
TEACHING STRUCTURED PROGRAMMING ATTITUDES, EVEN IN APL, BY EXAMPLE

T. W.-S. Plum and G. M. Weinberg
Human Sciences and Technology
School of Advanced Technology
State University of New York
Binghamton, New York 13901

ABSTRACT

As a programming assignment in a
graduate programming course, students
were to program an interactive word game,
JOTTO. The language used was APL, under
constraints of well-structured program-
ming and complete control of the user-
machine interaction. In response to
complaints that teamwork was an impedi-
ment to programming and that it was not
possible to write efficient well-
structured programs in APL, the instruc-
tors undertook to complete the assign-
ment working as a team. The results of
the effort were carefully documented,
including experiences with program modi-
fication, and are presented here, as they
were to the class, to illustrate the
principles that should be communicated
to professional programmers.

The Assignment

The game of JOTTO was chosen for one
assignment in our entry-level graduate
professional programming course [i] in
order to illustrate at least the follow-
ing principles:

i. Programming for on-line inter-
action.

2. Structured programming where
time and space efficiency would be
critical.

3. Differences between human and
machine approaches to the same problem.

4. Differences between languages
for implementation, sincethe game had
to be implemented in both PL/I and APL,
and a comparison report written.

5. Differences between batch (PL/I)
and on-line (APL) programming.

On the students' comparison reports,
the most frequent complaint was that
it was simply not possible to work in a
structured way in APL, especially when
there were space and time constraints.
The problem had been carefully designed
to induce space and time problems, for
a list of 2688 five-letter words from
the Merriam-Webster Pocket Dictionary
[2] had to be used for the final tests
in a 30K byte workspace, under con-
straint that the user should not be
troubled by the interaction time.

The second most frequent complaint
was that when working on-line, as in
APL, a team approach hindered progress.
Since one of the main objectives of the
course was to impart a well-structured
team approach to students whose pre-
vious experiences were likely to be
lone wolf and lacking structure, the
two instructors decided that a drastic
lesson was needed. Therefore, they
undertook to program the problem them-
selves.

JOTTO is a word-guessing game. Two
opponents each select a five-letter word
which the opponent must guess by an alter-
nate guessing-and-reply process. Each
guess is a five-letter word, and each
reply is the number of letters in common
between the "hidden" word and the guessed
word. (See Appendix 1 for more complete
rules, and Appendix 2 for a typical game
against the machine.)

The human strategy in JOTTO is gen-
erally one of letter-by-letter elimina-
tion, but for the computer, with its
infallible memory, a simple-minded sieve
seems to be the superior approach. The
one team out of 18 that attempted a letter-
by-letter approach never managed to com-
plete the project--all others used the
sieve, in one variation or another.

Since the sieve technique uses all
possible information from the guess and
reply, the only area for improvement of
guessing play lies in second-order stra-
tegic consideration--which word to guess
on a given turn. Since one of the objec-
tives of the assignment was to see how
easily we could make experimental modi-
fications in well-structured programs,
our final program makes a modest essay in
this area. We guess a word that minimizes
a particular estimate of the length of
the game; but as luck would have it, our
program was beaten by the champion of the
class tournament--a program that used no
further strategy beyond the simple sieve.
Of course, to evaluate such strategies
properly, a long series of games would be
needed, but this will be the topic of
another report.

133

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953057.810457&domain=pdf&date_stamp=1974-01-01

Initial Implementation

The program was consciously a two-
man team effort from the beginning. (The
final version of the program is presented
in Appendix 3.) One two-hour planning
session produced the coding for the top-
level function, JOTTO, and a division of
its subroutines between the two team mem-
bers. The mainline was born as a struc-
tured flow chart in the style of Nassi
and Schneiderman [3]. The question of
"Who gets what?" was answered by: (a)
examining the interdependence of the
routines, influenced in concept, but not
in notation, by Parnas [4]; and (b) per-
sonal preferences to try out pet ideas.
The top-level routine (JOTTO) was never
altered after that first session--a sign
of good modularization and good luck.

