
Experimental Implementations of Mixed
Programming Algorithms
M. D. Grigoriadis, IBM Corp., New York, N. Y.
L. Papayanopoulos and K. SpieJberg, IBM Corp., Yorktown Heights, N. Y.

Integer

KEY WORDS AND PHRASES: mixed integer
programming, mathematical programming,
linear programming, integer program-
ming, optimization, branch and bound,
algorithmic experimentation
CR CATEGORIES: 4.22,5.40,5.41,5.49

INTRODUCTION

The Mixed Integer Programming
~nterface-Subroutine S_ystem (MIPIS)*
consists of a set of programs written
to facilitate the implementation of
most known MIP algorithms in a common
system environment. This experimen-
tal system [3] makes no claim to over-
all (running time) efficiency ~.ince
it utilizes the experimental, Fortran
based linear programming {LP) code
NYLPS (New York Scientific Center
Linear ~rog~amming S_ystem [.7])* known
t0 be less efficient than other com-
mercially available LP codes (e.g.
MPS/360, etc.) written in Assembly
Language. NYLPS is an OS/360 exten-
sion of LPS/360 [8] which operates un-
der DOS/360.

The study and associated develop-
ment of MIPIS was directed toward ex-
amining the manner in which MIP

*These experimental systems are for
internal use only and are not avail-
able from IBM.

algorithms would be implemented, in a
flexible environment, rather than to-
ward implementing another MIP produc-
tion code. It is hoped that this ex-
periment will motivate designers to
provide additional flexibility for
building and extending the scope of
future mathematical programming sys-
tems.

ENVIRONMENT

Generally, production type, large
MIP codes are not easily modifiable
and are limited in algorithmic variety.
Though the particular algorithm used
by such codes is often mathematically
simple, it is always embedded in a
much larger LP system with elaborate
data management, report generation
facilities, etc. In order to obtain
the best possible execution perform-
ance, these codes usually are written
in a low level (e.g. BAL) programming
language. More often than not, the
result is a large and complex system.
Algorithmic modification and extension
of such a system and its enrichment
with new MIP algorithms, as they may
become available, present practical
implementation difficulties. These
are the considerable development ex-
pense and the necessity for excellent
systems programming ~kills complemented

2 9 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800184.810498&domain=pdf&date_stamp=1971-01-01

by an adequate knowledge of mathemat-
ical programming methods.

A number of experimental codes
implementing a single algorithm in a
high level language do allow easy mod-
ification and extension to other algo-
rithms. However, they are limited in
problem solving capacity due to their
lack of sophisticated data handling
capability.

N e v e r t h e l e s s , e x p e r i m e n t e r s , a s
w e l l a s s o p h i s t i c a t e d u s e r s , f i n d t h a t
n e i t h e r t y p e o f s y s t e m p r e c i s e l y m e e t s
t h e i r r e q u i r e m e n t s . The f o r m e r s y s -
t em is t o o costly and t i m e consuming
for exploratory studies, whereas the
latter does not provide an environment
where experimental MIP techniques,
their programming requirements and
their computational behavior can be
studied for large scale problems.
F u r t h e r m o r e , t h e g r e a t d i f f e r e n c e s i n
h a r d w a r e a n d p r o g r a m m i n g s y s t e m s make
realistic comparison of available MIP
programs virtually impossible.

DESIGN CONSIDERATIONS

The c h o i c e o f NYLPS as a b a c k -
g r o u n d s y s t e m f o r M I P I S was b a s e d on
s e v e r a l factors: t) Problem solving
capacity c o m p a r a b l e t o a l l o t h e r l a r g e
commercially available codes, 2) exten-
sive data manipulation and maintenance
capabilities, 3) highly modular struc-
ture of simple Fortran routines, modi-
fied easily, 4) simple but comprehen-
sive problem control language and
S) operation under 0S/360 in multipro-
gramming mode.

