics and Statistics Models

While it is true that each University is
unique and there is no universal method of fit-
ting a Mathematics or Statistics program into
the overall curriculum, two particular models
stand out as typical of a large number of cases,

On the one hand, Mathematics is usually
taught in a relatively rigid sequence of courses
primarily designed to satisfy majors in Math-
ematics. At the same time a relatively small
number of service courses are offered aimed at
the traditional "best" customers (Physicists and
Engineers). Students in every other field either
have to take courses which may or may not be
relevant for them (usually they are not) or do
without. Most of them do without.

On the other hand, Statistics is taught pri-
marily to users by users. Almost every depart-
ment in the university may and usually does
offer some statistics courses. These courses
usually introduce the student to basic concepts
in a more or less intuitive and~or cookbook
fashion. The student usually is not prepared to
either understand or work with probabilities in
any rigorous way, nor are his instructors par-
ticularly knowledgeable in Statistics - except
in the more narrow uses of techniques in their
Own work. As a consequence, Statistics is
widely misused and the student is led to a cul-
de-sac from which he cannot escapt unless he
starts from square one. Few of them bother.

28

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953057.810434&domain=pdf&date_stamp=1974-01-01

There are numerous variations of these two
models but, by and large, they are widely adopt-
ed. Computing Science is still groping and in
some unconscious and unconscienable way, depend-
ing on circumstances, emulating the Mathematics
model here, the Statistics model there. However,
there is no good reason why Computing Science
needs to copy either one of them. There may be
a third method by which Computing Science can be
integrated into the university curriculum and,
at the same time, provide a bold and new solution
to the common problems besetting the three
problem disciplines.

A Single Track Universal Program

One solution, frankly based on the best
features culled from the Mathematics and Statis-
tics models, is te develop a single track program<
which any student in the university can enter and
leave at some desired level, depending on his
background and educational aims. In order to
develop such a single track curriculum, it is
necessary to divide the teaching of Computing
Science into three basic sectors: i) a main
stream of topics that make up the "core" of
Computing Science and form the pre-requisites
for other courses, 2) a "techniques" part, con-
sisting of courses in application areas, and 3)
a "foundations" part consisting of courses in
theoretical and practical foundations of com-
putation, hardware, and software. By suitable
succession of core and technical topics, it may
be possible to furnish the university with a
program that might satisfy most all demands made
on the Computing Science discipline.

The Simon Fraser Computing Science Program

The strategy outlined above has been adopted
to develop the experimental Computing Science
Program at Simon Fraser University. Although some
additional courses are needed to broaden and en-
rich the program, the basic four year undergrad-
uate program has been worked out in detail and
has been approved by the Faculty. The first two
years are being implemented in 1973. These are
the most important part of the program since the

majority of student demand will lie in these two
years whereas the third and fourth year courses
will be taken primarily by Computing Science
majors. The complete program will be in opera-

tion by 1975.

Faculty and Staff

The faculty and staff need to operate the

program consistent of the following:

a) Regular Faculty with a full time
appointment in Computing Science.
These faculty members will teach
primarily the core courses and
the Computing Science Foundations
courses. In addition they may teach
applications courses for which they
have qualifications and interest.

b) Regular Faculty with joint appoint-
ments in Computing Science and some
other area. These faculty members
will teach primarily applications
courses related to their discipline.
In addition they may teach core and
foundations courses for which they
have qualifications and interest.

c) Various members of the Computing
Center Staff. These individuals
will take part in seminars and in
courses such as Applied Programming,
Hardware and Software Architecture
and System Measurement and Evalua-

tion.
d) Teaching Assistants. These are

students who have already gone
through part of the program. They

conduct tutorials, grade papers
and act as consultants in the ele-
mentary courses for which they are

qualified.
e) Departmental Assistant. The de-

partmental assistant supervises
and coordinates the tutorial and
consulting services, assists in
the preparation of course materials,
and handles numerous administrative

tasks.

The Curriculum

The four year curriculum, as approved so far,
is shown in Figure I. Each box represents a
course and contains course numbers and the number

of credit hours. Courses indicated by an M are
offered by the Mathematics department. A course
box in Figure 1 indicates both the level of the
course and its basic area or subject matter.