Structured programming was the peda-
gogic thrust of the program. Modularity,
and its payoff for modifiability and com-
prehendability, was our first concern. A
uniform embodiment of DO-loops in APL was
still in experimental stages; a uniform
representation of IF statements was not
even attempted. But we adhered to the
convention that the flow structure of
each routine, however it was realized by
specific statements, would be strictly
composed of DO and IF structures. The
small size of the modules keeps the small
deviations from convention still compre-
hensible (as in INWORD, REPLY, and
TERMINATION)~

Modularization was supported by the
initial design, but also by the technique
of setting a conscious limit of 25 un-
cluttered APL statements--no "one-liners"
--per module. If and when a module grew
longer or threatened to grow longer than
this in the original paper coding, we
took this growth as a sign to modular-
ize further. The careful initial plan-
ning and clear program structure pre-
vented any cancerous growth of modules
while they were under test at the ter-
minal, one of the most typical student
difficulties when working with APL.

Another student problem is encour-
aged by most APL texts, which seem to
set store by the shortest possible names
and never bother to localize variables.
We set ourselves a standard of local-
izing all variables except those expli-
citly'needed to be global, and of choos-
ing names as a convenience to the reader,
not as a shortcut (ill-advised) for the
writer. The reader should judge for
himself the extent to which our conven-
tions succeeded, starting with the top-
level JOTTO routine and moving down the
program structure as guided by the
structure diagram shown as Figure i.

Total working time in addition to
the four man-hours of planning was 3.5
man-hours at the terminal for keying the
programs and detecting and correcting ~
the 5 keying and 2 logical errors that
occurred. Thus, in 7.5 man-hours of

effort (and less than 12 hours of elapsed
time), a zero-level working version was
obtained. As planned in the construc-
tion of the assignment, however, this
version could not operate for the full
2688-word list in a 30K workspace, so a
space-optimization step became neces-
sary. We should note, however, that
half of the eighteen student teams did
not pass this point, and never obtained
a version that would work with the
full word list, even though they aver-
aged well over 100 man-hours for their
APL version, and took 6 weeks of elapsed
time.

Space Refinements

The most frequent objection to
small-module construction is overhead
inefficiency, yet the modularity of
this project yielded insight into op-
portunities for 91obal optimization,
provided the extra programmer time to
make the revisions, and allowed the re-
visions to be made with limited side
effects. We shall discuss the revis-
ions in some detail so that the reader
can see just how this happened.

In the simplest version of the siev-
ing process, one would simply erase or
delete the words which are no longer pos-
sible winners. However, this prevents
the program from checking the legality
of the opponent's guesses, so from the
first session we agreed to preserve
words. Our choices for embodying the
sieve, as we saw them, were to keep a
separate list of sieved ("still potential
winner") words, or to keep a list of the
indices of the words. Storage considera-
tions (five bytes per word, four bytes
per index) led us to establish a global
variable INDEX which maintained the in-
dices of the sieved words. Indeed, the
problem had been designed as a classroom
assignment with such considerations in
mind, in order to rule out certain blind
APL approaches and force the students
into at least one "space optimization"
and one "time optimization" step. The
design was quite successful in this re-
gard, and forced even the instructors to
make this modification.

In the zero-level version, the SIEVE
subroutine removed from INDEX those in-
dices of WORDS which were eliminated by
the most recent guess-and-reply, and
INDEX was simply initialized by the APL
iota function to have all indices from 1
to the size of WORDS. Since APL modifies
the size of variable arrays dynamically,
the maximum storage requirement came only
at the beginning, when INDEX was at its
full size.

We found that by removing the crea-
tion of INDEX from the INITIAL routine
and creating only the needed indices on
the first pass through SIEVE, the space
problem was solved--at least statistic-
ally--since typicall ~ three-fourth s of

134

INDEX is deleted as a result of the very
first guess. Because of modularization,
only INITIAL, GUESS, and SIEVE needed
changing--in obvious ways--and the modi-
fication was made in less than one man-
hour of work.

Time Refinements

The full word list could now be used,
but we found that the program ran agon-
izingly slowly on its first move--perhaps
three to five minutes of elapsed time if
the APL system was not too heavily loaded.
Again, this was an explicit design cri-
terion that had gone into the problem
specification, for we had estimated that
any simple-minded approach would be too
slow to satisfy a human player, given the
inefficiencies of APL's interpretive im-
plementation.

The approach we teach to execution
time refinements is based first of all,
of course, bn choosing appropriate algor-
ithms, but within a particular algorithm,
on the detection of the critical point
[5]. When, as in this case, we are
searching for more than a 50 percent im-
provement in operating speed, there can
be at most one critical point, which in
this program clearly had to be COMMONWITH
--the routine that calculated the number
of letters in common between two words.
Version 2 of the COMMONWITH routines was
a direct substitution involving a matrix
operation instead of a loop, which gave
an overall speed increase of close to 50
percent. This is a typical local
optimization: no other pafts-0f-the pro-
gram were affected--a sign of appropriate
modularization--and less than one man-
hour was needed.

