
TEACHING DEBUGGING

by

Robert F. Mathis
Departmen£ of Computer and Information Science

The Ohio State University

ABSTRACT

A course in debugging techniques is motivated and described. A course outline, reading list, and
projects list are included. Certain debugging aids are described. Debugging techniques for elementary
algorithms are illustrated. Particular attention is paid to ways to teach debugging and algorithm structure.

Program testing and debugging occupies more
than 50% of professional programmers' time. Almost
every survey or estimate points out this area of
program development as time consummlng, difficult,
poorly planned, and often slighted. Program
debugging also consumes a large part of the time
in an introductory programming course. Out of
fifty or more computer runs during a term, the
average student usually has only four or five
runs which are even close enough to correct to
hand in. But there seems to be no formal instruc-
tion on debugging or guidelines in the text or
even any good folklore on how to do it. A student
either learns to debug his own programs somehow
or he finds somebody who can help him. Consider-
ing the advances which have been made in teaching
programming, debugging instruction is still in
the dark ages.

Currently debugging is a real art form and it
is done in an almost magical way. Dump reading is
almost always described in some variation of, "I
just keep comparing fields until one catches my
eye and then I have a place to start." Students
and teachers are encouraged to minimize errors by
having good work habits, being methodical and neat,
and checking for clerical details. I This is cer-
tainly good advice, but it doesn't really help
when it comes to fixing a problem. Structured
programming and programmer/team management are
both ideas which developed in an attempt to
write programs with fewer errors to start with.
These are important concepts and should be dis-
cussed; but once again, they are of minimal help
when it comes to correcting an error. Some of
the most useful (from a teaching standpoint)
recent developments in compilers and programming
systems have been the addition of better compile
and run time diagnostics. These have made pro-
gram debugging significantly easier. In the
assembly language area, there are some processors
which make teaching and using assembly language
easier (e.g. Waterloo's ASSEMBLER G, Penn State's
ASSIST, and Ohio State's Baum-Silverman interpre-
ter). The common and most visible advantage of
these processors is a simplified post mortem dump.

The increasing use of these processors reinforces
my belief that the most difficult part of assem-
bly language programming is not the use of the
language itself but the almost exclusive reliance
on dumps for debugging. Even students in our
advanced systems courses have difficulty when
confronted with a dump. I have therefore included
in the course some formal instruction in using
dumps and other debugging aids. One of the
assignments I use in our beginning systems course
is to write a dumping routine. This gives the
student a better understanding of the system and
also makes him think about what information he
would llke to have upon termination of a program.

To see if something could be done in teaching
debugging, I began making specific debugging
related assignments in programming courses, having
students work on individual special projects
related to debugging, and finally teaching a
course about debugging in general. This paper
describes some of the aspects of that course.

The course is divided into three main parts -
one, discussion of existing debugging tools and
techniques; two, literature on proposed tools,
test methods, and program verification; and three,
student projects.

Debugging Course Outline

1. Program development phases
2. Writing better programs

A. Modularlzation
B. Structured programming
C. Standards
D. Management and technical problems
E. Documentation

3. Types of bugs/mlstakes
4. Debugging in general
5. Debugging and other issues

A. General trade-offs
B. Hardware problems
C. Program correctness
D. Performance evaluation
E. Auditing
F. Security

59

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953057.810443&domain=pdf&date_stamp=1974-01-01

6. Algorithm design for debugging
7. Programming for debugging
8. Programmer built-in aids

A. Intermediate output
B. Module interrelation
C. Assertion checking
D. Computation checks
E. System features for facilitating

9. System supplied aids-text processing
A. Compiler d~agnostlcs
B. Cross reference list
C. Standards checkers
D. Auto flowcharters
E. Auto documentation

i0. System supplied aids-durlng execution
A. Preprocessors
B. Execution monitors
C. Co-resident
E. Interactive
F. Traces
G. History keeping and processing
H. Dumps
I. Abend trapping
J. Test executives
K. Module testers
L. Test generators

ii. Propossed aids
A. Hardware/software changes
B. Shadow task
C. Abend analyzers
D. Dumps
E. Abend traps programming language
F. Program Control Block
G. Error Analysis Control Block
H. Dump analysis

I. TSO dump reader
J. Virtual memory abend processing
K. Event monitoring use
L. Programming and debugging system

12. Post execution debugging
A. Practical methods
B. Theoretical investigation

13. Aids for error types
A. Keypunching
B. Data Structures
C. Numeric calculation
D. Control flow
E. Loop control
F. Decislon/branch tables
G. Simulation
H. Input validation
I. Storage modification

