Check for

Updates

Experimental Implementations of Mixed Integer

Programming Algorithms

M. D. Grigoriadis, IBM Corp., New York, N. Y.
L. Papayanopoulos and K. Spielberg, IBM Corp., Yorktown Heights,

KEY WORDS AND PHRASES: mixed integer
programming, mathematical programming,
linear programming, integer program-
ming, optimization, branch and bound,
algorithmic experimentation

CR CATEGORIES: 4.22,5.40,5.41,5.49

INTRODUCT ION

The Mixed Integer Programming
Interface “Subroutine §ystem (MIPIS)*

‘Consists of a set of programs written

to facilitate the implementation of
most known MIP algorithms in a common
system environment. This experimen-
tal system [3] makes no claim to over-
all (running time) efficiency since
it utilizes the experimental, Fortran
based linear programming (LP) code
NYLPS (New York Scientific Center
Linear Programmlng System [7])* known
to be less efficient than other com-
mercially available LP codes (e.g.
MPS/360, etc.) written in Assembly
Language. NYLPS is an 0S/360 exten-
sion of LPS/360 [8]} which operates un-
der DOS/360.

The study and associated develop-
ment of MIPIS was directed toward ex-
amining the manner in which MIP

*Thése experimental systems are for
internal use only and are not avail-
able from IBM,

N. Y.

295

algorithms would be implemented, in a
flexible environment, rather than to-
ward implementing another MIP produc-
tion code. It is hoped that this ex-
periment will motivate designers to
provide additional flexibility for
building and extending the scope of
future mathematical programming sys-
tems.

ENVIRONMENT

Generally, production type, large
MIP codes are not easily modifiable
and are limited in algorithmic variety.
Though the particular algorithm used
by such codes is often mathematically
simple, it is always embedded in a
much larger LP system with elaborate
data management, report generation
facilities, etc. In order to obtain
the best possible execution perform-
ance, these codes usually are written
in' a low level (e.g. BAL) programming
language. More often than not, the
result is a large and complex system.
Algorithmic modification and extension
of such a system and its enrichment
with new MIP algorithms, as they may
become available, present practical
implementation difficulties. These
are the considerable development ex-

pense and the necessity for excellent
systems programming skills complemented

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800184.810498&domain=pdf&date_stamp=1971-01-01

by an adequate knowledge of mathemat-
ical programming methods.

A number of experimental codes
implementing a single algorithm in a
high level language do allow easy mod-
ification and extension to other algo-
rithms. However, they are limited in
problem solving capacity due to their
lack of sophisticated data handling
capability.

Nevertheless, experimenters, as
well as sophisticated users, find that
neither type of system precisely meets
their requirements. The former sys-
tem is too costly and time consuming
for exploratory studies, whereas the
latter does not provide an environment
where experimental MIP techniques,
their programming requirements and
their computational behavior can be
studied for large scale problems.
Furthermore, the great differences in
hardware and programming systems make
realistic comparison of available MIP
programs virtually impossible.

CONTROL
PROGRAM FOR
| USER'S
ALGORITHM

0S/360
JOB CONTROL .
CARDS AN

DATA AND
PROBLEM

CONTROL =
STATEMENTS|

—————> CONTROL FLOW
————=====pROGRAM TRANSMISSION
—-==== DATA TRANSMISSION

REPORTS

et ¢ S ¢

- } DESIRED

DESIGN CONSIDERATIONS

The choice of NYLPS as a back-
ground system for MIPIS was based on
several factors: 1) Problem solving
capacity comparable to all other large
commercially available codes, 2) exten-
sive data manipulation and maintenance
capabilities, 3) highly modular struc-
ture of simple Fortran routines, modi-
fied easily, 4) simple but comprehen-
sive problem control language and
5) operation under 0S/360 in multipro-
gramming mode.

