
PIRL-Pattern Information Retrieval Language
--Design of Syntax*
Dr. Sidney Berkowitz, Naval Ship Research & Development Cente[,** Washington, D. C.

The design of a pa t te rn manipulat ion lan-
guage, PIRL, is d e s c r i b e d here. P IRL can
handle a r b i t r a r y , o r ien ted pa t te rns (i . e . ,
subgraphs) of l i s ts , nodes, numer ic and
Hol ler i th data on many levels of abs t r ac t ion
in a concise , legible manner . Pa t t e rns and
l i s t s may be inser ted , r e t r i eved , deleted,
indexed, compared , named, in te r sec ted ,
united, and complemented . Pa t te rn names
may be r e f e r e n c e d to a lower level of
abs t r ac t ion and pa t te rn f o r m s may be
quantified. PIRL should be of cons ide rab le
value in the solut ion of ce r t a in p r o b l e m s in
informat ion r e t r i eva l , l inguist ic ana lys is ,
scheduling s imulat ion, and pa t te rn r ecog -
nition.

KEY WORDS AND PHRASES: graph, pro-
g ramming language, informat ion r e t r i eva l ,
pat tern, l is t a t t r ibute , a s soc ia t ion
CR CATEGORIES: 3.42, 3.60, 3.70, 3 .81,
3.82, 4 .22, 5.32

* The work was done under Task Area
SFI4 532 107, Task 15329.

**Computation and Maihematics Dept.

INTRODUC TION

PIRL (Pa t t e rn Informat ion R e t r i e v a l
Language) is a p rog rammi ng language
des igned to convenient ly manipula te infor-
mation in graph s t r uc t u r e s . As such, the
language wil l p lay a key ro le in the con-
s t ruc t ion of the organiza t iona l s c h e m e s
found, fo r example , in informat ion r e t r i e v -
al, l inguist ic ana lys is , and p r o c e s s sched-
uling s y s t e m s . The language is wr i t t en to
complemen t an a lgebra ic language such as
FORTRAN or ALGOL, in the s ense that
PIRL s t a t emen t s a r e d is t inguished f rom
the s t a t emen t s of the a lgebra ic language
and may be in te r l eaved with those s t a te -
ments . The p r i m a r y advantage of sepa -
rat ing symbol ic and numer ic s t a t emen t s is
that the p r o g r a m m e r is a f forded a l inear ,
one-one t r a c e of graph opera t ions in the
code descr ip t ion . F r o m an opposing point
of view, Fe ldman and R o v n e r ' s L E A P [1]
and R o s s ' s AED-0 [2] , for example , a r e
ex tens ions of ALGOL in the s ense that
graph o r l i s t opera t ions a r e i n t e r s p e r s e d
with numer ic opera t ions . The r e su l t is
that code sequencing of graph ope ra t ions is
bound by the infix, ph ra se - subst i tu t ion
na ture o f the a lgebra ic language, and does
not lend i t se l f to an e a s y scan of the graph.
On the o ther hand, the ALGOL extens ions

496

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800184.810519&domain=pdf&date_stamp=1971-01-01

offer a un i formi ty of notation n e c e s s a r i l y
miss ing f rom PIRL.

The function of PIRL is to identify, in-
ser t , r e t r i eve , delete , and compare sub-
graphs , or pa t tern images , which range
f rom single nodes and l i s t s to a r b i t r a r y ,
d i rec ted graph s t ruc tu res . As such, PIRL
is an expansion of a less sophis t icated lan-
guage cal led GIRL (Graph Informat ion _Re-
t r i eva l Language), r-eporte'd e l sewhere [3],
which confines i ts graph manipulat ion act ivi-
t ies to single nodes and l is ts . The GIRL
language was designed to be pr imi t ive
enough to allow the bootstrapping of the
PIRL compi le r (or p r ep roces so r , as hap-
pens to be the case) f rom the GIRL prepro-
ce s so r , in t e r m s of GIRL s ta tements .
Fe ldman and Rovner ' s paper [1] contains a
d iscuss ion and comprehens ive bibl iography
of the languages and p rogramming s y s t e m s
which lie in the background of cu r r en t
thinking on assoc ia t ive languages [4, 5, 6,
7].

Af te r giving a very brief descr ip t ion of
GIRL, this paper will d i scuss the design
cons idera t ions behind PIRL. This paper is
not intended as a p rogramming manual , but
r a the r as a descr ip t ion of the pros and cons
of a language design. A concise render ing
of the GIRL syntax may be found in the
Appendix.

NOTATION OF GIRL

The function of GIRL is to manipulate
node- l ink-node s t ruc tu r e s of the type shown
in F igure 1. One may think of such a s t ruc -
ture as a function (B), a rgument (A), value (C)

tr iplet ; or as a subject (A), re la t ion (B),
object (C) associa t ion. The language is
based on the opera t ions given in Table 1.

B

FIGURE 1--Node- l ink-node t r ip le t

F r o m a descr ip t ion as br ief as the cu r r en t
one, the r e a d e r cannot hope to achieve pro-
g ramming competence in the language, but
the following comments , together with the
example, should give an idea of the basic
a r ch i t ec tu re of the language.

Note f i r s t that inser t ion (non-selective)
is non-des t ruc t ive , so that links may be
cons idered as mult ivalued functions, and
sink nodes as o rde red se ts (or l ists) . Sec-
ondly, the X in Table 1 may be rep laced by
any lef t -hand portio~--i , e . , pref ix--of a
GIRL s ta tement whose value is a node when
p roces sed in a l e f t - t o - r igh t scan. Accord-
ingly, paren thes iza t ion is employed to indi-
cate a sequence of suff ixes of a GIRL s ta te-
ment and imbedding occurs s t r i c t l y to the
right, as opposed to the phrase subst i tut ion
function of a lgebraic ~nfix notation for which
imbedding is not n e c e s s a r i l y oriented. A
notion of "p re f ix sequence" was cons idered
but d i sca rded due to dif f icul t ies in legibi l i ty
and compilat ion. In fact, the r e ade r will
see that the notion of a pa t te rn to be in t ro-
duced la te r will obviate the need for a pre-
f ix sequence. Thirdly, the condit ional t r ans -
f e r sequence may t e s t the r e su l t of any
opera t ion (except definition) and continue to
p rocess the s t a tement when 1) the t r a n s f e r

TABLE 1--Opera t ions in GIRL

F o r m
X Y Z
XY. K C

X+Y
X-Y

X=Y
X+Y. I
X=y

/F/S

Function
Inser t ion
Selective
inser t ion
Re t r i eva l
Deletion

C ompar i son
Indexing
Node
definit ion
Condit ional
t r a n s f e r

Meaning
Connect source node X to sink node Z by link Y.
Let the sink node l is t linked to X by Y contain as
its Kth i tem the node C.
Find the node(s) linked to node X by the link Y.
Let X no longer be assoc ia ted with any node(s)
by the link Y.
Do X and Y r e f e r to the same node?
Find the Ith i tem on the l is t a cces sed by X+Y.
Give the name Y to the node (link, list) r e f e r r e d
to byX.
If the preceding operat ion fai ls , go to the label
F; o therwise to S.