The desirability of (5) arises
from the basic design of NYLPS. In
order to handle large problems, the
s y s t e m o p e r a t e s " o u t - o f - c o r e , " t h a t i s ,
i t t r e a t s s e g m e n t s of t h e p r o b l e m which
i t b r i n g s i n f r o m d i s k , one a t a t i m e .
T h i s r e q u i r e s a c o n s i d e r a b l e a m o u n t o f
d i s k I / O t h e c o s t o f w h i c h c a n be e x -
c e s s i v e if I/0 is not completely over-
lapped. Thus, the NYLPS/MIPIS system
is most suitable for a large machine

/'CONTROL [
[PROGRAH FOR[

, LGORITItM

!

IcoM IL ,RO . I
I 1~ FILE IT FORI

lose EIT.ER I
IIm~EDIATELY O~. , , . I - - I
[AT LATER TIbm I ~ I ,,,..,..~ I

I OS 3 ~

[~ CARDS I.'. /

/'DATA AND I
/ PROBLEM I / / /
ICONTROL |~.~ .. , ~v , . L /
I. STATm~-NTsl "-----_,, P~.RFOP,~I ALL I /

.~. DESIRED |/
PROBLEM I ~ . . . - - - - w ~ v I

.*" ~ - FUNCTIONS
INCL. USE I

P CONTROL FLOW - ~ - I -]
~ R O G R A M TRANSMISSION I J I MIP_IS_N_ODE I

~."~-- DATA TRANSMISSION I OUTPUT I I ,~ ~I~E~

FIGURE i COMPILATION AND EXECUTION PHASES OF A USER WRITTEN ALGORITHM

296

USER'S

~ I NYLPS

p//1//

NYLPS FUNCTIONS

USER ALGORITHM
(o u t p u t of Phase I)

LINEAR PROGRAMMING
AND DATA HANDLING
FACILITIES

FIGURE 2 THE COMMUNICATION OF A USER ALGORITHM WITH NYLPS DURING EXECUTION

(e.g. a 560/65 with a million bytes)
running under multiprogramming (e.g.
OS/~VT).

For the purposes of this study,
the "user" was assumed to be: a) the
designer of new MIP algorithms for
large scale problems, b) the experi-
menter who might compare solution stra-
tegies on the same algorithm and/or
problem and might synthesize new algo-
rithms for basic ones available in the
system, c) the more sophisticated ana-
lyst who knows that the performance of
an MIP algorithm is almost unpredict-
able and who wishes to explore various
algorithms to select the one best suit-
ed to his &lass of problems.

In spite of the comparable sim-
plicity the user would have a consid-
erable task of learning and program-
ming before he would be ready to im-
plement an MIP algorithm using direct-
ly the LP capabilities of NYLPS. The
purpose of MIPlS is to furnish an
"interface" between the user and the
system in order to minimize this train-
ing and programming.

MIPIS contains most, if not all,
of the facilities needed to implement
typical MIP algorithms. These facil-
ities may be used (through simple
CALL statements) as "building blocks"
which are arranged easily in the con-
struction and modification of experi-
mental techniques. An overview of
the User-HIPIS-NYLPS relationship is
shown in Figure i. Phase I depicts
the preparation of the "user program"
in which the user employs MIPIS facil-
ities by means of Fortran CALL state-
ments. When the program is compiled,
it is placed in a library. Subse-
quently, in Phase II the compiled pro-
gram is fetched for execution as part
of the overall NYLPS overlay struc-
ture. Since the compilation output is
retained on disk, Phase I need not be
performed more than once for each new
algorithm introduced into the system.

Figure 2 illustrates the flow of
control among the functional units of
the system during execution. A user
program is entered via the problem
control language. Subsequently,

2 9 7

d e p e n d i n g on t h e r e q u i r e m e n t s of t h e
a l g o r i t h m , t h e u s e r p r o g r a m r e q u e s t s
t h e s e r v i c e s o f some o r a l l o f t h e
MIPIS functions (e . g . INIT, BETA,
GETV). Similarly it accesses NYLPS
facilities for input of problem data,
linear programming optimization, etc.
In each case, use of the appropriate
files is made as indicated by the
broken lines of the diagram.