The lines connecting the boxes indicate the
prerequisite requirements within the department.
Some cQurses have additional prerequisites, out-
side the department, which are not shown on the
Figure. For example, 291 has a Physics prerequi-

site.
The dashed boxes indicate areas where addi-

tional courses will be proposed. These areas in-
clude advanced applications courses in the natural
sciences and advanced Computing Science courses
such as Construction of Compilers and Design of

Operating Systems.
Note that the second year core program con-

sists of a single course 201. The course 200 is
represented as a long thin box to convey the fact
that it offers a sampling of topics normally
covered in 201, 301, 302, and 400. This is dis-

cussed further below.
The number and title of each course is shown

in the following table:

Computing Science Program:
Course Numbers and Titles

001 - Computers and the Activity of Man
100 - Introduction to Computing
102 - Introduction to a High Level Programming

Language
118 - Computing Projects in the Arts and Sciences
200 - Introduction to Software Organization
201 - Data and Program Organization
240 - Computers in the Life Sciences
250 - Computer Uses in Environmental Studies

29

260 -

280 -
283 -
290 -
291 -
301 -
302 -
305 -
350 -

351 -
354 -
360 -
362 -
370 -
371 -

380 -
390 -
400 -
401 -
404 -
410 -
451 -
491 -

M 104
M 306

M 316
M 401
M 402
M 403

Social Implications of a Computerized
Society

Computation in the Humanities I
Programming Languages
Introduction to Digital Systems
Analogue and Digital Circuits
Applied Programming I
Applied Programming II
Computer Simulation and Modeling
Information and Public Policy

Computer Graphics I: Linear Graphs
Information Organizatioh and Retrieval
Computation for Statistical Data ProGessing
Educational Uses of Computers
Management and Information Systems I
Management and Information Systems II
Computation in the Humanities
Digital Circuits and Systems
Hardware-Software Architecture I

Hardware-Software Architecture II
Computer System Measurement and Evaluation
Artificial Intelligence
Computer Graphics II: Advanced Graphics
Computers in Real-Time Experiments

- Elementary Computational Methods
- Introduction to Automata Theory

- Numerical Analysis I
- Switching Theory and Logical Design
- Automata and Formal Languages
- Algebraic Theory of Automata

The First Semester Core

The first semester core is divided into two
parts - an introduction to computing and an in-
troduction to a high level programming language.

The introduction to a computing course in-
troduces concepts and methods by which problems
are defined, described and implemented on com-
puting machines. The student learns principles
of algorithms and their implementation through
computer compatible languages. In order to fac-
ilitate the student's rapid progress through
different types of machine problems, languages,
and classes of algorithms this part of the course
relies heavily upon three different types of
machines - each one implemented through a sim-
ulation program. The student immediately starts
on a study of algorithms and their implementation

suitable to a relatively simple machine (basic-
ally a Turing Machine), proceeds to a one address
machine, and finally to a symbolic assembler.
Other topics include number representation and
conversion, non-numeric data representation,
formal descriptions of algorithms, specification,
languages, introduction to the principles for

software construction, and a limited description
of hardware.

Simultaneously the student is introduced to
a high level programming language. At the present
time, the language taught is PL/I because it has a
wide range of relatively easy to learn problem
Solutions in the humanities and social sciences as
well as in the hard, natural sciences. Plans are
underway to broaden this course to allow each
student to select the language he will learn
according to his interests and goals. The lang-
uages to be offered will include PL/I, FORTRAN,
ALGOL, COBDL, APL, LISP, and SNOBOL.

After completing these courses, the student
can go on to take a variety of applications and
foundations courses without needing any additional
core courses.

The Second Semester Core

The second semester core is designed to give
the student a facility in problem solution to a
more advanced level. This is represented in
Figure 1 by the single course 118, although there

are actually two ways in which the student may
meet this requirement:

a) by taking the course 118, in which
the student completes 3 to 4 projects,
selected from a set of prepared pro-
jects. The student must select at
least one project from each of the
three categories: numerical calcula-
tion, symbol manipulation, and data
processing.

b) by taking one or more unit project
courses entitled "Computing in . . .",
which are offered under the super-

vision of a faculty member in the
application department. Most of the
courses which show 118 as a prerequi-
site also allow the student to select
at least two of these courses instead.

After completing this course, the student is
prepared to take additional applications courses
which require somewhat greater sophistication in
programming and problem solving ability.

The Second Year Core

The second year core represents a slight
concession to a two track system. In order to
accomodate the student who wants to take an ad-
vanced course in a specialized area" ~.g., graph-
ics, artificial intelligence, or system measure-
ment and evaluation) without making a ~ajor com-
mittment to Computing Science, the course 200 has
been designed to cover a range of topics from the
remaining core courses to a degree which will en-
able the non-major to participate in these ad-
vanced courses. In addition to covering data and
program organization, normally treated at this
level, the course includes material on hardware
and software architecture, multiprogramming, multi-

processing, time-sharing, operating systems, and
synchronization of processes.

