PIRL—Pattern Information Retrieval Language

—Design of Syntax’

Dr. Sidney Berkowitz, Naval Ship Research & Development Center,** Washington, D. C.

The design of a pattern manipulation lan-
guage, PIRL, is described here. PIRL can
handle arbitrary, oriented patterns (i.e.,
subgraphs) of lists, nodes, numeric and
Hollerith data on many levels of abstraction
in a concise, legible manner, Patterns and
lists may be inserted, retrieved, deleted,
indexed, compared, named, intersected,
united, and complemented. Pattern names
may be referenced to a lower level of
abstraction and pattern forms may be
quantified. PIRL should be of considerable
value in the solution of certain problems in
information retrieval, linguistic analysis,
scheduling simulation, and pattern recog-
nition.,

KEY WORDS AND PHRASES: graph, pro-

gramming language, information retrieval,
pattern, list attribute, association

CR CATEGORIES: 3.42, 3.60, 3.70, 3.81,
3.82, 4.22, 5.32

INTRODUC TION

* The work was done under Task Area
SF14 532 107, Task 15329.
**Computation and Mathematics Dept.

PIRL (Pattern Information Retrieval
Language) is a programming language
designed to conveniently manipulate infor-
mation in graph structures. As such, the
language will play a key role in the con-
struction of the organizational schemes
found, for example, in information retriev-
al, linguistic analysis, and process sched-
uling systems. The language is written to
complement an algebraic language such as
FORTRAN or ALGOL, in the sense that
PIRL statements are distinguished from
the statements of the algebraic language
and may be interleaved with those state-
ments, The primary advantage of sepa-
rating symbolic and numeric statements is
that the programmer is afforded a linear,
one-one trace of graph operations in the
code description. From an opposing point
of view, Feldman and Rovner's LEAP [1]
and Ross's AED-0 [2], for example, are
extensions of ALGOL in the sense that
graph or list operations are interspersed
with numeric operations. The result is
that code sequencing of graph operations is
bound by the infix, phrase-substitution
nature of the algebraic language, and does

not lend itself to an easy scan of the graph.
On the other hand, the ALGOL extensions

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800184.810519&domain=pdf&date_stamp=1971-01-01

offer a uniformity of notation necessarily
missing from PIRL.

The function of PIRL is to identify, in-
sert, retrieve, delete, and compare sub-
graphs, or pattern images, which range
from single nodes and lists to arbitrary,
directed graph structures. As such, PIRL
is an expansion of a less sophisticated lan-
guage called GIRL (Graph Information Re-
trieval Language), reported elsewhere [3],
which confines its graph manipulation activi-
ties to single nodes and lists. The GIRL
language was designed to be primitive
enough to allow the bootstrapping of the
PIRL compiler (or preprocessor, as hap-
pens to be the case) from the GIRL prepro-
cessor, in terms of GIRL statements.
Feldman and Rovner's paper [1] contains a
discussion and comprehensive bibliography
of the languages and programming systems
which lie in the background of current
tljinking on associative languages [4, 5, 6,
7].

After giving a very brief description of
GIRL, this paper will discuss the design
considerations behind PIRL. This paper is
not intended as a programming manual, but
rather as a description of the pros and cons
of a language design. A concise rendering
of the GIRL syntax may be found in the
Appendix.

NOTATION OF GIRL

The function of GIRL is to manipulate
node-link-node structures of the type shown
in Figure 1. One may think of such a struc-

ture as a function (B), argument (A), value (C)

triplet; or as a subject (A), relation (B),
object (C) association. The language is
based on the operations given in Table 1.

B
A O/’_\O C
FIGURE 1—Node-link-node triplet

From a description as brief as the current
one, the reader cannot hope to achieve pro-
gramming competence in the language, but
the following comments, together with the
example, should give an idea of the basic
architecture of the language.

Note first that insertion (non-selective)
is non-destructive, so that links may be
considered as multivalued functions, and
sink nodes as ordered sets (or lists). Sec-
ondly, the X in Table 1 may be replaced by
any left-hand portion—i. e., prefix—of a
GIRL statement whose value is a node when
processed in a left-to-right scan. Accord-
ingly, parenthesization is employed to indi-
cate a sequence of suffixes of a GIRL state-
ment and imbedding occurs strictly to the
right, as opposed to the phrase substitution
function of algebraic infix notation for which
imbedding is not necessarily oriented. A
notion of "prefix sequence' was considered
but discarded due to difficulties in legibility
and compilation. In fact, the reader will
see that the notion of a pattern to be intro-
duced later will obviate the need for a pre-
fix sequence. Thirdly, the conditional trans-
fer sequence may test the result of any
operation (except definition) and continue to
process the statement when 1) the transfer

TABLE 1—Operations in GIRL

Meaning

Form Function
XY Z Insertion
XY.KC Selective
insertion
X+Y Retrieval
X-Y Deletion
X=Y Comparison
X+Y.1 Indexing
X=Y Node
definition to by X.
/F/8 Conditional
transfer

Connect source node X to sink node Z by link Y.
Let the sink node list linked to X by Y contain as
its Kth item the node C.