The desirability of (5) arises
from the basic design of NYLPS. 1In
order to handle large problems, the
system operates "out-of-core,' that is,
it treats segments of the problem which
it brings in from disk, one at a time.
This requires a considerable amount of
disk I/O the cost of which can be ex-
cessive if I/0 is not completely over-

N

lapped. Thus, the NYLPS/MIPIS system
is most suitable for a large machine
T —
MIPIS
IBRARY
COMPILE PROG.
§ FILE IT FOR
USE EITHER <=
IMMEDIATELY O
T_LATER TIME NYLPS
LIBRARY,

PHASE I

PHASE II

ACTIVATE LXECUTABLE
PROGRAM
NYLPS/MIPIS / L1BRART 15

(USER PROG.
SYSTEM NYLPS, ETC)

ERFORM ALL

PROBLEM

| FUNCTIONS
INCL. USER SIS
ALGORTTHM

NYLPS
PROBLEM §
WORK FILES

MIPIS NODE
- FILES

s,T,U

FIGURE 1 COMPILATION AND EXECUTION PHASES OF A USER WRITTEN ALGORITHM

296

INIT

BETA

ZANN

USER'S
CONTROL .
PROGRAM 4
4
GETV
PROBLEM
CONTROL
LANGUAGE
Y
"/’_,,,' INPUT,
NYLPS \\\\\\\\‘ etc.
PRIMAL

SOLUTION
REPORT &
OTHER
FUNCTIONS

FIGURE 2

(e.g. a 360/65 with a million bytes)
running under multiprogramming (e.g.
0S/MVT).

For the purposes of this study,
the '"user" was assumed to be: a) the
designer of new MIP algorithms for
large scale problems, b) the experi-
menter who might compare solution stra-
tegies on the same algorithm and/or
problem and might synthesize new algo-
rithms for basic ones available in the
system, c) the more sophisticated ana-
lyst who knows that the performance of
an MIP algorithm is almost unpredict-
able and who wishes to explore various
algorithms to select the one best suit-
ed to his class of problems,

In spite of the comparable sim-
plicity the user would have a consid-
erable task of learning and program-
ming before he would be ready to im-
plement an MIP algorithm using direct-
ly the LP capabilities of NYLPS. The
purpose of MIPIS is to furnish an
"interface" between the user and the
system in order to minimize this train-
ing and programming.

THE COMMUNICATION OF A USER

MIPIS FUNCTIONS \

NYLPS FUNCTIONS \

297

$ USER ALGORITHM
(output of Phase I)

LINEAR PROGRAMMING
AND DATA HANDLING
FACILITIES

ALGORITHM WITH NYLPS DURING EXECUTION

MIPIS contains most, if not all,
of the facilities needed to implement
typical MIP algorithms. These facil-
ities may be used (through simple
CALL statements) as 'building blocks"
which are arranged easily in the con-
struction and modification of experi-
mental techniques. An overview of
the User-MIPIS-NYLPS relationship is
shown in Figure 1. Phase I depicts
the preparation of the ''user program"
in which the user employs MIPIS facil-
ities by means of Fortran CALL state-
ments. When the program is compiled,
it is placed in a library. Subse-
quently, in Phase II the compiled pro-
gram is fetched for execution as part
of the overall NYLPS overlay struc-
ture. Since the compilation output is
retained on disk, Phase I need not be
performed more than once for each new
algorithm introduced into the system.

Figure 2 illustrates the flow of
control among the functional units of
the system during execution. A user
program is entered via the problem
control language. Subsequently,

depending on the requirements of the
algorithm, the user program requests
the services of some or all of the
MIPIS functions (e.g. INIT, BETA,
GETV). Similarly it accesses NYLPS
facilities for input of problem data,
linear programming optimization, etc.
In each case, use of the appropriate
files is made as indicated by the
broken lines of the diagram.

