
LINUS: A STRUCTURED LANGUAGE FOR INSTRUCTIONAL USE

John D. Woolley and Leland R. Miller
Department of Computer Science
Bowling Green State University

I. INTRODUCTION

One of the crucial decisions in organizing a
first course in computer science is the choice of
a programming language. Although there is con-
siderable variance of opinion as to what the ideal
language should be, two main approaches can be
delineated. The first approach stresses the neces-
sity of learning the dominant scientific language,
which in the Americas amounts to a vote for Fortran
(2). The practicality of this choice is as indis-
putable as the awkwardness of the syntax of that
language. The alternative view stresses the impor-
tance of the program structure in developing a
sound sense of "algorithmic thinking". Proponents
of this view would suggest Algol W (4) or perhaps
Pascal (5). We contend that both approaches have
important advantages. This paper explores an ap-
proach which attempts to maximize the benefits of
both.

For pragmatic reasons, the student of a first
course should obtain a knowledge of the fundamen-
tal~ of Fortran. A number of structural problems
(especially with ANS Fortran) present obstacles to
the student in learning algorithmic thinking.
These include inadequate control structures, lack
of data type character, no free format input/out-
put, and use of default data typing and conver-
sions to trap the unwary. By regarding ANS For-
tran as a machine, to which programs in a higher
level language are translated, the advantages of
learning Fortran are still realized. Initially,
the student concentrates on learning a language
which is free of the above restrictions. Later,
in the same way an assembler programmer acauires
knowledge of his machine, the student acquires
knowledge of Fortran.

The solution we have adopted is to implement
a language called Linus (Language for in__struc~
tional use). This language ispreprocessed to ANS
Fortran, but has more the appearance of PL/I or
Algol 68 (3), facilitating learning correspond-
ing features of those languages. The majority
of the language has been implemented and is pre-
sently undergoing testing.

The remainder of the paper is divided into
the following sections:

Section 2--a description of the language
Section 3--sample programs
Section 4--options and debugging aids
Section 5--the impact of the language on

the curriculum
Section 6--future plans

2. LANGUAGE DESCRIPTION

Linus is a structured, goto-less language in
the sense of (6). Those who prefer to program in
the goto style may do so by means of a FORTRAN
block (see Section 2.3).

The language is free format and statements
may be combined to form blocks. A block corres-
ponds to an Algol 68 serial clause (3). Each
block has its own opening (such as FOR) and its
own closing (END_FOR). This aids the student in
correctly structuring programs, as the sample pro-
gram segment below illustrates.

PROGRAM ¢SKELETONMAIN PROGRAM¢
DECLARE

cDECLARE VARIABLES¢
ENDDECLARE;
FOR I := E DOWN BY 2 TO 0 LOOP

IF 1"3 > J72 THEN OUTPUT := I;
ELSE OUTPUT := J;

END_I~;
ENDFOR;

END_PROGRAM;

2.1 DATA TYPES AND OPERATORS

Linus has six scalar data types: integer,
decimal, Boolean~tri~g, format, and set. Table
2.1 illustrates the six types of constants and the
operators and functions associated with each data
type. Where applicable the equivalent Fortran sym-
bol is given in parentheses.

data type sample constant operators End functions
integer 126 +(+), -(-), *(*), %(/),

@(**)
decimal 32.536 +(+), -(-), *(*), /(/),

@(**)
Boolean TRUE &(.AND.), I(.OR.),

-~.NOT.)
string 'HOW NOW' LENGTH, SEGMENT, JOIN,

INDEX
format "S5,i3,DSF3"
set (/CAT,3.12,5/) UNION, INTERSECTION,

SUBSET, DIFFERENCE,
ELEMENT, LENGTH

Table 2.1Linus Data Types

The string functions LENGTH, SEGMENT, and
INDEX correspond respectively to the PL/I functions

125

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953057.810455&domain=pdf&date_stamp=1974-01-01

LENGTH, SUBSTR, and INDEX. JOIN is similar to the
PL/I operator I|.

Format constants are used in connection with
input/output statements. The format constant
"SS,13,D8F3", is the same as the Fortran format
(5X,13,FS.3). Initially students are taught the
long form of a format which for this example would
be:

"SPACE WIDTH 5, INTEGER WIDTH 5, DECIMAL WIDTH
8 FRACTION 3"

The elements of a set may be any string of
characters except the comma. Sets may be embedded
within sets to any arbitrary degree.