At this point, the program played at
a more or less acceptable speed, as long
as the system was not saturated. This
refinement, then, made the program re-
sponsive to the conditions of the as-
signment--something that none of the
teams had accomplished (so that our
tournament had to be run without regard
to execution times being "reasonable").
Thus, by a modular, stepwise approach,
we had achieved in less than ten man-
hours what none of the teams could do in
more than 100.

Even with this change, however, the
program was too slow to consider modifi-
cations for improving strategic play.
Unless considerable speedup could be ob-
tained, improving the ~ of play
seemed out of the questlon. However,
since the main objectives had been met
and a clear demonstration had been made
to get the class back on track, the prob-
lem was allowed to rest there for several
weeks.

During a lull in activity, we brought
the problem up again for discussion and
noticed the possibility of a ne~t solu-
tion. If not for the problem of dupli-
cate letters, the counting of common

letters could have been accomplished by
the simple APL expression,

+IAcB

(AEB) produces a vector of ones or zeros,
with ones for those elements of A that
are also elements of B. The sum-reduc-
tion (+/) applied to this vector then
counts the ones, which, if there are no
duplicates, will be the number of letters
in common between words A and B. Indeed,
three of the student teams had incorrect
programs because they thought this func-
tion counted all cases correctly~

If an algorithm doesn't have to be
correct, it can be as fast as you like.
Our problem was to preserve the speed and
change the correctness of the approach,
which we could do by forcing the words
not to have letters in common. With some
extra initial work, the program could en-
code the words so that the second occur-
rence of a given letter had a different
character code from the first, and so
forth. The third version of COMMONWITH
then became a simple counting of equal
letters; in APL, +/AcB. This short code
was inserted directly into inner loops
in HOWSPLITS and SIEVE, the most fre-
quent calls, but other calls on COMMONWITH
were left intact. This change in the
major global variable had effects in sev-
eral functions: COMMONWITH, GUESSWASBAD,
HISWORDISBAD, HOWSPLITS, INITIAL, INWORD,
REPLYWASBAD, and SIEVE, as well as creat-
ing the new functions DECODE, ENCODE, and
INITIALENCODE.

In many ways, this was a worst-case
modiffcation--changing the fundamental
global data structure on which the game
was based--and this showed in the effort
of making the change. This change was
the only one of the refinement steps
which introduced an error--we omitted to
insert DECODE in line 7 of REPLYWASBAD.
This error was not found by "debugging",
for in order for it to show up we would
have had to use a bad reply consisting of
a word with some multiple letter, a rather
unlikely case. Instead, the error was
found by symmetry arguments when reading
a draft of this paper--a neat example of
the power of program reading [6], and of
the value of having a clear, modular
structure that can be read even months
after the program was written. (The ini-
tial change was made in violation of our
usual practice of egoless code reading,
as one of the authors was out of the
country at the time.)

Altogether, this modification took
two man-hours of effort (not counting
the "thinking time" to come up with it,
or the time to find the bug that we didn't
detect, neither of which times we can es-
timate fairly). The program now ran so
fast that it was almost imperceptible to
the user, so we felt we had sufficient
capacity to make some strategic improve-
ments.

135

Strategic Refinements

The first ("zero-th" officially) ver-
sion of GUESS simply picked a random ele-
ment of INDEX and guessed its associated
word. This one-liner allowed quick test-
ing of the entire system, which was all
written in the evening of the first plan-
ning session. A more intelligent version
of GUESS became the official "first" ver-
sion; this one tried several words from
the word list and used the one which per-
formed best on a certain test of splitting
the sieved words (in INDEX) into equalish-
sized classes.

The time saved by modifying COMMON-
WITH gave us enough room to test suffi-
ciently large classes of words to come up
with good guesses, and play improved
accordingly--by an average of over one
move per game. In making these changes,
however, we pushed the space requirement
up so that once in a while there wasn't
sufficient room for INDEX even after the
first move, if the guess didn't eliminate
enough words--an unintentional but typical
"change-makes-change" situation.

In order to cope with this situation,
we did what we probably should have chosen
to do the first time we encountered a
space problem--we changed SIEVE to keep
track of sieved words by their position
in the WORD list, which was sorted in-
place into two classes, possible and eli-
minated. This change got rid of INDEX
altogether, and so affected the two other
routines that used it--GUESS and INITIAL.
It had the interesting additional advan-
tage that since the WORD list is reordered
with every game, the program will defin-
itely play differently each time the same
word is presented, thus preventing cer-
tain adaptations by the opponent.