497

is wr i t t en as F and success occurs , or
2) the t r a n s f e r is wr i t ten a s / / S and fa i lu re
occurs . Note that fa i lu re of inser t ion occurs
when the node- l ink-node t r ip le t has a l r eady
been inser ted . The following example should
help c la r i fy the preceding notation•

C

!

T

FIGURE ?,--Sample graph

Suppose the graph shown in F igure 2
has been inserted• Then the following GIRL
sta tement :

G 5 A-~-X+B. 2(S F M N, +R(-C, =X/5))

produces the graph shown in F igure 3.

B

S M

FIGURE 3---Sample graph t r a n s f o r m e d

The s ta tement will have the following in ter -
pretat ion:

G
5
A-X
+B

. 2

(S F

MN

, +R

,-C

The s ta tement is a GIRL s ta tement .
The s ta tement has label 5.
Let A have the name X.
F r o m X, follow the B link to the l is t
E ,D.
Take the second i tem on the l i s t E, D;
i . e . , D.
In se r t the assoc ia t ion "D linked by S
to F".
Insert the association "F linked by M
to N".
(Second suffix) From D, follow the
~f link (to A)

A has a C'link, delete it.

, = x / 5 (Second suffix) Do A and X r e f e r to
the same node? If not r e tu rn to 5;
o therwise continue.

In addition to the above opera t ions , and
aside f rom many deta i ls omit ted for the sake
of brevity, one should be aware of GIRL
fac i l i t i es for ident i f ier definition, numer ic
and Hol ler i th data, and function subprograms .

• Ident i f ie r definition• There a re two
equivalent ways to ass ign in te rna l nodes to
ident i f ie rs , say Xl, YI: e i ther by wri t ing
the GIRL s ta t ement

G DEFINE (Xl, Y1)

or by wri t ing $-Xl and $-Y1, e i ther as
separa te s t a t emen t s or within the context
of a s ta tement , where $ means : genera te a
random in te rna l node address• The iden-
t i f i e r s then a re va r iab les having in teger
values which can be acces sed in a lgebra ic
s ta tements•

• Numeric and Hol ler i th data. One can
in se r t data as a sink node or l i s t in the fo rm
of 1) numbers , 2) the value of a lgebra ic
express ions , or 3) Hol ler i th s t r ings . F o r
example, X G("/5/3+X2Y", "IA+2", "I4")
means: i n se r t the c h a r a c t e r s t r ing 3+X2Y
(of length 5), the value of the in teger expres -
sion A+2, and the in teger 4, respec t ive ly ,
as l i s t values of the function G of X.

• Funct ion s u b p r o g r a m s . One can re -
place a node or link ident i f ier at any point
in a GIRL s ta t ement by a function of the fo rm
*ID(A1, A 2 , . . . , AN), where ID is an iden-
t i f i e r and (A1, A 2 , . . . , AN) is a l is t of input
ident i f ie rs , a lgebra ic v a r i a b l e s , or con-
s tants . The function is defined in the s a m e
way as a p rocedure of the c o m p l e m e n t a r y
a lgebraic language, and may contain GIRL
s ta tements• Whether or not the function is
r e c u r s i v e depends on the r e c u r s i v e capa-
bi l i t ies of the a lgebraic language.

STRUCTURE OF PIRL

Pa t t e rns and Pa t te rn F o r m s

In designing PlRL, the main object ive
was to produce a concise notat ion for the
ident i f icat ion and r e t r i e v a l of subgraphs (or
pat terns) contained within a s to red graph.
Moreover , the notation was to be compat ible
with the syntax of GIRL so that pa t t e rns
could be manipulated as genera l i zed nodes

498

in a manner to be d iscussed . Since the re -
t r i eva l of pa t te rns in no way t r a n s f o r m s any
of the under ly ing graph s t ruc tu re , use of a
bracketed GIRL s ta tement which does not
contain any inser t ions or delet ions seems an
appropr ia te way of descr ib ing a pattern.
Fo r example, the sample graph of F igure 2
might be r e t r i eved as the pat tern express ion
in (I).

<A+(C=F/I+T=G/2, B(. 1=E/3+S=G/4,
• 2 =D/5+R=A/6)) > (1)

The transfers and comparisons are optional,
and one can name the entire bracketed ex-
pression in the same way as one names a
node. In the example just given, the node
identifiers are assumed to have been defined
by a DEFINE statement or definition oper-
ator. If the identifiers were not defined,
they would be undefined, or free. The
resulting bracketed statement would then be
a pattern form and would refer t o the list
of patterns generated by the pattern form as
the free identifiers range over the nodes of
the graph. Thus, a free identifier is a
symbolic variable, and a defined identifier
is a symbolic constant. The implications of
the preceding choice of notation for patterns
and pattern forms within statements produce
a host of problems which will now be dis-
cussed in a not-too-random order.