MIPIS FACILITIES AND DATA FILES

For the purposes of this study
most of the known algorithms of
branch-and-bound (e.g. [5],[6]) and
enumerative [1] types were examined
to establish their computational re-
quirements and degree of similarity
[4]. Almost all of these involve the
initial solution of the continuous LP
and the subsequent consideration of a
sequence of solution vectors whose
(integer restrained) components are
fixed at appropriate integral levels
(or ‘constrained in appropriate inter-
vals) as dictated by the particular
algorithm. By and large the algo-
rithms generate information stored in
successive nodes of a computational
tree, compute ''penalties' at each
node, shift from one branch to an-
other according to various criteria,
etc. Single branch, multibranch and
combinations of single and multi-
branch trees may be considered, as
well as other data structures, pen-
alty tables, lists, etc.

During the course of the search,
the nodes of a tree and the informa-
tion associated with each node are
generated by means of an auxiliary
program, e.g. LP, over some selected
('"free') set of variables, and sub-
sequently used by other parts of the
algorithm. This information, poten-
tially of an extremely large volume,
must be stored and retrieved in an
efficient manner from auxiliary data
storage devices.

In addition to the Problem and
Work files used by NYLPS, MIPIS uti-
lizes the following three data files,
each assigned to a direct access data
set:

S - "Dictionary File," contains the LP
objective function value at each
node, ordered to facilitate re-
trieval of the "best'" node and
(pending/not pending) node indi-
cator.

T - "Node (information) File," con-
tains detailed blocks of infor-

mation (e.g. the bounds of the
integer constrained variables,
the next variable to branch on,
etc.) associated with each node
in the S file.

U - A dictionary file for single
branch algorithms. This file is
used to store objective function
data for an ordered set of nodes
(along a single branch of the
search tree). It facilitates
backtracking and branching by
eliminating the need to search
the disk for a previous "pending"
node.

If a particular algorithm re-
quires the selection of the best
branching point among all pending
nodes, this is accomplished through
an examination of the dictionary files
S and U, When the most desirable
node is found, the dictionary record
specifies the record in the library
file T where the complete definition
of the node is located.

The facilities required by the
vast majority of MIP algorithms are
listed below. Each of these is given
a mnemonic corresponding to the MIPIS
subroutine name which can be called
to perform that task.

SETB: Set or change the bounds of a
variable,

OUT: Write the information associ-
ated with the current node into
the dictionary and node library.

IN: Read the data associated with a
particular node into core from
the library file. Also prune
the tree of all nodes with high-
er objective function values
than the best integer solution,
and select the next '"best node"
as dictated by the algorithm.

GENR: Generate rows and compute '"pen-
alties' for each integer con-
strained variable which is cur-
rently basic and at a noninte-
gral level.

GETV: Retrieve the values of the pri-
mal and dual variables (e.g.
after a LP solution is per-

formed).

GETB: Obtain the bounds of a given
variable.

RESB: Restore previous bounds on all
variables.

BETA: Determine the status and values
of the basic "integer'" vari-
ables. .

SVSL: Save the data (bounds, etc.) at
a particular node for subse-
quent use.

RSSL: Restore a particular node
(saved by SVSL at some previous

stage).

BEND: Generate a '""Benders inequality"
—— a necessary condition to be
satisfied by the integer con-
strained variables.

INIT: Initialize core and files.

PRINT: Print an integral solution.

IMPLEMENTING AN MIP ALGORITHM
VIA MIPIS

The implementation of the branch-
and-bound algorithm illustrated here
uses the well known Dakin [5] modifi-
cation of the Land and Doig [6] method
of search. Integrality of the integer
variables under this technique is at-
tained through the progressive con-
striction of the bounds imposed on
these variables. The flowchart in Fig-
ure 3 demonstrates the construction
of this algorithm in terms of the
MIPIS facilities. The user written

USER'S CONTROL PROGRAM

program requires only a few Fortran
statements.

TEST RESULTS

A number of MIP problems were
run to test the algorithm described
above. The self-explanatory test re-
sults are summarized in Table 1. The
comparative figures enclosed in par-
entheses correspond to test runs of
a multibranch version of the same
algorithm,

ACKNOWLEDGEMENTS

The authors acknowledge the val-
uable efforts of their colleagues
L. Bodin, J. Colmin, Pat Grapes (Mrs.),
K. Harrow, S. Torok and W.W. White
who participated in the implementa-
tion of MIPIS.