For the student who intends to commit him-
self more heavily to Computing Science, the main-
stream core course basically covers data and pro-
gram organization. This course reviews the basic
organization of programs and their data
structures, control languages, and input~output
requirements. Advanced methods are introduced for
design and implementation of large programs in-
cluding the need for and implementation of modu-
lar designed programs.

30

The Third Year Core

The third year core consists of a two semes-

ter sequence in applied programming. This course
emphasizes business and scientific systems de-
velopment, maintenance and documentation of pro-
grams. Topics include use of online systems,
graphic output, user consultation, program li-
brary development, maintenance and documentation,
selecting an application language, system life
cycle. There are also a series of assignments,
tutorials, and seminars given by the faculty and
computing centre staff.

The Fourth Year Core

The fourth year core consists of a two sem-
ester course in hardware and software architecture
which explores functional properties of digital
computer systems. Emphasis is on the operational
characteristics of concern to the systems pro-
grammer. Major topics covered are: organization
of main storage; machine language; design of sim-
ulators and interpreters; CPU and I/O interaction.
A large system is examined in detail. The second

semester of the hardware-software architecture
sequence covers the in house system and its
assembly language.

Facilities and Equipment

The Simon Fraser Computer Centre has a 370/
155 with 2 M bytes of main memory, 1200 M bytes

of on line disk storage and three high speed
printers operating under OS/MVT with HASP and
WYLBUR. The WYLBUR system has just been intro-

duced and will not be used for student jobs
until the accounting system is operational and
more WYLBUR terminals are available. Neverthe-
less, turnaround in the batch for student jobs
ranges from 3 to 30 minutes.

In order to accomodate the increased en-
rollment in Computing Science courses antici-
pated over the next two years, we intend to
establish a separate area for the submission
of student jobs. This area will include a
number of WYLBUR terminals and keypunches, and
access to a card reader and a high speed print-
er. Most student jobs arise from the elemen-
tary courses and are processed by simulators
or student oriented compilers such as PLUTO,
'WATFIV,'W~TBOL, etc. These will be handled
by a fast batch monitor in a dedicated par-
tition so that fast turnaround is assured.

Experience So Far

Since the Fall 1973 semester is the first

semester of actual operation there is little
actual experience to report. However, the level
of enrollment indicates a considerable student
demand for a computing science program and the
results of a course evaluation of the introductory
course indicate enthusiastic reception by the

students.

Conclusion

The program we have outlined here appears to
offer a satisfactory solution to what has been a
very difficult problem. Further implementation of
that program may uncover unanticipated difficul-
ties. But, so far, the program appears to fit
within the general structure of a modern univer-
sity.

Our method of teaching Computing Science pre-
vents the university from establishing this dis-
cipline as a separate department. Rather, Com-
puting Science is treated as a degree giving pro-

gram servicing the university and students for a
variety of purposes. As one consequence, no
strong departmental structure develops. On the
other hand, because so many departments partici-
pate in the program, the needs of Computing
Science have more power of persuasion than do the
needs of other, more traditional, departments.

Jurisdictional disputes are best resolved
either by dual listing of courses or by giving
credit for a course in Computing Science, even
though the course may be offered under the aegis
of another department. A good example are rele-
vant courses which are offered under the Math-
ematics label. The only condition that has to be
met is that the mathematician teaching these
courses is qualified to do so from the point of
view of Computing Science.

The content of our curriculum may not suit
every taste and there is no reason why it should.
~B~t the Simon Fraser model is most flexible in
this respect. More theoretical minded programs
may be constructed by bolstering the core and
foundations sequence or more applied minded pro-
grams formed by paying greater attention to the
applications areas. It may well turn out that
experience will determine the optimal balance
between the parts of similar programs at any
university.

Acknowledgements

our sincere thanks to Dean Robert Brown for
his unstinting support for our experimental at-
tempts.

Much that is good and successful in our
curriculum dates back to long years of collabora-
tion with our esteemed colleague and long time
collaborator, Professor Seymour Pollack, who
would be with us today had he not formed a
stubborn attachment to Washington University.

31

r--i
I I

I---11_

F~
F~ Theoret ica l

(Hath)

0

Hardware
(Physics)
(Eng.)

Supporting
Services
(Statistics)

Software
(Computing)
(Science)

Core
Sequence

I

,~ - ~LT ~ - ~ ,

z . . - - J l . - - - J

F~
F~

F~

M

Natural
Sciences

Life
Sciences

Mgmt.
Science

Humanities

Social
Sciences

Education

i ~-

¢P
i J.

{n

"I0

--4

m (D

m

0

~o
~>

32