Trans fo rma t ion of Levels of Abs t rac t ion

If pa t te rns (or the i r e x t e r n a l names)
a re to be used in place of nodes, one mus t
decide whether the l i s t of in te rna l a d d r e s s e s
of the nodes contained in the pat tern or the
address of the pa t tern name is to replace
the pa t tern (or i ts ex te rna l name). If, dur-
ing execution, one were to subst i tute the
address of the pa t tern name for a pat tern,
then all pa t tern linking would occur among
names. Consequently, in o rde r to p rocess
the graph at the node level and de t e rmine
the exist ing linkage, one would requ i re a
means of in te r roga t ing a node to d i scover
with which pa t te rns one level of abs t r ac -
tion up---the node was assoc ia ted• The node
r e t r i eva l t ime would be g r e a t e r than GIRL
re t r i eva l t ime; s to rage would be requ i red
both for n a m e - t o - p a t t e r n r e t r i eva l and fo r
the inverse r e t r i eva l (although it is t rue
that no s to rage would be needed for pat tern
node linkage); and, mos t important , a s soc i -
ation between pat terns would be confined to

the effect ive assoc ia t ion of all nodes of one
pat tern with all nodes of another by a common
link. It is p referab le , then, to introduce
the effect ive naming scheme shown in F igure
4, and a una ry r e f e r ence opera to r ~ to de-
scend f rom a name to i ts r e fe ren t pattern.
In other words , the occur rence of a pat tern
in a s ta tement is replaced at execution t ime
by its in te rna l name; but if the pat tern it-
self is des i red , a r e f e r ence operat ion can
access the pattern• Storage is now requi red
for pat tern node linkage, but no level as-
cension is needed, and node r e t r i eva l is the
same as in GIRL. Moreover , one can han-
dle unconnected subgraphs as components of
a single pattern. As an example of this
s t ruc tu re , cons ider F igure 4. In o rde r to

~ % 1 Pattern to
be named @ x

., PA TTERN

P1 P

BI A\

B, 2;A]

FIGURE 4 Example of pa t tern naming
organiza t ion

avoid ambiguity, the nodes PATTERN and
P1 a re , in fact , in te rna l ly genera ted , d is-
t inguished, random nodes not o therwise
used in the graph. The PATTERN node is a
source for all pat tern names and each pat-
t e rn links all of i ts nodes to PATTERN node,
using the pa t tern name (e. g . , P1) as link.
Moreover , in o rde r to avoid r e t r i eva l ambi-
guity, the P1 link f rom a pat tern node R
points both to the subset of links of the
graph which a re intended as links in the
pat tern f rom R, and also to the subset of
indices for each mult ivalued link. That is
to say, if one specif ied only the link subset ,
then links in the graph not to be included in

499

the pat tern---such as the dashed B link in
F igure 4 would spur ious ly fo rm a par t of
the pattern. Note that s imply linking the
nodes to the PATTERN node does not un-
ambiguously exclude links of the type just
mentioned, s ince the linked nodes may en-
t e r the pa t tern by linkage outside the pattern,
as does E in F igure 4. Note also that linking
all pat tern nodes by the name link is not as
redundant as it would seem, s ince the link-
age not only provides unambiguous t e r m i -
nation of loop t r aces , but also saves much
t ime in pat tern node r e t r i eva l as agains t a
s t r a igh t fo rward t r ace of the pat tern. Since
a s i m i l a r - - b u t s i m p l e r - - s t r u c t u r e obtains
for l i s t s (see F igure 5), one can speak of
l i s ts of pa t tern names (or pa t te rns of l is t
names) to any level of abs t rac t ion. Indeed,
a cons is ten t extension of the notation defined
e a r l i e r for pa t te rns might, for example,
have the fo rm:

<A, B, C, D>

where each a rgument r e p r e s e n t s a s t r ing
whose value is an in te rna l address . Such a
l is t fo rm may be named, and the subgraph
under ly ing the abs t rac t ion is r e t r i evab le by

[P A T T E ~]
L1

FIGURE 5- -Example of l is t naming
organizat ion

success ive r e f e r ence operat ions . One by-
product of the naming scheme is that a name
r e f e r s effect ively to an in te rna l node add re s s
un i fo rmly for nodes, l is ts , or pa t te rns , so
that a specia l naming notation is not needed
to dis t inguish nodes f rom more complex
s t ruc tu r e s , as was previous ly thought [3].

Now that l i s t s have been s t ruc tu r ed as
types of pa t te rns , one wonders whether it
would not be cons is ten t to s t r uc tu r e nodes as
types of l is ts . If we suppose that a node and
i ts name were not dis t inguishable , then an
inser t ion would requ i re knowing whether a
l ist , a node, or nothing had been inser ted .
Inser t ion would then take place by adding to

the l ist , c rea t ing a new l ist , or c rea t ing a
node- l ink-node s t ruc tu r e , respect ively . F o r
example, if one wished to execute A B C, it
would be n e c e s s a r y to rep lace the inser t ion
t r ip le t with the following GIRL code at com-
pilation t ime:

G A(+B=-D//1, BC / / 3)
G 1 PATTERN(+D/2, D C/ /3)
G 2 A (-B, B$-=NEW)
G PATTERN NEW(D, C)

3

As an a l t e rna t ive to this c u m b e r s o m e in te r -
pre ta t ion of inser t ion, one might r eg a rd a
sink node as a univalue l is t , so that the in-
se r t ion of a new node- l ink-node t r ip le t would
requ i re a l i s t name definition. Thus, the
inser t ion t r ip le t A B C would be rep laced at
compila t ion t ime by the code:

G A (+ B-D//i, B $=-D)
G 1 PATTERN D C

On the o ther hand, this p rocedure would re -
qui re our wr i t ing A+B~ when the node, not
the node name, was des i red . Although this
is not too g rea t a demand, one might avoid
even this r equ i r emen t (and ex t ra s torage ,
by the way) by replacing A+B by the sink
node C, when A+B points to a s t r i c t l y uni-
value list . Thus, A+B would be rep laced at
compila t ion t ime by the code:

G A+ B-=C/FAI L
G PATTERN+C(. 2 / / 1 , . I~-C)

This scheme s e e m s an inequitable t rade ,
however, for the burden of us ing a r e f e r e n c e
opera tor . Thus, we have decided to r ega rd
sink nodes as univalue l is ts , and r e t r i e v a l
as the r e t r i e v a l of a l is t name. On the bas is
of this decision, note that the pa t te rn defi-
nition in Expres s ion (1) above r equ i r e s the
inser t ion of a r e f e r ence opera to r a f te r every
re t r i eva l .