Mixed modes are not allowed within an expres-
sion. However, there exist data type convertors.
Figure 2.1 illustrates the Linus data type convert-
ers where each arrow represents a converter. An
example of a converter is INTEGER OF STRING(e)

Figure 2.1 data type converters

which converts the string e into an integer.
There is a library of standard functions such

as SIN(X) and LOG E(X).
Multiple scalar values may be formed by de-

claring arrays and structures. One, two, and
three dimensional arrays are allowed. Subscripts
may be positive, zero, or negative integers.
Structures may be defined over scalars, arrays,
and other structures [nonrecursive).

would be:
FUNCTION COMPLEMENT

(SET UNIVERSE ALWAYS CONSTANT/
SET A ALWAYS CONSTANT) RETURN SET
RETURN DIFFERENCE (UNIVERSE,A);

ENDFUNCTION;
Procedures and functions are independently

compilable as with Fortran. In contrast to Fortran
they may be recursive.

A facility to allow macros both with and with-
out parameters is also being added to the language.

2.3 BLOCKS
Declare Block

Every identifier (scaler variable, array,
structure, procedure and function) must be speci-
fied in a DECLARE block. There are no default
rules such as the I-N default in Fortran. Scalar,
array, and structure variables may be initialized
within a DECLARE block. The keyword ALWAYS de-
clares a symbolic constant whose value cannot
change within the program unit. An example of a
DECLARE block including scalar, array, and proce-
dure declaration statements is:
DECLARE INTEGER ARRAY G(-3:25) INITIALLY 29*0;

DECIMAL MIL INITIALLY 21.4, PI ALWAYS 3.14159;
PROCEDURE STOR (INTEGER/DECIMAL);

END_DECLARE;
An identifier contains one or more alphabetic

(A,B Z,_) or numeric (0,1,2 9) characters,
the first of which is alphabetic. There is no re-
striction on the length of an identifier.

Control Blocks
Linus has six control blocks which may be used

to alter the normal execution seouence of state-
ments.

The FOR block is similar to the FOR statement
in Algol 68 in terms of seouence of execution, and
allowing arbitrary integer or decimal expressions
as loop parameters. The step size is positive or
negative depending on whether the keywords UP BY
or DoWN_By are used. In the example

FOR I:=i0 DOWN BY 2 TO -i0 LOOP

2.2 PROCEDURES, FUNCTIONS, AND MACROS
Procedures correspond to Fortran subroutines.

The following example decla~sa procedure to com-
plement a set with respect to universe, UNIVERSE,
using the intrinsic set function DIFFERENCE:

PROCEDURE COMPLEMENT
(SET UNIVERSE ALWAYS CONSTANT/
SET A ALWAYS CONSTANT/SET B)
B:=DIFFERENCE(UNIVERSE,A);
RETURN;

END_PROCEDURE;
This procedure would be invoked by:

DECLARE SET UNIVERSE, X, Y;
PROCEDURE COMPLEMENT(SET/SET/SET);

END_DECLARE;
UNIVERSE:=INPUT; X:=INPUT;
CALL COMPLEMENT(UNIVERSE,X,Y);

Note that procedures must be declared in the call-
ing program so that the precompiler may verify that
all calls are in the intended format. Also, inside
the procedure body, the parameters "UNIVERSE" and
"A" are "storage-protected" that is, there values
may not be altered.

The same procedure declared as a function

END_FOR;
the step size is -2.

Other Linus control blocks which generate a
loop are the UNTIL and WHILE blocks. An example
of a while block is

WHILE 3.*X<14.1 LOOP

END WHILE;
The Linus CASE block is similar to th~ For-

tran computed GO TO statement.
The IF block corresponds to the PL/I IF...

THEN...ELSE statement. The WHEN block corresponds
to the IF block without the ELSE.

Fortran Block
The programmer may write any portion of his

program in Fortran, simply by placing the Fortran
ststements in a FORTRAN block. With this facility
the programmer can move back and forth from Linus
to Fortran.

126

2.4 STATEMENTS
The Linus assignment statement has the form:

v :m e;
where v is either a scalar, a subscripted array, or
a qualified structure identifier and e is an ex-
pression of the same data type. A special case of
the assignment statement is the simple input/output
statements which have the following forms:

v := INPUT;
OUTPUT := e;

The formatted input/output statements use the
format data type. The general form is:

READ(n,y) vl,v2,...,vk;
WHITE(m,x) el,e2,...,ek;

where y and x are format expressions, n and m are
device reference numbers, vi is a variable and ei
is an expression.