On the other hand, shuffling the word
list does make the system harder to study
if what we are interested in is the JOTTO
game itself, and not the programming pro-
cess. In considering the modification of
our system from an interactive toy to a
"batch" experimental tool that plays
games against itself to study strategy,
we discovered one "failure" of our de-
sign. This failure would have cost more
in modification effort than we might have
needed had we followed Parnas' suggest-
ions more closely. In retrospect, we see
that all communication with the terminal
should have been buried in common GET
and PUT subroutines, so that the system
could have been modified to off-line
simply by modifying these two functions.

In general, we have followed this
practice in other interactive systems we
have produced [7], but for some reason
did not do it here, but rather scattered
communication operations throughout the
code. While they are rather readily
recognized, and we could have converted
them for this presentation, we decided
to leave them as an example of how any
program development could be improved

Upon. We would certainly recommend,
however, that any interactive system be
programmed with all communication func-
tions buried a la Parnas and kept at the
lowest level po~ible.

Summary and Conclusion

We have presented our experience
with a classroom problem designed to have
certain realistic aspects so as to pre-
pare our programmers for the world out-
side the university. We hope we have
demonstrated, as we did to our students,
that approaching the programming process
in a structured way can yield factors
of ten or more improvement in productiv-
ity. (Please note that the difference
in our results from those of the 18
programmer teams cannot be attributed to
mere "experience" or familiarity with
the APL language. Several of the teams
had total experience equal to or surpass-
ing the team of instructors, and many of
the students had far more hours of APL
time under their belts.)

We do not present our programs as
some sort of optimum "solution"--instruc-
tors should avoid doing this even when
they believe it to be the case. We have
already been critical of our modulariza-
tion of communication functions, and of
some of our stylistic variations. The
reader may see strategic or analytic im-
provements which will result in a signi-
ficantly better game being played, for
the game of JOTTO has a good deal more
theoretical interest than appears on the
surface.

But this paper is not about JOTTO.
It is about the way people write programs,
and teach others to write programs. We
believe that programming is a practical
subject, not a mathematical one, and must
be taught by instructors who are prepared
to demonstrate how the principles they
espouse may be put into action. We be-
lieve that "structured programming" does
not mean some rigid set of mathematical
rules imposed on programmers, but an atti-
tude about programming that says you can
always improve if you only examine the
way you currently do things. If, through
exercises such as these, frankly discuss-
ed with our students, we can make them
program self-consciously, we shall have
succeeded as teachers.

References

[i] Thomas W.-S. Plum and G.M. Weinberg,
"Teaching Experienced Professionals: Re-
medial Programming", in Proceedings of the
IFIP Working Conference on Programminq
Teaching Technique's, North Holland Pub-
lishing C0.', Amste'rdam, 1973.

[2] The New Merriam-Webster Pocket Dic-
' G. & C. Me rriam Co., New York.
le, for scholarly use, on magne-

tic tape.)

136

[3] I. Nassi and B. Schneiderman, "Flow-
chart Techniques for Structured Program-
ming", Technical Report Number 8, SUNY at
Stony Brook.

[4] D.L. Parnas, "On the Criteria to be
used in Decomposing Systems into Modules",
Communications of the A~M, Vol. 15, No.
12". Dece'mber 1972, pp. 1053-1058.

[5] G.M. Weinberg, PL/I Programming: A
Manual of Style, McGraw-Hill, New York,
1970.

[6] G.M. Weinberg, The Psychology of Com-
puter Programming, Van Nostrand Reinhold,
New York, 1971.

[7] D. Weinberg and G.M. Weinberg, "Ex-
perimental Use of a Computer in the Field
--Kinship Information", Social Science
Information, December 1972.

137

Appendix i: Rules of JOTTO

i. The object of the game of JOTTO is to guess your opponent's concealed 5-1etter word
before he guesses yours.
2. If the two players require the same number of turns, then that game is a draw.
3. On each turn, each player guesses one 5-1etter word. If the word has the same five
letters as the concealed word (example: PARSE = SPARE = PEARS = SPEAR = PARES = RAPES)
the game terminates.
4. If the game terminates, each player is entitled to check the previous responses (see
#7) of the opponent against the concealed word. If he detects an incorrect response, the
opponent loses. (Both lose if both have been incorrect.)
5. Each concealed word must be chosen from a prespecified vocabulary list. At each move,
a player may check the word against the vocabulary. If the word is not in the vocabulary,
the player choosing it loses.
6. If neither player has guessed the other's word after 20 moves, the game terminates.
Either player may still win under rules 4 or 5, but if neither wins, the game is a draw.
7. On each move, a player is required to indicate how many letters his concealed word
has in common with the word guessed by his opponent.