By introducing a r e f e r ence opera tor ,
one makes it possible to subst i tu te an in ter -
nal add re s s for a pa t tern at execution t ime,
as s ta ted above. But what subst i tut ion
should one make for an ex te rna l name? If
one were to subst i tute the pa t te rn (or list)
i tself , one would need a d i f fe ren t r e f e r ence
opera tor , say t, to acces s the in te rna l ad-
d r e s s of the name, one level up. On the
other hand, if one were to subst i tu te the

500

in te rna l address , one would at t imes need a
f o r m a l i s m like [P~] to access the pat tern
(or list) r e f e r r e d to by P; that is, one would
need 5rackets so that the r e f e r ence operat ion
would not be applied to the value of the s t r ing
preceding P. In fact, despi te the possibi l i ty
of more f requent use of the pat tern than of
its name, we have chosen the la t te r course ,
s ince the ~ operat ion 1) would not be applied
to bracketed express ions , 2) would not have
a unique value, 3) would be cos t ly in t e r m s
of s torage and implementa t ion t ime, and
4) would, in any case, requ i re brackets for
the same reason that the ~ operat ion does.

In passing, one might mention a th i rd
organizat ion that could prove feas ib le if
t rans la t ion occur red in an in te rpre t ive mode
(not cu r ren t ly the case): namely, the r ep re -
sentat ion of a pat tern as a subroutine which
would genera te the pat tern nodes and links,
and which would be cons t ruc ted dynamica l ly
as the execution of a s ta tement produced and
named new pat terns .

Operat ions on Pa t t e rns and Lis t s

The a t tempt to rep lace nodes or links
in s ta tements by pat terns or l i s ts opens the
way to s eve ra l in te rp re ta t ions of the oper-
ations given above in Table 1. Fo r example,
if P1, L, and P2 a re pat tern names , should
[PI~][L~] [P2~] mean that each node of P1
should be linked with each node of P2 by the
node add re s se s of L, a complete linkage~ as
shown in F igure 6, or that the f i r s t node of
P1 is linked to the f i r s t one of P2, the next
to the next, etc, a m i r r o r linkage as shown
in F igure 7. Or, perhaps one should intro-
duce new notation to permute and reduce the
source and sink l i s t s? Since the last two
poss ibi l i t ies r equ i re a detai led knowledge of
the order ing of the pat tern con ten t s - -no t the
usual c i rcumstance- - - i t is reasonable to give
[PI~] [L~] [P2~] the f i r s t in terpre ta t ion ,
which is equivalent to regard ing l i s t s as un-
o rdered sets . Fo r m i r r o r linkage, we will

FIGURE 6---Complete linkage

use the notation " :" (e. g . , [PI~]:[L~] [P2~]).
Fo r permuta t ion and reduction, ca re fu l defi-
nition or redef in i t ion of pa t te rns should suf-
fice, and no new notation will be introduced.

(Each link r e p r e s e n t s a link list)

FIGURE 7 - - M i r r o r linkage

Another problem a r i s e s in in te rpre t ing
the express ion PI~+[P2~]. Cer ta in ly the
value is a list. But should the l ist i temize
nodes and l i s t - n a m e s ? Each name would
r e f e r to a sink node l is t r e t r i eved by ap-
plying [P2~]to a pa r t i cu la r node in P1. If
such were the case, one would, for cons is t -
ency ' s sake, r equ i re the express ion A+B~
in o rde r to access a sink node. Therefore ,
in o rde r to avoid a cumber some notation
in the case of node re t r i eva l , it is suff icient
to in te rp re t the or ig inal express ion as pro-
ducing an uns t ruc tu red l ist of al l the nodes
re t r ieved .

Still another problem a r i s e s with the
express ion PD-A. If PI~ produced a node,
should A be given the value of the node ad-
d r e s s or that of the name a d d r e s s ? The is-
sue is decided by noting that if PI~ were a
list, one would be forced to say that identi-
f i e r definition must be definit ion of the list.
But then how would one identify a node? The
solution is given by use of the index oper-
ation: i . e . , P1.1--A gives to A the value of
the f i r s t (and perhaps only) node add re s s in
P1.

In addition to basic GIRL operat ions ,
PIRL contains operat ions n e c e s s a r y for the
manipulat ion of se ts s t ruc tu red as pa t te rns
and l is ts , namely: U (union), N(intersect ion) ,
--z(complementation). The union and in ter -
sect ion opera t ions have the usua l connota-
t ions of joining and excluding, respect ive ly ,
those components which are held in common,
as F igure 8 shows. On the other hand, com-
plementat ion here is a binary operat ion and
se rves to exclude a pattern, node, or l is t
f rom the preceding argument , as shown in
F igure 8; that is, [p{~[R~] produces the com-
plement of R re la t ive to P. This pecul iar

501

definition a r i s e s f rom a re iuc tance to suffer
the tedious implementa t ion of a un ive r sa l
complementa t ion (that is, a complementa t ion
re la t ive to the whole graph). Final ly , note
that an operat ion may resu l t in a null pat tern
or list, r ep re sen t ed i n t e r n a l l y by a pat tern
:or l is t name With no fu r the r linkage.

(a) pa t tern definit ions:

PAT1 PAT2

(b) union: PATI~U[PAT2~]

(c)

~ L

intersection: PAT1 A[PAT2~]

(d) complementa t ion: PATI~-p[PATI~N
[PAT2~]]

FIGURE 8---Set opera t ions

Now that set opera t ions have been intro-
duced, it s e e m s reasonable to use t h e m - - a n d
indeed, any operat ion d i scussed thus f a r - - t o
concatenate pat terns , i. e . , b racke ted expres -
sions. The co ro l l a ry of this decis ion is to
allow nes ted b racke t s in PIRL s t a t emen t s , an
infix notation which neu t ra l i zes the vaunted
legibi l i ty of the l e f t - to - r igh t scan of GIRL
s ta tements . Fo r the sake of legibil i ty, one
could of course ins is t on manipulat ing brack-
eted express ions outside of GIRL s ta tements ,
naming the resul t , and using only names in
GIRL s ta tements , but this hard ly s e e m s a
suff ic ient r eason to exclude the convenience
of mixed notation. Accordingly, we also
pe rmi t the s tand-a lone bracket ing of indexed,
re fe renced , or redef ined ident i f ie rs (e. g . ,
JR. 1], [R~], [R - S]) , or combinat ions the re -
of. Also, condit ional t r a n s f e r s should be
pe rmi t t ed within such brackets .

The preceding d i scuss ion by no means
covers all the desigu i s sues involved, but

does give a fa i r notion of the outstanding
problems.