The test problems were contribu-
ted by members of the MIP Subcommit-
tee of the SHARE MPS Project and were
compiled by Miss Roberta L.A. Heintz.

MIPIS FACILITIES NYLPS

INIT

SOLVE INITIAL
LINEAR PROGRAM

LP SOLUTION'

CHECK FEASIBILITY
AND INTEGRALITY

FIND FIRST

BETA

BRANCH VARIABLE

OMPUTE
NEW UPPER
BOUND

R B

ClILCK
INTEGRA

ND BRANCH ™\
VARIABLE WITiilg

OF SOLUTION

LITY

"OPTIMIZE"

BETA

PRINT

MIN, PENALT

THE MAJOR CYCLE
THE MINOR CYCLE

GETB
GENR

OBTA]! EST
NODE § ASSOC.
BRANCH VAR.

“~+#{ TERMINATE]

FIGURE 3 AN MIPIS IMPLEMENTATION OF THE DAKIN ALGORITHM

299

0
3
g 8 3 "
(%] s 15;: o o= oo
® E |2 | %3 s 5 an Ao
E (7] 3 [O Y% ©n o [= QS
K = - u [Y} - » O > 0 IR
- [o] [s 0 g un (=7 ol 20 5] o
- (3 O A -3 200 a = a [=]
g — o P o +0 O «0O
o Y4 Y4 Ho | Het W Y“ 0O w4 e o P et
-t [+] o o O » o0 O H o o0 P e
0 ol 3 ES a0 Voo (S
2 o 6 |o8|80 | 60 | ook §u% §0%
[=1) 2z =4 Zpr | Zn Zown Zo4 A oo wn e © w0
UCAMP08S 86 90 15 1 23 199 8,152.20 8,498.60
) | @3) | (199
NY2835 29 35 35 1 45 371 5§21.05 550.00
(2) | (51) | (461)
NY2889M 29 89 31 2 103 872 834.68 946.70
(6) [(105) | (968)
COBLEND 60 195 15 3 115 2768 28,442.35 29,565.92
(3) §(121) {(3063)
CO.PSL 10 14 12 5 41 162 -742.17 -727.00
|) | (27) | (106)
ART1ST 25 47 29 2 129 626 717.00 818.75
2) [(139) | (718)

TABLE 1 - TEST RESULTS

REFERENCES

1. Balinski, M.L. and K. Spielberg,
""Methods for Integer Programming:
Algebraic, Combinatorial and Enumera-
tive," Progress in Operations Research,
Vol. 3 (Julius S. Aronofsky, ed.),

John Wiley and Sons, 1969.

2. Benders, J.F., "Partitioning Proce-
dures for Solving Mixed-Variables Pro-
gramming Problems," Numerische Mathe-
matik, Vol. 4, 1962, pp.238-252.

3. Bodin, L. et alias, "The NYLPS/
MIPIS System for Mixed Integer Pro-
gramming,” Doc. No. 71PSC1l, Philadel-
phia Scientific Center, IBM Corpora-
tion, 1971 (Restricted Distribution).

4. Colmin, J. and K. Spielberg,
"Branch and Bound Schemes for Mixed
Integer Programming,'" Report #320-
2972, New York Scientific Center, IBM
Corporation, May 1969.

300

5. Dakin, R.J., "A Tree Search Algo-
rithm for Mixed Integer Programming
Problems," The Computer Journal, Vol.
8, 1965, pp.250-255.

6. Land, A.H. and A. Doig, "An Auto-
matic Method of Solving Discrete Pro-
gramming Problems,' Econometrica,
Vol. 28, 1960, pp.497-520.

7. Papayanopoulos, L.J., '"The New
York Scientific Center Linear Program-
ming System for 0S/360," Doc. No. 69
NYSC 3, New York Scientific Center,
IBM Corporation (Restricted Distribu-
tion), 1969.

8. Linear Programming System/360,
(LPS/360) Program Description Manual,
Publication No. H20-0607, Program In-
formation Department, IBM Corpora-
tion.