3. SAMPLE PROGRAMS

PROGRAM
¢ BUBBLE SORT PROGRAM ¢

DECLARE INTEGER I,N;
DECIMAL Z,ARRAY X(I:I00);

END_DECLARE;
N:=INPUT;
FOR I:=i UP BY i TO N LOOP X(1):=INPUT; END

-- FORT
I:=i;
WHILE I<N LOOP

IF X(1)<X(I+I)
THEN I:=I+i;
ELSE Z:=X(I+I); X(I+I):=X(1);

X(1):=Z; I:=i;
END_IF;

END__WHILE;
FOR I:=I UP BY i TO N LOOP OUTPUT:iX(1);
END_FOR;
STOP;

END PROGRAM;
=DATA

4
12
16
21

-31
END_~DATA;

PROGRAM
cFIBONACCI NUMBERS ¢
DECLARE INTEGER FIRST, SECOND, THIRD, I;
ENDDECLARE;

FIRST := O; SECOND := I;
OUTPUT := FIRST; OUTPUT := SECOND;
FOR I:= 3 UP BY I TO i000 LOOP

THIRD :~ FIRST + SECOND; OUTPUT := THIRD;
FIRST := SECOND; SECOND := THIRD;

END_FOR t
STOP;

ENDPROGRAM;

PROGRAM
¢ PRINTING OUT ELEMENTS OF A SET ¢

DECLARE SET S; INTEGER I; END__DECLARE;
S :=INPUT;
FOR I:=i UP BY I TO LENGTH(S) LOOP

OUTPUTT=ELEMENTS(S,I);
END FOR;
STOP;

ENDPROGRAM;

~DATA
(/(/A,B/),(/A/),(/B/),(//)/)
END_=DATA;

4. OPTIONS AND DEBUGGING AIDS

The user has several options to aid in debug-
ging a program. The TRACE statement may be used to
have values of variables printed whenever their
values are changed. The NO TRACE statement deacti-
vates the trace.

The HISTORY statement Causes a source line
number (as generated by the preprocessor) to be
printed whenever the statement is executed. The
NO HISTORY statement deactivates the history.

A DUMP may also be specified anywhere within
the program. This will give a list of all vari-
ables used in the program and their present values.

Thorough diagnostics are given for all syntax
errors. An attempt is made to execute a program
regardless of the severity of syntax errors.

There are 20 options available to the user,
some of which are indentation of source code,
cross reference, environment map (installation de-
pendent information such as magnitude of integers
and decimals), and interlisting of Fortran code
with Linus code.

5. IMPACT ON CURRICULUM

At Bowling Green State University, course BI
of curriculum 68 (i) is divided into a two quarter
sequence. Currently, in this sequence the student
is taught a thorough knowledge of Fortran IV and
a comfortable knowledge of Snobold. Using Linus
the student learns algorithmic thinking with a
language that is structurally simpler and more
consistent. As he studies the Fortran Drograms
produced by the preprocessor, he begins a gradual
transition into Fortran. By using the FORTRAN
block, an increasing proportion of the program can
be written in Fortran. At the end of the first
quarter the student will be using Fortran, but now
he will be more disciplined in his programming.
For example, even though there is no WHILE con-
struct in Fortran he will tend to program its
Fortran equivalent, having learned it from the
preprocessor.

If the Linus experiment proves successful in
the first two courses of the curriculum its uses
in other courses will be explored. For example, it
could be a useful language in teaching Data Struc-
tures (If) or Discrete Structures (B3).

6. FUTURE PLANS

When the full Linus language has been imple-
mented, its effectiveness in teaching will be eval-
uated. To do this, t~e" beginning students in com-
puter science will be divided into two control
groups. One group will be taught Fortran, and the
other group Linus. Tests will be given to each
control group to determine the effectiveness of
Linus.

Thought is also being given to a Snobold-based
Linus and a PL/I-based Linus. These would be use-
ful for a student who already knew Linus and wished
to rapidly acquire a working knowledge of Snobol4

127

or PL/I. A Snobol block and a PL/I block would
also be provided to allow the student to move
into the desired language.

Acknowledgments

The authors wish to express their apprecia-
tion to the students who have participated in the
implementation of the Linus language. Special
thanks goes to Mr. Charles M. Bernstein for
his efforts in coordinating the implementation
of the project.

I.

2.

3.

4.

5.

6.

REFERENCES

Atchison, W. F.~ et al, "Curriculum 68 - Re-
commendations for Academic Programs in Computer
Science," CACM, II, 1968, pp. 151-197.

Ralston~ A., "Fortran and the First Course in
Computer Science," SIGCSE Bulletin, Vol. 3,
No. 4, December 1971.

Van Wijngaarden, A., Mailloux, B. J., Peck, J.
E. L., and Koster, C. H. A., Report on the
Algorithmic Language Algol 68, MR I01, Math-
ematisch Centrum, Amsterdam, October 1969.

Wirth, N., Hoare, C., "A Contribution to the
Development of ALGOL," CACM, 9, 1966, pp. 413-
432.

Wirth, N., "The Programming Language PASCAl,,"
Acta Informatica, I, 1971, pp. 35-64.

Wulf, William A., "A Case Against the GOTO,"
SIGPLAN Notices, Vol. 7, No. Ii, November 1972.

128

