
INTRODUCING PRACTICAL EXPERIENCE INTO CURRICULUM 68

THROUGH INTEGRATION OF COURSES
Larry D. Menninga
Department of Mathematics and

Computer Science
Western Washington State College
Bellingham, Washington 98225

A b s t r a c t

A course which will give students
some practical experience with large
programming problems is described, The
course combines the material from five
separate courses from Curriculum 68. The
material is presented in conjunction with
a major programming project which is the
unifying ingredient of the course. The
project provides the student with
immediate and realistic applications of
the ideas and topics presented in the course.

Introduction

During the past year or two there
has been an on-going discussion of the
relative merits of theory versus appli-
cations in computer science education.
Various points of view have been pre-
sented by Kandel [i], Wegner [2], and
others [3,4]. This paper is not in-
tended to be a contribution to that
issue, since the proposal here is for
a course at the undergraduate level--
a level at which theory is not pursued
to great depths.

We do not look at a B.A. in
computer science as training for a spe-
cific job but, rather, we expect it to
provide an understanding of computing
and computing systems, and we expect
the student to gain some facility in
using basic programming techniques.
It seems to be widely felt that the
graduates we are turning out are not
suited to the facts of life in the world
of industry and commerce.

At the same time, the computing
industry is having problems with the pro-
duction of large programs [5]. These
large programming efforts have been not
only costly in terms of the time and re-
sources used to produce working systems,
but the resulting programs are generally
inefficient and full of errors.

Although our graduates may have
learned programming techniques which are

more efficient and less error-prone than
the methods used previously to develop soft-
ware and although they may have been ex-
posed to structured programming, hiemrchi-
cal program development, meaningful docu-
mentation and other "good"programming prac-
tices, they do not live up to our high
expectations when they get out on the job.

A major factor in this situation is
the lack of experience most B.A. graduates
receive as part of their formal education.
While it is true that they learn certain
techniques--sorting methods and hash
coding--they seldom, if ever, have the
opportunity to apply these techniques to
"real-world" problems. Because their
programming experience consists mainly
of short isolated routines, written to
learn and understand basic algorithms,
they do not encounter large-scale pro-
gramming problems and the difficulties
unique to such large systems.

InCluding Practical ExperfenCe in the
Curriculum

At Western Washington State College
we have used the ACM Curriculum 68 [6]
as a guideline for developing an under-
graduate computer science program. It
is felt that the experience we desire
our graduates to have can be provided
without completely rejecting our present
curriculum. This can be done by choosing
a large scale programming project and
then combining several courses in which
material applicable to the problem is
taught. Much of the material from
each of the courses would still be pre-
sented, but it would be applied directly
to the problem at hand. A proposal
for such a course will be presented
here.

General Description of CPS

The course to be described will be
called Computer Programming Systems (CPS).
This course will integrate the material
from five of the courses proposed in
Curriculum 68. They are II: Data

152

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953057.810460&domain=pdf&date_stamp=1974-01-01

Structures, I2: Programming Languages,
I3: Computer Organization, I4: Compiler
Construction, and I5: Systems Programming.
CPS would run for a full school year--
three quarters at Western. The students
taking the course would be in their senior
year and would have had at least two
quarters of programming in a high level
language and two quarters of assembly
language programming. Some of the course
material would be presented in lectures,
other material in a workshop setting, and
in addition the students would spend a
good deal of time using the computer
laboratory.

The unifying factor would be the pro-
gramming project used in the course.
There are several suitable candidates. We
propose that the initial project be the
development of a paging system to provide
virtual memory capability to a minicom-
puter. (A successor to this could be the
development of a time-sharing system.)

Course Organization

The order in which the material is
covered will be fairly critical in this
course, since the student must have time
to write programs applying the concepts
he has learned. The ideal arrangement
will deal with topics when they are needed
for the project. As difficulties are en-
countered and decisions are to be made
during the implementation of a particular
aspect of the project, the literature can
be consulted and known methods of hand-
ling the situation can be presented.
This approach will not only provide a
motivation for the material, but it will
also teach the students to consult the
available literature for methods which
have been tried before.

CPS will begin with lecturing and
workshop sessions on computer organi-
zation. Boolean algebra and combina-
tional logic will be presented in lec-
tures. The minicomputer will be used to
study I/0 facilities, instruction design,
storage addressing, and other machine
features. Topics such as different archi-
tectures will be deferred until late in
the course.

In conjunction with the machine
organization, some of the basic concepts
of data representation can be presented.
The properties of peripheral devices such
as discs and tapes and their affect on
data organization could also be included
at this time. These are topics which
would otherwise be in the data structures
course.

The next area of study would concern
the algorithmic languages available for
use. This would include a study of their
structure and, for those languages on the

minicomputer, their run-time representa-
tion. Methods used to implement storage
management and procedure linkage would be
examined. This will involve more of the
topics from the data structures course,
such as dynamic storage allocation
methods, as well as material from the
programming languages course.

The first topics from systems pro-
gramming would be the concepts of reloca-
tion, paging, and virtual memory. Then
file system organization and management
would be covered. In this connection,
more of the topics from data structures
would be taken up. These would include
the use of directories, linked structures,
searching, and tree structures.