Example l: Concealed word = SNARK Example 2: Concealed word = EERIE

Guessed word Response Letters in common Guessed word Response Letters in common
BLAST 2 A S BLAST 0 ---
GLYPH 0 --- QUIET 2 I E
RAINS 4 R A N S REEKS 3 R E E
RANKS 5 R A N K S LEVEE 3 E E E

EERIE 5 E E R I E

Appendix 2: A Sample Game

JOTTO
IF YOU WISH TO MAKE THE FIRST GUESS
TYPE THE NUMBER 1
ANY OTHER REPLY AND I WILL START
Nt

0

MOVE NUMBER 1
I PREDICT 6 MORE MOVES
MY GUESSt TABLE
HOW ~NY LETTERS DOES MY GUESS SCORE?
3

PLEASE GUESS ANOTHER
SIEVE
i LETTERS IN COMMON
S32 POSSIBILITIES REMAIN

MOVE N~ER 2
T PREDICT ~ MORE MOVES
~ GUESS? THOSE
HOW 14ANY LETTERS DOES MY GUESS SCORE?
I

PLEASE GUESS ANOTHEP
BLAST
0 LETTERS IN COMMON
I~I POSSIBTLITTES REMAIN

MOVE N~BER 3
I PREDICT 4 MORE MOVES
MY GUESSs BUYER
HOW MANY LETTERS DOES MY GUESS SCORE?
2
PLEASE GUESS ANOTHER
QUIET
2 LETTERS IN COttON
4~ POSSIBILITIES REMAIN

MOVE NUMBER W
I PREDICT 2 ~ORE MOVES
MY GUESS~ LAGER
HOW MANY LETTERS DOES MY GUESS SCORE?

Against the Computer

3
PLEASE GUESS ANOTHER
GUESS
I LETTERS IN COMMON
13 POSSIBILITIES REMAIN

MOVE NUMBER 5
I PREDICT 2 GORE MOVES
14Y GUESS? ULTRA
HOW MANY LETTERS DOES MY GUESS SCORE?
3
PLEASE GUESS ANOTHER
CLEAR
I LETTERS IN COMHON

POSSIBILITIES REMAIN

MOVE NUMBER 6
I PREDICT I MORE MOVES
MY GUESS: LABOR
HOW MANY LETTERS DOES MY GUESS SCORE?
2
PLEASE GUESS ANOTHER
HOVER
1 LETTERS IN COMMON
2 POSSIBILITIES REMAIN

MOVE NUMBER 7
I PREDICT I MORE MOVES
MY GUESSs VALUE
HOW MANY LETTERS DOES MY GUESS SCORE?
5
PLEASE GUESS ANOTHER
COLOR
I LETTERS IN COMMON
I BELIEVE THE CAME IS OVER
BUT I HAVE TO CHECK THE PLAYS
MY HIDDEN WORD MASs FICHU
WHAT IS YOUR WORD?
VALUE
I CLAIM VICTORY
TO PLAY AGAIN TYPE!

JOTTO

138

Appendix 3: Final Version of Program

[1]
[2]
[3]
[~]
[S]
[6]
[7]
[el
[9]
[10]

V JOTTO;IMOVEEIRST
mVERSIOR 1: MAIN LINE. PLAYS ONE GAME WITH THE USER
n ASSUMES WORD LIST *WORDS* IS IN CORK.
m SUBMODULES:INITIAL.GUESSoSIEVE.TERMINATION.ANSWER.RBPLY
A GLOBAL VANS: MIGUESSES.HISGUESSES.BISREPLIES.INDEX.MOVE
IMOVEEIRST÷INITIAL
MOVE~O

NEXT:÷EIRISR IF 20<MOVE÷MOVE÷I
,!