14. Specific debugging aids
A. PDP-10 DDT
B. OS/MVT SYSUDUMP
C. TSO TEST
D. Fortran Interactive Debug
E. Cobol Interactive Debug
F. PI/I Checkout and Optimizer
G. WATFOR-WATFIV-WATBOL-PL/C

15. Case Studies
16. Projects
17. Debugging strategies
18. Review and summary

The published literature on program debugging
is very small. There are three books which are
relevant3,4, 5, and two published bibllographies 6,7

An important part of the course, and of the
teaching of programming and debugging in general,
are the student projects. Some of the projects

have involved mainly the study of various existing
programming systems and their debugging facilities
but the more important ones have dealt directly
with the building of debugging aids and tools.
Some of the projects are

i. custom dumping routines
2. data structure outputting
3. dump analyzers
4. execution monitors
5. interpreters
6. programming aids
7. program tracers
8. automatic generation of test data
9. systematic error causers

lO. testing the equivalence of programs
Ii. incremental compiling
12. incremental modification of programs

Many of these projects are also usable in more
general programming courses.

The course has been mainly oriented toward
techniques which are useful in debugging programs
which have not been written in any special way.
There are also techniques for writing programs in
a way which will make them easier to debug.
These techniques should be discussed in all pro-
grammlng courses.

Programming standards and methodologies,
modular programming, and structured programming
are all techniques which help in writing programs
with fewer bugs to begin with. These techniques
should be used and should be taught in elementary
programming courses. As an outgrowth of the
course on debugging, certain techniques became
apparent which make a program easier to debug.
These center around internal checking and inter-
mediate output. The simple algorithms used in
programming courses should not only show program
development but also proper practices and debugging
techniques.

In an elementary course we usually begin with
a simple algorithm and develop it completely.
First we describe the process in words and then
flowchart it in one form or another. Then we
teach enough of a programming language to imple-
ment this algorithm. In particular the first
example in the book by Forsythe, Keenan, Organick,
and Stenberg, Computer Science: A First Course 2,
is the computation of the first term in a
Fibonacci sequence which exceeds one thousand
(their Figure i-i0). Figure i shows the flow-
chart for this algorithm from their book. Figure
2 shows a simple FORTRAN (WATFIV) implementation
of this algorithm. Usually this is as far as we
go. We may use the algorithm to lead into more
complicated algorithms or to illustrate other
FORTRAN concepts, but usually we discuss one
algorithm after another - the computational and
data processing concepts involved and their imple-
mentation. The computer programs which implement
these algorithms must be assumed to be perfect
since there is never any discussion of possible
errors in implementation.

60

NEXT ÷ 0

3.
I SUM ÷ LATEST+NEXT

2

I 3

(SUM > i000 /----

I
LATEST * SUM)

.J

6

Figure #i

i NEXT=0
LATEST=I

2 SUM=LATEST+NEXT
3 IF (SUM-1000)4,4,6
4 NEXT=LATEST

LATEST=SUM
GOTO 2

6 PRINT,SUM
STOP
END

Figure #2

Consider the problems of translating the flow-
chart in Figure 1 to a computer program. Figure 2
shows a simple implementation. What statements
would we add to check this implementation? The
authors themselves give one hint. They discuss
this algorithm in detail by tracing its execution
step by step through the flowchart boxes. In the
computer implementation we can achieve a similar
result by placing the statement "PRINT, NEXT,
LATEST, SUM"after the FORTRAN statements which
correspond to each box in the flow chart. To make
the output a little clearer, we could add a sequence
number (NSEQ) and a statement number label. We
alsoneed to add special output statements for the
results of the test. The expanded version of this
program is illustrated in Figure 3. The added
statements appear as comments except for the two
statements to which the IF test might transfer.

C SUM=O
C NSEQ=I
10 NEXT=0

LATEST=I

C PRINT,NSEQ, 'i' ,NEXT,LATEST,SUM
C NSEQ=NSEQ+I
20 SUM=LATEST+NEXT

C PRINT,NSEQ, '2' ,NEXT,LATEST,SUM
C NSEQ=NSEQ+I
30 IF (SUM-1000)41,41,61
41 PRINT,NSEQ, '3', 'TEST FALSE'

C NSEQ=NSEQ+I
40 NEXT=LATEST

LATEST=SUM
C PRINT, NSEQ, '4' ,NEXT,LATEST,SUM
C NSEQ=NSEQ+I

GOTO 20
61 PRINT,NSEQ,'3','TEST TRUE'

PRINT, SUM
STOP
END

Figure #3

In this example, the debugging statements are
self-checklng in the sense that they are output
statements with specific expected results and they
involve no computations which might affect the
primary statements of the algorithm. They would
probably be excessive if they were all used at
once. Using them all would help in understanding
the algorithm and it is better to let the computer
play computer than tracing the whole program by
hand. Inclusion of all these intermediate output
statements as comments also shows where in the
program diagnostic output might be useful. Quite
often an algorithm is designed and improperly
implemented and there is no information on where
to request diagnostic output.