Quantif icat ion and Logical Operat ions

The use of f r ee ident i f ie rs pe rmi t s one
to find pat tern ins tances anywhere in the
s tored graph. F o r the sake of desc r ip t ive
convenience, it may be des i rab le to l imit
the s ea rch to a specif ied subgraph. One
should note that such a l imi ta t ion may de-
c r e a s e the r e t r i e v a l eff iciency, espec ia l ly
if one u ses a paging sy s t em such as that in
LEAP[I] . One means of specifying s ea r ch
l imi ts would be to introduce a sequence of
quant i f ie rs , such as (for) A L L and (there)
EXIST, each bounding a succeeding sequence
of f r ee ident i f ie rs found in a pa t te rn fo rm to
follow. The EXIST quant i f ier might be fol-
lowed, optionally, by the number of pa t te rns
expected to be found. The ent i re express ion,
when evaluated, would produce a name of a
l is t of pa t tern names. Fo r compila t ion ease,
and indeed for u s e r convenience in r e m e m -
bering which ident i f ie rs a re f ree , the use of
f r ee ident i f ie rs is r e s t r i c t e d to quantif ied
pa t te rn f o r m s (or, as we shal l see, to a
logical concatenat ion of quantif ied pa t te rn
forms) . Although the definit ion of a f r ee
ident i f ier is local to the range of its bound-
ing quant i f ier , the f r ee ident i f ier may be re -
named as a global ident i f ie r within a pa t tern
form. The new name is used to hold the
in te rna l name of a l is t of values which suc-
cess fu l ly match the pa t tern fo rm in the f r ee
ident if ier .

One might fu r the r de l imi t the s ea r ch by
introducing a notat ion for m e m b e r s h i p - - say
IN P, where P is a pa t tern n a m e - - t o precede
the pa t tern fo rm to be quantified. One might
a l te rna t ive ly , or addit ionally, cons ider r e -

lacing the pa t tern P by an express ion , say
, d, L }, which would l imi t the s ea rch to

nodes emanat ing f rom a node G, to a depth
d, by links contained on a l ist L. Moreover ,
one might introduce the logical connect ives
AND, OR, NOT to concatenate quantif ied
fo rms . However, the implementa t ion of
these notat ions, appealing as they may be,
is quite e laborate . Therefore , in the f i r s t
phase implementat ion, we r e s t r i c t ou r se lves
to logical connect ives and two quant i f ie rs
before the ou t e rmos t bracke t of a pa t te rn
form, and leave m e m b e r s h i p and more com-
plex quantif icat ion for another t ime.

A fundamenta l objective in c rea t ing the
notations of pat tern and pat tern f o r m was to

502

allow for the sequence:

quantif ied <pattern match>--~
pat tern t r ans fo rma t ion or fu r the r match. (2)

Like FORTRAN, PIRL has condit ional t r ans -
f e r s to accompl ish the t rans i t ion between
ma tch ing- - say , an a lgebraic condition in the
case of FORTRAN--and t r ans fo rmat ion , or
even fu r the r matching. On the other hand,
ALGOL provides an i f . . . , t h ~ n . . . , e l s e . . .
s t ruc tu re that has some appeal, f rom the
viewpoint of descr ip t ive power: i . e . the
capabil i ty of coding a potential ly large sub-
graph of a f lowchar t in one s ta tement . As a
by-produc t , f r ee ident i f ie rs which are evalu-
ated in a pat tern match would be available
for use in the t r ans fo rma t ion f ield without
naming. Never the less , one mus t allow in
any case for the naming of f r ee var iab les
(i. e. the naming of the l is t of values which
sa t i s fy the pat tern form) so that t r ans fo r -
mat ions under the control of condit ional
t r a n s f e r s may use the names. In the in ter -
es t of minimiz ing the notation explosion and
keeping s ta tements concise and legible, we
adopt a compromise between condit ional
t r a n s f e r s and i f . . . , t h e n . . . , e l s e . . . , by
introducing the opera tor - , -as above in
Equation (2), and by requi r ing f r e e ident i f ie rs
to be renamed for global usage. Thus, the
else f ield is effect ively placed on another
line and is executed by the fa i lu re option of
a condit ional t r a n s f e r following the pat tern
match, The example which follows should
c la r i fy these ideas.

EXAMPLE

The example presented here is a p a r s e r
for the web g r a m m a r represen t ing the c l a s s
of non- t r iva l , basic, two- te rmina l , s e r i e s -
para l le l networks (TTSPN's) d i scussed
somewhat more elegantly by Pfaltz and
Rosenfeld [8].

A non- t r ival , basic TTSPN is defined
(roughly) as follows. Let the t e rmina l vo-
cabulary be la}, the non - t e rmina l vocabulary
{A}. The init ial s t r ing is:

a A a
o >o >o

Then any basic TTSPN can be der ived f rom
the ini t ial s t r ing by repea ted application of
the following rules:

R1 (ser ies expansion); A A
1. Expand a node A to the edge O >O
2. Let any edge or ig inal ly enter ing A now

enter the f i r s t node of the new edge.
3. Let any edge o r i g i n a l l y leaving A now

leave the second node of the new edge.
R2 (paral le l expansion): ©A

1. Expand a nodeA to the nodes OA
2. Let any edge or ig inal ly enter ing A now

enter both new nodes.
3. Let any edge or ig inal ly leaving A now

leave both new nodes.
R3 (termination):

1. Replace A by a.
In o rde r to code a PIRL p r o g r a m to

recognize whether or not a given graph is
basic TTSPN, we es tabl i sh the following
conventions for inputting a graph:

1. The graph must be entered f rom the
node B1 by an R link, and mus t pro-
vide an exit via an R link to node B2.

2. Eve ry link must be designated as R.
For every pair of nodes A, B connected
by R f rom A to B, inser t link L f rom
B to A. All links a re connected by R
links to B2 and by L links to B1.

The PIRL program, complemented to
FORTRAN, follows, with explanatory re -
marks . (n. b. the symbol ~, not he re to fore
introduced, means s imply, " i s not equal to",
posed as a question. The e x p r e s s i o n . -K
means "e l imina te the Kth node f rom the pre-
ceding l i s t" .)