' MOVE NUMBER ';MOVE
÷MEPIRSY IF IMOVEFIRSY

[11] HEFIRST:HISGUESSES[MOVE;]÷ANSW~R
[12] MYCUESSES[MOVE;]÷GUESS
[13] HISREPLIES[MOVE]÷REPLY
[I#] ÷TERMTEST
[15] MEFIRST:MYGUESSES[MOVE;]÷GUESS
[16] BISREPLIES[MOVE]÷REPZ~
[17] HISGUESSES[MOVE;]÷ANSWER
[18] m
[19] TERMTgST:+FINISB IF EITHERGUESS
[2~] SIEVE
[21] ~NEXT
[22] m
[23] EINISR:TERMINATION

V

V IMOVEFIRST+IRITIAL
[1] nVERSIOR 3: SETS UP 'EAST-SCAN' WORDS. ASSUMES 'IN-PLACE' SIEVE
[2] m GLOBAL VANS: EISGUESSES.MYGUESSES.HISREPLIES.MOVE.MYWORD.WORDS.
[3] m LASTSIEVED.FISRY.CHUNKSIZE
[~] m SUBMODULES: INITIA&ENCODE
[5] RISGUESSES÷M~UESSES~ 20 5 p'?'
[6] HISREPLIES÷2OpO
[7] LASTSIEVED~-I$pWORDS
[8] FISRY+O
[9] CRUNKSIZE÷200
[10] INITIALENCODE
[11] . SET RANDOM SEED WITH 6Xl.x20
[12] M O V E ÷ 6 Z 1 , Z 2 0
[13] MOVE÷ '1
[I~] m CHOOSE WORD
[15] MYWORD*-WORDS[?(pWORDS)[1];]
[16] m DECIDE ON FIRST MOVE
[17] 'IF YOU WISH TO MAKE THE FIRST GUESS'
[18] 'TYPE THE NUMBER 1'
[19] 'ANY OTHER REPLY AND I WILL START'
[20] IMOVEFIRST÷(I~I$~.2)

V

V IRITIALERCODE;I;NWORDS
[I] ,VERSION 1: CREATE THE GLOBAL PARS FOR ENCODE AND DECODE
[2] A CREATES GLOBAL]TARS: ALPRA.ENCODEALPHA.ENCODEMASK
[3] ALPRA÷'ABCDEFCHIJKLMNOPQRSTUVWXXZ'
[4] ENCODEALPHA~'ABCDEFGHIJKLMNOpQRSTUVWXYZA~a~F~JK&M~Qp~RsZUKMXZ~

slnLe_VAto''~{TO*?pr--+u~=÷c1234567890+x÷ <K=k>~VA-~'
[5] ENCODEMASK÷ 5 5 p 0 0 0 0 0 I 0 0 0 0 1 1 0 0 0 I 1 1 0 0 1 1 1 1

0
[6] ÷0 IF fA'¢WORDS
[7] I÷0
[8] NWORDS÷I÷pWORDS
[9] NKXTA:÷QUITA IF NWORDS<I~I÷I
[10] WORDS[I;]÷ERCODE WORDS[I;]
[1 1] ÷REXTA
[1 2] QUITA:÷O

V

139

[z]
[2]
[3]

[I]
[2]
[3]

[I]

[2]

V

V

vDECODE[D]V
R+DECODE W
AVERSION 1: CONVERTS A CODED WORD INTO STANDARD LETTERS
A GLOBAL VARS: ALPHA.ENCODEALPRA
R÷ALPHA[I+261-1+ENCODEALPHAtW]

VENCODE[N]V
R÷ENCODR W
AVERSION 1: ENCODES WORD INTO 'FAST-SCAN' CODE

GLOBAL VARS:ALPRA.ENCODEALPHA.ENCODEMAHK
R÷ENCODEALPHA[(ALPRAtW)+26x+/ENCODEMASK^W°. =W]

VCOMMONWITH[~]V
V R÷A COMr~NWITH B

aVERSION 3: USING WORDS PROCESSED BY *E~CODE*. JUST COUNT EQUAL L
ETTERS
R÷+/AeB

V

VANSWER[O]V
V HISTRY+ANSWER

[1] AVERSION I: ACCEPTS WORD FROM USER. RETURNS SCORE (0 TNRU 5)
[2] ~ SUBMODULES: INWORD.COMMONWITH
[3] HISTRY÷INWORD 'PLEASE GUESS ANOTHER'
[~] MTWORD COMMONWITR BISTRY;' LETTERS IR COMMON'