Find the node(s) linked to node X by the link Y.
Let X no longer be associated with any node(s)
by the link Y.

Do X and Y refer to the same node?

Find the Ith item on the list accessed by X+Y.
Give the name Y to the node (link, list) referred

If the preceding operation fails, go to the label
F; otherwise to S.

497

is written as F and success occurs, or

2) the transfer is written as //S and failure
occurs. Note that failure of insertion occurs
when the node-link-node triplet has already
been inserted. The following example should
help clarify the preceding notation.

FIGURE 2—Sample graph
Suppose the graph shown in Figure 2
has been inserted. Then the following GIRL
statement:

G 5 A=X+B.2(SF MN, +R(-C, =X/5))

produces the graph shown in Figure 3.

FIGURE 3—Sample graph transformed

The statement will have the following inter-
pretation:

The statement is a GIRL statement.
5 The statement has label 5.

=X Let A have the name X.
+B From X, follow the B link to the list
E,D.
.2 Take the second item on the list E, D;
i.e., D.
(S F Insert the association "D linked by S
to F".
M N Insert the association "F linked by M
to N,
,+R (Second suffix) From D, follow the
R link (to A).
-C If A has a C link, delete it.

498

,=X/5 (Second suffix) Do A and X refer to
the same node? If not return to 5;
otherwise continue,

In addition to the above operations, and
aside from many details omitted for the sake
of brevity, one should be aware of GIRL
facilities for identifier definition, numeric
and Hollerith data, and function subprograms.

- Identifier definition. There are two
equivalent ways to assign internal nodes to
identifiers, say X1, Y1: either by writing
the GIRL statement

G DEFINE (X1, Y1)

or by writing $=X1 and $=Y1, either as
separate statements or within the context
of a statement, where $ means: generate a
random internal node address. The iden-
tifiers then are variables having integer
values which can be accessed in algebraic
statements.

- Numeric and Hollerith data. One can
insert data as a sink node or list in the form
of 1) numbers, 2) the value of algebraic
expressions, or 3) Hollerith strings. For
example, X G(''/5/3+X2Y", "IA+2", '"14")
means: insert the character string 3+X2Y
(of length 5), the value of the integer expres-
sion A+2, and the integer 4, respectively,
as list values of the function G of X.

- Function subprograms. One can re-
place a node or link identifier at any point
in a GIRL statement by a function of the form
*ID(A1, A2,..., AN), where ID is an iden-
tifier and (A1, A2,..., AN) is a list of input
identifiers, algebraic variables, or con-
stants. The function is defined in the same
way as a procedure of the complementary
algebraic language, and may contain GIRL
statements. Whether or not the function is
recursive depends on the recursive capa-
bilities of the algebraic language.

STRUCTURE OF PIRL

Patterns and Pattern Forms

In designing PIRL, the main objective
was to produce a concise notation for the
identification and retrieval of subgraphs (or
patterns) contained within a stored graph.
Moreover, the notation was to be compatible

with the syntax of GIRL so that patterns
could be manipulated as generalized nodes

in a manner to be discussed. Since the re-
trieval of patterns in no way transforms any
of the underlying graph structure, use of a
bracketed GIRL statement which does not
contain any insertions or deletions seems an
appropriate way of describing a pattern.

For example, the sample graph of Figure 2
might be retrieved as the pattern expression
in (D).

<A+(C=F/1+T=G/2, B(. 1=E/3+5=G/4,
. 2=D/5+R=A/6))> 1)
The transfers and comparisons are optional,
and one can name the entire bracketed ex-
pression in the same way as one names a
node. In the example just given, the node
identifiers are assumed to have been defined
by a DEFINE statement or definition oper-
ator. If the identifiers were not defined,
they would be undefined, or free. The
resulting bracketed statement would then be
a pattern form and would refer to the list
of patterns generated by the pattern form as
the free identifiers range over the nodes of
the graph. Thus, a free identifier is a
symbolic variable, and a defined identifier
is a symbolic constant. The implications of
the preceding choice of notation for patterns
and pattern forms within statements produce
a host of problems which will now be dis-
cussed in a not-too-random order.