P SER . . EXIST A2[<A2-A2N(¢(B1, B2),
P *+ I~-A3)>.. AND.. NOT[<A3.2 >. . OR
P *<A3~+L. 2 >]] / P A R - - ~
P *A2N. L--A2(-R, +LEA4, - L)

N=I
1 M=I

P A4. N/SER-A4N+Re-A4R
P 2 A4R. M/5=A2/3/4

3 M=M+ 1
GO TO 2

P 4 A4NR. MA3 L A 4 N
5 N=N+I

GO TO 1
P P A R . . EXIST A2, A4[<A2(¢(B1, B2),
P
P
P
P
P
P

*+Iz_A1. L-All , +l~-A3.1-=A31>
*. . AND.. NOT[<A1.2>. . OR<A3.2>
*. . OR<A1 l = A 3 ~ . . AND<A4~A41
*(~(All , A2, A3I ,B1 , B2), +L. I=Al l ,
*+R. l=A31)>. . AND<All+R#n [A35]
*=NULL>I/TEST

503

P
P
P 6
P

7
P
P
P
P
P TEST

8

K=0
J=0
A31. lzA3
A l l . 1=A1
K=K+I
AI+R. K=A4/6
J=J+ 1
A3+L. J=A4/7
AI+R. -K
A3+L. - J
A4(-R, - L)//SER
.. EXIST A6[<A6(;(BI, B2), +L~BI,
+R#=B2>] /8/NO
BI+R. 2 /YES/NO

Program

The f i r s t pa t te rn match is for s e r i e s
reduct ion: if the re a r e n o n - e n t r y / e x i t nodes
A2, A3 linked by s ing le -va lued R, L links,
r e spec t ive ly , then reduce the graph by e l im-
inating the A2 t o / f r o m A3 linkage and r e -
placing A2 by A3; if such A2, A3 do not exist ,
t r y a pa ra l l e l reduct ion: if t he re a r e non-
en t ry / ex i t nodes A2, A4 which a re both
linked by s ing le -va lued R, L links to the s a m e
n o n - e n t r y / e x i t nodes A3, A1, r e spec t ive ly ,
and if A1, A2,A3, A4 a r e all d is t inc t and A1
and A3 a re not linked, then r educe the graph
by removing A4, and again t ry a s e r i e s r e -
duction; if such A2, A4 do not exist , t e s t
whe ther or not the graph has been reduced
to the init ial str ing.

IMPLEMENTATION

PIRL is being p r e p a r e d to complemen t
FORTRAN on a r ecen t ly acqu i red CDC 6700.
The GIRL port ion of the s y s t e m cu r r en t l y
runs on the CDC 6700. The s y s t e m wil l be
avai lable in s e v e r a l options which wil l allow
the p r o g r a m m e r to tune the s y s t e m to some
extent. These options include: no- l i s t
(des t ruc t ive inser t) , f ixed- length l is t defini-
t ion (so that l i s t s a r e a c c e s s e d as v e c t o r s in
sequent ia l s t o r age for the sake of speed but
at a loss of dynamic s torage) , no-paging
(for a sma l l a s soc i a t ive graph in main m e m -
ory).

SUMMARY

The des ign of a pa t te rn manipulat ion
language, PIRL, has been desc r ibed . PIRL
can handle a r b i t r a r y , o r ien ted pa t t e rns
(i. e. s u b g r a p h s) o f l is ts , nodes, numer ic
and Hol le r i th data on many leve ls of a b s t r a c -

tion in a concise , legible manner . Pa t t e rns
and l i s t s may be inser ted , r e t r i eved , de le-
ted, indexed, compared , named, in te r sec ted ,
united, and complemented . Pa t t e rn names
may be r e f e r e n c e d to a lower level of ab-
s t rac t ion , and pa t te rn f o r m s may be quan-
tified.

APPENDIX- SYNTAX OF PIRL

In the following abbrev ia ted syntax of
PIRL, the usua l BNF notation suf f ices for
the me tasyn tac t i c s y m b o l s ::= (is defined to
be) and I (exclus ive or); a s t r ing of sma l l
Roman c h a r a c t e r s r e p r e s e n t s a syntac t ic
ca tegory; and FORTRAN Hol ler i th c h a r a c -
t e r s f o rm the t e rmina l alphabet . A l is t of
mnemonics fo r the synta t ic c a t e g o r i e s (in
a lphabet ica l order) , toge ther with a b r i e f
funct ional desc r ip t ion of each ca tegory , p re -
cede the syntax. Heavy under l ines in the
syntax indicate the PIRL addit ions to the
GIRL syntax.

Mnemonic
a

ae
ans
bc
bk
bks
bo
cons
data
define
digit
dix
dnode
dpatu
dseq
dsuff
emp
GIR L- like

s t a t emen t
h
hns

id
idcfl
idf
idfl
idsub
int
IVC

1x

ixnd
IXVC

Catego ry Desc r ip t ion
alphabet
a lgebra ic e x p r e s s i o n
alphabet with no s l a sh
blank s t r ing or colon
single blank
blank (space) s t r ing
b inary o p e r a t o r
cons tant
data (numeric o r Holleri th)
definition of iden t i f i e r s
digit
data index
data node
data p a t t e r n - - u n p a r e n t h e s i z ed
data in sequent ia l space
data suffix
empty
s t a t emen t without pa t te rn match
a n d / o r quant i f icat ion
Hol le r i th s t r ing
Hol ler i th s t r i n g - - n o s l a sh
ident if icat ion
ident i f ier (or subst i tute)
ident i f ier a n d / o r cons tant l is t
ident i f ier
ident i f ier l is t
ident i f ier subs t i tu te
in teger
in teger va r i ab le or cons tant
index
index- -no de le te
index fol lowed by in teger

504

Mnemonic

l a
label
labi
ladix

lai

laix

Ib
Ibe

lbo
lbon

lc
led
Ice
lcix

lcixvc

link
na
nabc
nb
nc
node
pat
patu
pbo
PIRL

s ta tement
pdsuff
pexp
pl
pla
plb
plbdix

plbi

plbix

pna
pnab
pnb
ppt

psuff
p t rans
q
qf
qlog

Category Descr ip t ion (cont.)
var iab le or constant
(suffix) l is t t ype -a
label
label and /o r identif ication
(suffix) l ist t ype -a en t ry fol-
lowing data index opera to r
(suffix) l ist t ype -a en t ry fol-
lowing definit ion ope ra to r
(suffix) l is t t ype -a en t ry fol-
lowing index opera to r
(suffix) l is t type-b
(suffix) l is t type-b following
identif icat ion
logical b inary ope ra to r

b inary ope ra to r or logical
•. NOT
(suffix) list type-c
(suffix) list type-c data entry
(suffix) list type-c entry
(suffix) list type-c entry fol-
lowing index operator
(suffix) list type-c entry start-
ing with index operator
link
node type-a
node type-a,-b, or -c
node type-b
node type-c
node
pattern
pat te rm--unpar enthes iz ed
pa t te rn b inary ope ra to r