V

VREPLY[D]V
V N÷REPLY

[I] 'HOW MANY LETTERS DOES MY GUESS SCORE?'
[2] GET:~ERR IF I"O,N÷~
[3] ÷ERR IF 5<N÷-l+I0123~5'IN
[~] ÷o
[5] KRR:'WHAT? A NUMBER FROM 0 TO 5 PLEASE.'
[6] ÷GET
/7] ~ REPLY ACCEPTS INPUT; RETURNS N¢[0.5]

V

[1]
[2]
[3]
[,]
IS]

VEITHERGUESS[D]V
RETURR÷EITHERGUESS
nYES IF EITHER HAS GUESSED 5 LETTERS
RETURN÷I
÷(HISREPLIES[MOVE]=5)/O
÷((MYWORD COMMORWITH HISGUESSES[MOVE;]):5)/O
RETURN÷O

VINWORD[~]V
V R÷INWORD MESSAGE

[I] AVERSION 2: ENCODE THE INPUT INTO 'FAST-SCAN' CODE
[2] , SUBHODULE: ENCODE
[3] MESSAGE
[~] GRT:÷ERR IF 5=O,R*'[~
[5] ÷ERR IF~a/REfABCDEFGHIJKLMNOPORSTUVWXYZ '
[6] R÷ENCODE R
C7] ÷ o
[8] ERR:'EH? 5 LETTERS. PLEASE.'
[9] ~GET

V

140

[I]
[2]
[3]
[~]
[s]
[6]
[7]
[8]
[9]
[1o]
[11]

vSZEV~[~]v
v SIEVE;N;MIRE;U;T

R VERSION 2: SIEVES I~-PLACE, USING 'FAST-SCAN' WORDS
GLOBAL VARS: HISREPLIES,MOVE,FISRY,MYGUESSES,LASTSIEVED,WORDS

+0 IF FISHY
N~RISREPLIES[MOVE]
MINE+MYGUESSES[MOVE;]
U÷O
T÷LASTSIEVED

NEXTC:÷@UITC IF U~T
NEXTA:÷NEXTA IF R=+/MIRE~WORDS[U÷U+I;]
LASTSIEVED÷U-I
T÷T+I

[21]
[2 2]
[2 3]

V

[12] NEXTB:÷NEXTB IF(I<T)^N*+/MINEcWORDS[T÷T-I;]
[13] +QUITC IF LASTSIEVEDZT
[1~] WORDS[U,T;]÷WORDS[T,U;]
[15] LASTSIEVED~U
[1 6] ÷NEXTC
[17] QUITC:÷ERROR IF R~+/MINEcWORDS[I;]
[18] LASTSIEVED;' POSSIBILITIES REMAIN'
[1 9] ÷0
[2 0] ERROR:FISHY÷I

' THERE IS SOMETHING FISHY ABOUT YOUR ANSWERS'
' BUT I WILL CONTINUE TO PLAY UNTIL ONE OF US GETS 5 CORRECT'
LMSTSIEVK~'I

V
[1]
[2]
[3]
[~]
[s]
[6]
[7]
[8]
[9]
[Io]
[11]
[12]

vougss[U]v
R÷GUESS;N;JSIEVED;NWORDS;M;MAXCLASS;IUNSIEVED;T;RPOSS;I
A VERSION 3: ASSUMES 'IN-PLACE' SIEVE, AND 'FAST-SCAN' WORDS
A SUBMODULES: ROWSPLITS
. GLOBAL VARS: WORDS,LASTSIEVED,CRUNKSIZE
NWORDS÷I÷oWORDS
NPOSS÷LA S TSIE VED
N÷LAS TSIE VED [CRUNKSIZE
JSIE VED*-N ?LAS TSIE VED
M÷SOLRWORDS
MAXCLASS÷Mp999
IUNSIEVED÷M?RWORDS
IUNSIEVKD[*I]÷JSIEVKD[*I÷N[[MxI2÷N]
I~O

[13] NEXTA:~QUITA IF M<I÷I+1
[14] MAXCLASS[I]÷+/(I÷~eTxRPOSS)xT~(÷N)x(T'O)/T÷5*ROWSPLITS WORDS[

IUNSIEVED[I];]
[15] ÷NEXTA
[16] QUITA:I÷IUNSIEVEDEI÷~MAXCLASS]
[17] R÷WORDSfI;]
[18] DTOITS 3
[19] 'I PREDICT ';[0.5*[/MAXCLASS;' MORE MOVES t
[20] RETURN:'MZ GUESS: '..DECODE R
[21] ÷o