MIPIS FACILITIES AND DATA FILES

For t h e p u r p o s e s o f t h i s s t u d y
mos t o f t h e known a l g o r i t h m s o f
b r a n c h - a n d - b o u n d (e . g . [5] , [6]) and
e n u m e r a t i v e [1] t y p e s were e x a m i n e d
t o e s t a b l i s h t h e i r c o m p u t a t i o n a l r e -
q u i r e m e n t s and d e g r e e o f s i m i l a r i t y
[4] . Almos t a l l o f t h e s e i n v o l v e t h e
i n i t i a l s o l u t i o n o f t h e c o n t i n u o u s LP
and t h e s u b s e q u e n t c o n s i d e r a t i o n o f a
s e q u e n c e o f s o l u t i o n v e c t o r s whose
(i n t e g e r r e s t r a i n e d) componen t s a r e
f i x e d a t a p p r o p r i a t e i n t e g r a l l e v e l s
(o r c o n s t r a i n e d in a p p r o p r i a t e i n t e r -

v a l s) as d i c t a t e d by t h e p a r t i c u l a r
a l g o r i t h m . By and l a r g e t h e a l g o -
r i t h m s g e n e r a t e i n f o r m a t i o n s t o r e d in
s u c c e s s i v e n o d e s o f a c o m p u t a t i o n a l
t r e e , compute " p e n a l t i e s " a t e a c h
n o d e , s h i f t f rom one b r a n c h t o an-
other according to various criteria,
etc. Single branch, multibranch and
combinations of single and multi-
branch trees may be considered, as
well as other data structures, pen-
alty tables, lists, etc.

During the course of the search,
the nodes of a tree and the informa-
tion associated with each node are
generated by means of an auxiliary
program, e.g. LP, over some selected
("free") set of variables, and sub-
sequently used by other parts of the
algorithm. This information, poten-
tially of an extremely large volume,
must be stored and retrieved in an
efficient manner from auxiliary data
storage devices.

In addition to the Problem and
Work files used by NYLPS, MIPIS uti-
lizes the following three data files,
each assigned to a direct access data
set:

S - "Dictionary File," contains the LP
objective function value at each
node, ordered to facilitate re-
trieval of the "best" node and
(pending/not pending) node indi-
cator.

T - "Node (information) File," con-
tains detailed blocks of infor-

mation (e.g. the bounds of the
integer constrained variables,
the next variable to branch on,
etc.) associated with each node
in the S file.

U - A dictionary file for single
branch algorithms. This file is
u s e d t o s t o r e o b j e c t i v e f u n c t i o n
d a t a f o r an o r d e r e d s e t o f n o d e s
(a l o n g a s i n g l e b r a n c h o f t h e
s e a r c h t r e e) . I t f a c i l i t a t e s
b a c k t r a c k i n g and b r a n c h i n g by
e l i m i n a t i n g t h e n e e d t o s e a r c h
t h e d i s k f o r a p r e v i o u s " p e n d i n g "
n o d e .

If a particular algorithm re-
q u i r e s t h e s e l e c t i o n o f t h e b e s t
b r a n c h i n g p o i n t among a l l p e n d i n g
n o d e s , t h i s i s a c c o m p l i s h e d t h r o u g h
an e x a m i n a t i o n o f t h e d i c t i o n a r y f i l e s
S and U. When t h e most d e s i r a b l e
node i s f o u n d , t h e d i c t i o n a r y r e c o r d
s p e c i f i e s t h e r e c o r d in t h e l i b r a r y
f i l e T where t h e c o m p l e t e d e f i n i t i o n
o f t h e node i s l o c a t e d .