PIRL s ta tement

p a t t e r n data suffix
pa t te rn express ion
pa t te rn l is t
pa t te rn (suffix) l ist t ype -a
pa t te rn (suffix) l is t type-b
pa t te rn (suffix) l is t t y p e - b - -
data index
pa t te rn (suffix) l is t type-b---
ident i f ier
pa t te rn (suffix) l is t t y p e - b - -
index
pa t te rn node type -a
pa t te rn node t ype -a or -b
pat tern node type-b
pat tern match to pa t te rn match
or t r ans fo rma t ion
pa t te rn suffix
pa t te rn t r ans fo rma t ion
quant i f ier
quantif icat ion
quantif icat ional (or s imple
pattern) logic i tem

qP

r o
surf
suffbc

suffne
ta
ti
type

SYNTAX

quantified (or unquantified)
pa t te rn
r e f e r e n c e ope ra to r
suffix
suffix following by blank or
colon
suf f ix- -not empty
t r a n s f e r add re s s
t r a n s f e r a n d / o r identif icat ion
(sequent ial data) type

1. null and blank

emp
bk
bks

::= (empty category)
::= (blank cha rac te r)
::-- bk Ibk bks

Note: Blank sequences(bks) may be
used at will, except whe re r equ i r ed expl ic-
itly by the syntax. Moreover , even whe re
r equ i r ed explicit ly, they may be omit ted if
bks is p receded or followed by a de l imi te r .

2. ident i f iers , functions, definit ions,
lablels, t r a n s f e r s

idf ::= (a lphanumeric ident i f ie r)
cons (constant)
idcfl ::= idf consl idcf l , idcfl
idsub ::= idf $1 * idf(idcfl) [pat
define ::= DEFINE bks idfl
idfl ::= idflidfl , idf
i ::= ~idf I i= idfl emp
id ::= idsub i
label : := idf Iint
ta ::= labe l l / / labe l l / l abe l / l abe l
labi ::= i bks label il label i
ti ::= i t i l / l a b i [/ / l a b i l / l a b i / l a b i

lemp

Note: An ident if icat ion (i) may appear
anywhere in a s t a t ement (except a f te r an op-
era tor) . A function (*idf(idcfl)) or a ran-
domly genera ted add re s s ($) may subst i tute
for an identif ier . The label (label) may be
var iab le if the c o m p l e m e n t a r y language al-
lows, and mus t take the f o r m st ipulated by
the c o m p l e m e n t a r y language. A t r a n s f e r
may occur anyplace in a s tr ing, and affords
an execution cont ro l switch which depends
on the succes s or f a i lu re of the last oper -
ation (excluding identification). Exam pie:

/ F 1 / S 1 means: go to F1 if fa i lure; go
to S1 if succes s

/ / S 1 means: continue if fa i lure; go

505

/ F 1
to S1 if s u c c e s s

m e a n s : go to F1 if f a i l u r e ; con-
t inue if s u c c e s s

3. Hol l e r i th , n u m e r i c da ta

dig ::= 0111213141516 !~1819
int ::= dig int dig
ans ::= diglA[I~ C .I~ E[F[G[H[I J. K

IL]~N OIPIQIRLSIT[UIVlW
Ix lYIzl+l- I . Ibk *1()1[] < ,
> : * - , ; : $ + , - ~ n / u ~ I

a ::: ansi /
h := a l h a
hns ::= ans [hns ans
ae ::= Ooolean, c o m p l e x , r e a l

s i n g l e - p r e c i s i o n , r e a l
d o u b l e - p r e c i s i o n e x p r e s s i o n)

da ta ::= " t y p e a e " [" / / h n s " [" / i n t / h "
type ::= B[C[P~ D[I [O
ivc ::= idf[int
d s e q ::= ; i r e ; ivc

Note: Da t a m a y be r e g a r d e d a s t e r m i n a l
s ink nodes of an i n s e r t i o n o p e r a t i o n (cf. dsuf f
below). H o l l e r i t h da ta m a y be e n t e r e d fo l -
lowing " / / a s a s t r i n g of c h a r a c t e r s exc lud-
ing quo te b e t w e e n q u o t e s , o r a s a coun ted
s t r i n g inc luding q u o t e . Thus , " / / N O
Q U O T E " , o r " / 6 / Q U O " T E " . D a t a of type
boo lean (B), c o m p l e x (C), d o u b l e - p r e c i s i o n
r e a l (D), H o l l e r i t h (H), i n t e g e r (I) o r r e a l
(R) m a y be e n t e r e d into s e q u e n t i a l l y a c c e s -
s i b l e m e m o r y at a g iven a d d r e s s . Thus
;5;1"IX+3" p l a c e s the i n t e g e r va lue of X+3
into SEQ(5), w h e r e SEQ is a r e s e r v e d b lock
of memory. Similarly, ;3H('//NSL/,
I/3/SLA) places the strings NSL and SLA in-
to memory beginning at SEQ(3). All data can
be list named and accessed by index as
computer-dependent output.