V

VHOWSpLITS [n] V
V C÷ROWSPLITS WI

[I] .VERSION 4: PERFORMS SPLIT IN SINGLE MATRIX OP
[2] A HOWSPLITS SCORES EACH WORD IN JSIEVED AGAINST WI.
[3] . AND RETURNS A VECTOR WITH 6 ELEMENTS SHOWING SPLIT
[*$] C..+/(-I+,6)o.=+/WORDS[JSIEVED;]~WI

141

[9]
[lO]

V

VREPLYWASBAD[~]V
V R÷REPLYWASBAD;TURN;N

[1] AVERSION 2: DECODE 'FAST-SCAR' CODES
[2] R~TURN÷O
[3] REXT:÷O IF(MOVE[20)<TURN÷TURN+I
[4] N÷HISWORD COMMONWITH MYGUESSES[TURR;]
[5] ÷NEXT IF HISREPLIES[TURN]=N
[6] 'WHEN I GUESSED: ';DECODE MYGUESSES[TUHN;]
[7] 'YOU SAID t;HISREFLIES[TUEN];w LETTERS IN COMMON I
[8] 'THERE ARE ACTUALLY ';N;' LETTERS IN COMMON WITH: ';DECODE

HISWORD
'THEREFORE, I CLAIM VICTORY'
R÷I

VWORDINLIST[D]V
V R÷WORDINLIST W

[1] R+v/WORDS^.=W
[2] A RETURNS I IF W IS IN WORDS

[1]
[2]
[3]
[~]
[5]
[6]
[7]
He]
[9]
[lO]

V

V

[I]
[2]
[3]
[4]
[S]
[6]
[7]
[8]
[9]

V

V
[1]
[2]
[3]
[4]
[5]
[6]
Iv]
[e]
[9]
[Io]
[11]

VGUESSWASBAD[~]V
R÷GUESSWASBAD;TURN
AVERSION 2 : DECODE 'FAST-SCAR' CODES
A SUBMODULES: WORDINLIST, DECODE
A GLOBAL VANS: MOVE,HISGUESSES
R÷TURN÷O

NEXT:~0 IF(2OLMOVE)<TURN÷TURN+I
÷NEXT IF WORDINLIST HISGUESSES[TURN;]
H÷1
'ON TURN ';TURN;' YOU SAID: ';DECODE HISGUESSKS[TURN;]
' WHICH IS NO~ IN THE WORDS LIST'
'THEREFORE, I CLAIM VICTORY'

VHISWORDISBAD[~]?
E÷HISWORDISBAD
AVERSION 2: HAS TO DECODE 'FAST-SCAN' COPES
m SUBMODULES: WORDINLIST,DECODE
R÷O
'MY HIDDEN WORD WAS: ';DECODE MYWORD
HISWORD÷INWORD 'WHAT IS YOUR WORD?'
÷0 IF WORDINLIST HISWORD
R+l
'YOU CHEATED. ';DECODE HISWORD;' IS ROT LEGAL'
'THEREFORE, I CLAIM VICTORY.'

VTEEMINATION[~]V
TEHMINATION;HEWINS;IWIN
'I BELIEVE THE GAME IS OVER'
'BUT I HAVE TO CHECK THE PLAYS'
÷OVER IF HISWORDISBAD
~OVEE IF GUESSWASBAD
-~OVER IF REPLYWASBAD
~(MOVE>20)/DRAW
HEWINS÷((MYWORD COMMONWITH HISGUESSES[MOVE;])=5)
IWIN÷(HISREPLIES[MOVE]=5)
÷DRAW IF IWIN^HEWINS
÷LOSS IF HEWINg
A

[12] WIN:'I CLAIM VICTORY'
[13] -','OVER
[14] .
[15] LOSS:'IF YOU CLAIM IT, YOU WIN'
[16] ÷OVER
[17] R
[18] DRAW:tIT SEEHS TO BE A DRAW*
[19] OVER:'TO PLAY AGAIN TYFE:'
[20] ' JOTTO'

V

142

JOl'rO

I i
INITIAL 1 ~ 1 ~

I t
INITIAL INNORD

-F CODE I

ENCODE ENCODE

!
COMMON
-WITH

I I
GUESS REPLY

I c
-SPLITS -ISBAD

, t
WORD DECODE
-INLIST

I

I
GUESS

"-~SI~,D

I ,
WORD DECODE
-INLIST

I
TERMINATION

I
i

REPLY
-WASBAD

I
COMMON
-WITH

I
COFI~
-WITH

DECODE

143