The f a c i l i t i e s r e q u i r e d by t h e
v a s t m a j o r i t y o f HIP a l g o r i t h m s a r e
l i s t e d b e l o w . Each o f t h e s e i s g i v e n
a mnemonic c o r r e s p o n d i n g t o t h e MIPIS
s u b r o u t i n e name wh ich can be c a l l e d
t o p e r f o r m t h a t t a s k .
SETB: S e t o r change t h e bounds o f a

v a r i a b l e .
OUT: W r i t e t h e i n f o r m a t i o n a s s o c i =

a t e d w i t h t h e c u r r e n t node i n t o
t h e d i c t i o n a r y and node l i b r a r y .

IN: Read t h e d a t a a s s o c i a t e d w i t h a
p a r t i c u l a r node i n t o c o r e f rom
t h e l i b r a r y f i l e . A l s o p r u n e
t h e t r e e o f a l l n o d e s w i t h h igh=
e r o b j e c t i v e f u n c t i o n v a l u e s
t h a n t h e b e s t i n t e g e r s o l u t i o n ,
and s e l e c t t h e n e x t " b e s t n o d e "
as d i c t a t e d by t h e a l g o r i t h m .

GENR: G e n e r a t e rows and compute "pen =
a l t i e s " f o r e a c h i n t e g e r con -
s t r a i n e d v a r i a b l e wh ich i s c u r -
r e n t l y b a s i c and a t a n o n i n t e =
gral l e v e l .

GETV: Retrieve the values of the pri-
mal and dual variables (e.g.
after a LP solution is per-
formed) .

GETB: Obtain the bounds of a given
variable.

RESB: Restore previous bounds on all
variables.

BETA: Determine the status and values
of the basic "integer" vari-
ables.

SVSL: Save the data (bounds, etc.) at
a particular node for subse-
quent use.

298

RSSL: R e s t o r e a p a r t i c u l a r n o d e
(s a v e d by SVSL a t some p r e v i o u s
s t a g e) .

BEND: G e n e r a t e a " B e n d e r s i n e q u a l i t y "
N a n e c e s s a r y c o n d i t i o n t o be
s a t i s f i e d b y t h e i n t e g e r c o n -
s t r a i n e d v a r i a b l e s .

I N I T : I n i t i a l i z e c o r e and f i l e s .
P R I N T : P r i n t an i n t e g r a l s o l u t i o n .

IMPLEMENTING AN MIP ALGORITHM
VIA MIPIS

The i m p l e m e n t a t i o n o f t h e b r a n c h -
a n d - b o u n d a l g o r i t h m i l l u s t r a t e d h e r e
u s e s t h e w e l l known D a k i n [5] m o d i f i -
c a t i o n o f t h e Land a n d Do ig [6] m e t h o d
o f s e a r c h . I n t e g r a l i t y o f t h e i n t e g e r
v a r i a b l e s u n d e r t h i s t e c h n i q u e i s a t -
t a i n e d t h r o u g h t h e p r o g r e s s i v e c o n -
s t r i c t i o n of t h e bounds imposed on
t h e s e variables. The flowchart in Fig-
ure 3 demonstrates the construction
of this algorithm in terms of the
MIPIS facilities. The user written

USER'S CONTROL PROGRAM

®
r SOLVE I N I T I A L ~
LINEAR PROGRAM
CIIECK FEASI B I LITY~

AND INTEGRALITY,/

VARIABLI

program requires only a few Fortran
statements.

TEST RESULTS

A n u m b e r o f MIP p r o b l e m s w e r e
r u n t o t e s t t h e a l g o r i t h m d e s c r i b e d
a b o v e . The s e l f - e x p l a n a t o r y t e s t r e -
s u l t s a r e s u m m a r i z e d i n T a b l e 1. The
c o m p a r a t i v e f i g u r e s e n c l o s e d i n p a r -
e n t h e s e s c o r r e s p o n d t o t e s t r u n s o f
a m u l t i b r a n c h v e r s i o n o f t h e s ame
a l g o r i t h m .