At this point in CPS enough back-
ground material has been presented so
that the paging system can be designed.
Several hours of workshop will be devoted
to specifying the behavior of the system
and laying out a general design for it.
This should be done with specific refer-
ence to earlier material, such as run-
time representation of programs and data
management in high-level languages, and
I/0 facilities and organization.

Experience with compiler construction
and familiarity with the more formal pro-
gramming language concepts of syntax
specification, precedence relations, etc.
can be introduced into the course in
either of two ways. The first possibility
is the use of a language for systems pro-
gramming. This could be a subset or
modification of an existing language, such
as FORTRAN, or a language designed speci-
fically for systems programming, sUCh as
BLISS. In either case, a compiler for
the language would be written, or mod~ied
and compiler techniques and formal speci-
fications would be presented in that con-
text.

The second alternative is to have
the students write, or modify, a compiler
for an algorithmic language (such as
ALGOL) to produce code for the virtual
memory system. It may be necessary to
implement only a subset of the language
in order to complete a production com-
piler.

Once the major programming effort is
under way, less time will be spent lec-
turing and more time will be devoted to
work sessions. Material not directly
applicable to the course project, such as
sorting techniques, string manipulation
languages, and other topics otherwise
presented in the five individual courses
can be presented in the remaining lec-
ture periods.

Required Facilities

First of all, access to a computer '~

153

absolutely necessary. This should be a
minicomputer simple enough in its struc-
ture to be understood in a short time. It
should be a facility allowing "hands on"
experience. An operating system of some
kind should be available on the machine.
Further, for the project chosen here, the
computing system must also have a random
access secondary storage device, such as
a disc. The class will require dedicated
use of the machine for a few hours a week
throughout much of the school year.

Class sessions would be held daily
for two hours. At the beginning of the
course this time would be mainly devoted
to lecturing. As the development of the
project advances, more of this time will
be spent in workshop sessions in which
the class discusses the project as a
group, or smaller teams of students could
coordinate their efforts. The students
would spend a good deal of additional
time writing programs.

Instructor's Role

University of Michigan, has been success-
ful [8] .

There are some disadvantages to a
course such as this. CPS requires a
heavy commitment from the students; aten-
hour class lasting for an entire academic
year may frighten some students. The
instructor has a heavy demand placed upon
him also, although if the course were
taught by a team, rather than by a single
individual, that load would be eased a
great deal. The computing resources re-
quired for the course are also extensive.

The course, Computer Programming
Systems, presented here does not provide
a broad range of experience, but students
can be given experience in other areas,
such as business systems programming, by
a similar combination of appropriate
courses. Most of the problems in computer
science education which were listed by
Aiken [9] are addressed by a course such
as CPS.

The instructor has to serve in three
different capacities while teaching CPS.
He is first of all a lecturer. He is
also a project manager and a programmer,
although these two roles may be mainly
advisory. (The students must be able to
learn from him by example.) The class
could be organized in a manner similar
to the Chief Programmer Team of Baker
[7]. At any rate, the programming system
should be developed in a top-down
fashion. Besides all of the other advan-
tages, this approach will allow the sys-
tem to be broken up into subsystems
which can be assigned to individual stu-
dents or small teams of students. By
using a top-down approach they should be
able to test out their subsystems and
integrate them into the larger system
without relying heavily upon the work of
each other.

The instructor must provide ex-
amples of good programming practice in
any programming that he may do. He must
teach the use of structured programming
to those students not familiar with that
approach. He must provide guidance, and
possibly demand contributions, in the on-
going documentation of the paging syste~

Conclusion

A course such as this not only gives
the student the opportunity to work with
a large-scale programming problem, but as
an added bonus this approach provides him
with an immediate application of the
ideas presented in the class lectures.
The proposed course appears to be a
viable method of adding practical experi-
ence to Curriculum 68. A less ambitious
applied systems programming course,
offered at the graduate level at the

References

i. Kandel, A. Computer science--a vicious
circle. Comm. ACM 15, 6 (June 1972),
470-471.

2. Wegner, P. A view of computer science
education. American Mathematical
Monthly 79, Z [Feb. 1972), 168-179.

3. DuWors, R.J., and Solian, S.W. The
arrogant programmer: Dijkstra and
Wegner considered harmful. SIGCSE
Bulletin 4, 4 (Dec. 1972, 19-~.

4. Blount, S.E., and Fein, L. The
practical aspect of computer science
education--discussion. Comm. ACM 16,
1 (Jan. 1973), 45-46.

S. Boehm, B.W. Software and its impact:
a quantitative assessment.
Datamation 19, 5 (May 1973), 48-59.

6. ACM Curriculum Committee on Computer
Science. Curriculum 68: recommenda-
tions for academic programs in
computer science. Comm. ACM Ii, 3
(March 1968), 151-I-9-7.

7. Baker, F.T. Chief programmer team
management of production programming.
IBM Systems Journal ll, 1 (1972),
~6r-73.

8. Arden, B.W., Flanigan, L.K., and
Galler, B.A. An advanced system
programming course. Proc. IFIP
Congress 71, North-Ho--~d,~terdam,
1972, Boo~-i-et TA-7, 115-119.

9. Aiken, R.M. Summary of comments
following SIGCSE panel discussion on
"Computer Science Graduates--An
Industry~University Gap." SIGCSE
Bulletin 4, 3 (Oct. 1972), 37.

154