4. u n p a r e n t h e s i z e d s t a t e m e n t s

bo ::: +l-I:l lnlul
r__oo ::= +l e m p

ix :::/)-!'i I
dix
ix i "1 "'/i" ' ; -
ixvc : := ixi ivc ti I e m p
bc ::= bks I--
l ink ::= id t i
suf fne ::= be l ink ixvc bks id r o surf

]bo l ink ro suf f l t i r__9.o--'-suff[ix
ivc r___oo s~-f[~idf r._gq surf

surf ::= suffne[emp
dsuf f ::= be l ink ixvc d s e q da ta t i

I bc link ixvc da ta ti[d ix i-vc
ti I surf dsuf f

node ::= id r___oo suffne[[node]
dnode ::= id ro dsuf f
node i :: = nod-~ id

5. p a r e n t h e s i z e d s t a t e m e n t s

suf fbc ::= suf fne bcl e m p
nabc ::= n~ n~ nc I [nabc]
na ::= node i r o (la)
la suffneTdsuff surf bo lbe

[surf bo (lb)[suff ix (laix)
[suff dix (ladix) [su r f - (lai)
] suf fbc l ink ixvc bks nabc
[suf fbc l ink ixvc (lc)
] suf fbc l ink ixnd (lcix)
] suf fbc l ink (lcixvc)] r__o la
[.la, la

la ix ::= lvc la[laix, la ix
lad ix ::= ivc ti [ladix, ladix
lai ::= idf la llai, la i
nb ::= node i ro bo (lb)[nodei=(lai)
lb : := lbe] lb~--ib
lbe ::= l ink [node[dnodd nabc
nc ::= node i bc l ink ixvc (lc)

[nodei bc l ink ixvc d s e q (lcd)
Inodei bc link ixi (lcix)
]nodei bc l ink (lcixvc)

lc ::= l c e [r o lc l lc , lc
Ice ::= lbe [da ta t i
lcd ::= da t a t~ .lcd, lcd
lc ix ivc ti dseq] ivc ti bks Icellci:~ lcix
lc ixvc ::= ixvc d s e q da ta t f l ixvc bks

l c e l l c i x v c , l c ixvc
G I R L - l i k e ::= n o d e [d n o d e l n a b c l d e f i n e
s t a t e m e n t [t a i i d = i d l

Note: An u n p a r e n t h e s i z e d s t r i n g (node,
dnode) c o n s i s t s of a p r e f i x s t r i n g (id ro surf)
f o l l owed by a suf f ix s t r i ng (suffne) which m a y
be con t inued o r a da ta suf f ix (dsuff) wh ich
t e r m i n a t e s the s t r ing . The suf f ix o p e r a t e s
on the node a d d r e s s o r p a t t e r n of a d d r e s s e s
p r o d u c e d by the p r e f i x s t r i n g in a s t r i c t
l e f t - t o - r i g h t scan . P I R L e m p l o y s p a r e n -
t h e s e s to s e q u e n c e s u f f i x e s of an u n p a r e n -
t h e s i z e d p r e f i x pa t t e rn . M o r e o v e r , the
u n p a r e n t h e s i z e d po r t i on of e a c h suf f ix m a y
i t s e l f be a p r e f i x to a suf f ix s e q u e n c e . Scan-
ning and imbedd ing a r e s t r i c t l y to the r ight .
Thus , f o r e x a m p l e , <A+B>[(C X, D Y) m e a n s :
" f ind the p a t t e r n n a m e a s s o c i a t e d wi th
<A+B>, a c c e s s the p a t t e r n i t s e l f and c o m -
p l e t e l y l ink the p a t t e r n .to X by C and to D
by Y.

506

6. quant i f ied s t a t e m e n t s and pa t te rn
t r a n s f o r m a t i o n s

q
lbo
lbon
qf
qP
q log

p_pi

pt rans

: : = . . ALL I . . EXIST
::--- . . AND I . . OR
::= . . N O T l e m p
::= q bks idfllqf bks qf
::= patlqf patlqp ti[[qp]
::= qplqlog lbo lbon bks qlog

Lqlog lbo lbon [qlog]
Iqf [qlog]l[qlog]

::= q l o g l . . NOT bks qlog
[.. NOT [qlog]Lppt-,-ppt

::= p p t * G I R L - l i k e s t a t emen t

7. unpa ren the s i zed pa t te rn exp re s s ions

pbo
psuff

p.dsuff
patu
dpatu
pexp

::= +1 : I * nlu --,
pbo pat psuff ti psuff
I~idf psufft, ivc psuffLemp

::= dix ivc t i lpsuff pdsuff
::= id r___o_o psuffl[patu]
::= id ro pdsuff
::= patuLdpatu

8. parenth_esized pa t t e rns and pa t t e rn
s t r ings

pnab :: =
pna : • =
p la ::=

plb
plbix . . -
p lbdix :: =
plbi : :=
pA
pat : : =

REFERENCES

pnaJ pnb
patu (pla)
psuff lpdsuffIpsuff pbo plb
I psuff pbo (plbdix) I[pla]
I psuff. (plbix) [psuff dix
(plbdix) I psuff ~ (plbi)l ro pla
Ipla, pla
patu pbo (plb)l patu -= (plbi)
patu Idpatu I pnabl [plb]lplb , plb
ivc Plal plbix, plbix
ivc t i lplbdix , plbdix
idf pla plbi, plbi
pexplpnab pat pl, pl
<pl>lpat ~l[pat]

1. Fe ldman , J .A . and Rovner , P . D . , "An
ALGOL-based assoc ia t ive language", Comm.
ACM, 12, 8, pp. 439-449, 1969

2. Ross , D. T . , "A gene ra l i zed technique
fo r symbol manipula t ion and n u m e r i c a l
computa t ion" , Comm. ACM, 4, 3, pp. 147-
150, 1961

3. Berkowitz , S. , "Graph in fo rmat ion
r e t r i e v a l language---design of syntax",
Software Eng inee r ing (Proc. COINS-69),

J . T . Tou (ed.) , Vol. 2, pp. 119-139, 1971
Academic P r e s s , New York

4. Chr i s t ensen , C . , "An example of the
manipula t ion of g raphs us ing the AMBIT/G
p r o g r a m m i n g language", Proc . Symp.
Interactive_ ~_vstems In ExPer im. Appl,
Math . , Washington, D . C . , 1967

5. Knowlton, K . C . , "A p r o g r a m m e r s
de sc r ip t i on of L 6'', Comm. ACM, 9,
p. 616, 1966

6. McCar thy , J . , e._[t al___., L isp 1. 5
P r o g r a m m e r ' s Manual, MIT P r e s s ,
Massachuse t t s , 1962

7. Newell , A. (Ed.) , In fo rma t ion P r o c e s s -
ing Language-V Manual, P ren t i ce -Ha l l , New
J e r s e y , 1961

8. Pfal tz, J . , and Rosenfe ld , A. , "Web
g r a m m a r s " , Proc. of the In te rna t iona l
Joint Confe rence on Artffic.ial !ntel l i~encej
p. 609, 1969

507