ACKNOWLEDGEMENTS

The authors acknowledge the val-
uable efforts of their colleagues
L. Bodin, J. Colmin, Pat Grapes(Mrs.),
K. Harrow, S. Torok and W.W. White
who participated in the implementa-
tion of MIPIS.

The test problems wore contribu-
ted by members of the MIP Subcommit-
tee o f t h e SHARE MPS P r o j e c t and w e r e
c o m p i l e d b y M i s s R o b e r t a L .A. H e i n t z .

MIFIS FACILITIES NYLPS

' LP SOLUTIOL'¢' I

WlTII
OPTIMI ZE"

NO

INTEGRALITY

LIBRARy ~ PRINt

I "

NODE ~ ASSOC.

FIGURE 3 AN MIPIS IMPLEMENTATION OF THE DAKIN ALGORITHM

299

0

o

.o
0

0

t~
0

o
u

~H
0

o
~0
o

~m

~4
~ . ~
o ~

. ~

o

t . . , ~
o : : : t
~0

.,~
o
.~

O~

o,-~
o o

U)

m,

O O
>

o~

O O

O
.r4

o
> o

o~oo
o ~ 0
• ~ ' ~

0 0 ~
Z ~'~

ul

o
;3

O ~
.,4

t--4 ¢.t

> , O
O

O • O
• ,-.I 4J .,-4

m ~ O
t u t O m

Iw
o o

ba
,-4 o

o • o

o o m

m o o

UCAMP085

NY2835

NY2889H

COBLEND

CO.PSL

ARTIST

86

29

29

60

I0

25

90

~5

89

195

14

47

15

35

31

15

12

29

23
(23)

48
(Sl)

103
(I05)

n s
(121)

4i

(27)

129
(139)

199
(399]

371
(461)

8_72
(968)

2768
(3063)

162
(106)

626
(718)

8,152.20

521.05

834.68

28,442.35

"742.17

717.00

8,498.60

550.00

946.70

29,565.92

-727.00

818•75

TABLE i

REFERENCES

i. Balinski, M•L. and K• Spielberg,
"Methods for Integer Programming:
Algebraic, Combinatorial and Enumera-
tive," Progress in Operations Research,
Vol. 3 (Julius S. Aronofsky, ed.},
John Wiley and Sons, 1969.

2. Benders, J.F., "Partitioning Proce-
dures for Solving Mixed-Variables Pro-
gramming Problems," Numerische Mathe-
matik, Vol. 4, 1962, pp.238-252.

5. Bodin, L. et alias, "The NYLPS/
MIPIS System for Mixed Integer Pro-
gramming," Doc. No. 71PSCI, Philadel-
phia Scientific Center, IBM Corpora-
tion, 1971 (Restricted Distribution].

4. Colmin, J. and K. Spielberg,
"Branch and Bound Schemes for Mixed
Integer Programming," Report #520-
2972, New York Scientific Center, IBM
Corporation, May 1969•

TEST RESULTS

5. Dakin, R . J . , "A Tree Search Algo-
r i thm f o r Mixed I n t e g e r Programming
P r o b l e m s , " The Computer J o u r n a l , Vol .
8, 1965, p p . 2 5 0 - 2 5 5 .

6. Land, A.H. and A. Doig, "An Auto-
m a t i c Method of Solving Discrete Pro-
gramming Problems," Econometrica,
Vol. 28, 1960, pp.497-520.

7. Papayanopoulos, L.J., "The New
York Scientific Center Linear Program-
ming System for OS/360," Doc. No. 69
NYSC 5, New York Scientific Center,
IBM Corporation (Restricted Distribu-
tion), 1969•

8. Linear Programming System/560,
(LPS/360) Program Description Manual,
Publication No. H20-0607, Program In-
formation Department, IBM Corpora-
tion.

300