A common problem with debugging aids llke
traces is that they generate too much useless
output. The only reason to completely trace all
variables and statements, as in the preceeding
example, is to gain some understanding of the
inner workings of the algorithm. Usually there
is some smaller aspect of the program which
needs monitoring - the result of certain tests or

61

the modification of certain variables. The problem
is to determine just what information would be
useful in debugging a program. Consider the
following example of a sort routine. (The two
sorting algorithms discussed in the following
are from figures 3-29 and 4-48 of the Forsythe,
et.al, text.) The algorithm in Figure 4 makes
very little change in the llst for each "pass".
It would be foolish to print the entire list each
time there was an interchange. Similarly, the
new values assigned to variables would be uninfor-
matlve. The most useful thing here is to use this
algorithm as an exercise in intermediate output
and debugging aids design. My own suggestion
would be some kind of output following box 5 to
indicate the subscript of items being interchanged
and occassionally print the part of the list which
has changed. The frequency of printing parts of
the list is one of the problem areas in designing
temporary output statements to debug this algorithm.

More input "~

data? i

YES I 2

l, I

IF a

5

COPY ÷ A K
÷

AK+l

i

Figure #4

Since the primary activity of a sorting routine
is to change a data structure, the place to start
is with a routine to print that data struc-
ture and to indicate changes in it. For a vector,
or linear array, of numbers this is relatively
easy. The list can be printed by a single state-

ment

PRINT, ('A(' ,K, ')=' ,A(K),K=I,N)

Two versions of the llst can be easily compared and
the differences printed:

DO I00 I=I,N
IF (AOLD (I). EQ. A (I)) GOTO i00
PRINT, I ,AOLD (I) ,A(1)
AOLD (1)=A(1)

100 CONTINUE

Here AOLD is a copy of the privlous version of the
list being sorted. AOLD would need to he initial-
ized at the beginning of the routine. It is
automatically updated as differences are printed.
This kind of output routine can be well used in
another sorting algorithm like the one in Figure 5,
the shuttle-interchange sort. This algorithm
makes considerable changes during each pass but
they are all similar. One item is moved up and the
intervening elements are each moved down one place.

[

2
~AI, I=l (1)N 1

 FTI-TF

< Aj+~ F CAJ T 5

| COPY ÷ A
i

A ÷ J
A J+l A J+l

÷ COPY

6

-i -111 '-- i

F I s

÷ coFY_. I
I

Figure #5

62

Rather than printing all the changed values, we
mostly want to know--one, the initial and final
subscripts of the item which moved up in the llst;
two, that nothing was changed above or below these
points; and three, that the items in between each
moved down one place. In all cases the design of
intermediate output and debugging aids leads to
a closer investigation and better understanding of
the working of the algorithm.

I hope that these examples have shown that we
can teach some debugging concepts and a better
understanding of the algorithms by designing inter-
mediate output routines for some of the common
elementary algorithms we use in our courses.

This debugging course is an attempt to relate
various concepts and techniques of programming so
that the students can more easily produce correct
working programs. The contents and approach of
the course are stillunder development. Additional
reports of results, a more complete bibliography,
and reports from some of the student projects will
be available in the future.

1.

2.

3.

4.

5.

6.

7.

Footnotes

Forsythe, A.I., Keenan, T.A. Organlck, E.I.,
and Stenberg, W., Computer Science: Teacher's
Commentary, John Wiley and Sons, New York, 1969.

Forsythe, A.I., Keenan, T.A., Organlck, E.I.,
and Stenberg, W., Computer Science: A First
Course, John Wiley and Sons, New York, 1969

Rustln, Randall, Editor, Debu~in~ Techni-
ques in ~ar~e Systems, Prentice-Hall, Engle-
wood Cliffs, N.J., 1971.

Brown, A.R. and Sampson, W.A., Program
Debu~zln~.Amerlcan Elsevier, New York, 1973.

Hetzel, William C., Editor, Program Test
Methods, Prentice-Hall, Englewood Cliffs,
N.J., 1973.

Kocher, W., A Survey of Current Debu~in~
Concepts. NASA Report, August, 1969.

Kosy, D., Annotated Bibliography of Debugging
Testing and Validation Techniques for Compu-
ter Programs, Rand Corporation, Santa Monita,
California, WN-7271-PR, January, 1971.

63