Transformation of Levels of Abstraction

If patterns (or their external names)
are to be used in place of nodes, one must
decide whether the list of internal addresses
of the nodes contained in the pattern or the
address of the pattern name is to replace
the pattern (or its external name). If, dur-
ing execution, one were to substitute the
address of the pattern name for a pattern,
then all pattern linking would occur among
names. Consequently, in order to process
the graph at the node level and determine
the existing linkage, one would require a
means of interrogating a node to discover
with which patterns—one level of abstrac-
tion up—the node was associated. The node
retrieval time would be greater than GIRL
retrieval time; storage would be required

both for name-to-pattern retrieval and for
the inverse retrieval (although it is true

that no storage would be needed for pattern
node linkage); and, most important, associ-
ation between patterns would be confined to

499

the effective association of all nodes of one
pattern with all nodes of another by a common
link. It is preferable, then, to introduce
the effective naming scheme shown in Figure
4, and a unary reference operator } to de-
scend from a name to its referent pattern,

In other words, the occurrence of a pattern
in a statement is replaced at execution time
by its internal name; but if the pattern it-
self is desired, a reference operation can
access the pattern. Storage is now required
for pattern node linkage, but no level as-
cension is needed, and node retrieval is the
same as in GIRL. Moreover, one can han-
dle unconnected subgraphs as components of
a single pattern. As an example of this

structure, consider Figure 4. In order to
B, (B Pattern to
G Q be named

I PATTERN l

p1

FIGURE 4—Example of pattern naming
organization

avoid ambiguity, the nodes PATTERN and
Pl are, in fact, internally generated, dis-
tinguished, random nodes not otherwise
used in the graph, The PATTERN node is a
source for all pattern names and each pat-
tern links all of its nodes to PATTERN node,
using the pattern name (e. g., P1) as link.
Moreover, in order to avoid retrieval ambi-
guity, the P1 link from a pattern node R
points both to the subset of links of the
graph which are intended as links in the
pattern from R, and also to the subset of
indices for each multivalued link, That is

to say, if one specified only the link subset,
then links in the graph not to be included in

the pattern—such as the dashed B link in
Figure 4—would spuriously form a part of
the pattern. Note that simply linking the
nodes to the PATTERN node does not un-
ambiguously exclude links of the type just
mentioned, since the linked nodes may en-
ter the pattern by linkage outside the pattern,
as does E in Figure 4. Note also that linking
all pattern nodes by the name link is not as
redundant as it would seem, since the link-
age not only provides unambiguous termi-~
nation of loop traces, but also saves much
time in pattern node retrieval as against a
straightforward trace of the pattern. Since
a similar—but simpler—structure obtains
for lists (see Figure 5), one can speak of
lists of pattern names (or patterns of list
names) to any level of abstraction. Indeed,
a consistent extension of the notation defined
earlier for patterns might, for example,
have the form:

<A, B, C, D>

where each argument represents a string
whose value is an internal address. Such a
list form may be named, and the subgraph
underlying the abstraction is retrievable by

FIGURE 5—Example of list naming
organization

successive reference operations., One by-
product of the naming scheme is that a name
refers effectively to an internal node address
uniformly for nodes, lists, or patterns, so
that a special naming notation is not needed
to distinguish nodes from more complex
structures, as was previously thought [3].
Now that lists have been structured as
types of patterns, one wonders whether it
would not be consistent to structure nodes as
types of lists. If we suppose that a node and
its name were not distinguishable, then an
insertion would require knowing whether a
list, a node, or nothing had been inserted.
Insertion would then take place by adding to

500

the list, creating a new list, or creating a
node-link-node structure,respectively. For
example, if one wished to execute A B C, it
would be necessary to replace the insertion
triplet with the following GIRL code at com-
pilation time:

G A(+B=D//1, BC //3)
G 1 PATTERN(:+D/2, D C//3)
G 2 A(-B, B$=NEW)
G PATTERN NEW(D, C)
3

As an alternative to this cumbersome inter-
pretation of insertion, one might regard a
sink node as a univalue list, so that the in-
sertion of a new node-link-node triplet would
require a list name definition, Thus, the
insertion triplet A B C would be replaced at
compilation time by the code:

G A(+B=D//1, B $=D)
G 1 PATTERND C

On the other hand, this procedure would re-
quire our writing A+B} when the node, not
the node name, was desired. Although this
is not too great a demand, one might avoid
even this requirement (and extra storage,
by the way) by replacing A+B by the sink
node C, when A+B points to a strictly uni-
value list. Thus, A+B would be replaced at
compilation time by the code:

G A+B=C/FAIL
G PATTERN:C(.2//1, .1=C)
1

This scheme seems an inequitable trade,
however, for the burden of using a reference
operator. Thus, we have decided to regard
sink nodes as univalue lists, and retrieval
as the retrieval of a list name. On the basis
of this decision, note that the pattern defi-
nition in Expression (1) above requires the
insertion of a reference operator after every
retrieval.

By introducing a reference operator,
one makes it possible to substitute an inter-
nal address for a pattern at execution time,
as stated above., But what substitution
should one make for an external name? If
one were to substitute the pattern (or list)
itself, one would need a different reference
operator, say f, to access the internal ad-
dress of the name, one level up. On the
other hand, if one were to substitute the

internal address, one would at times need a
formalism like [P}] to access the pattern

(or list) referred to by P; that is, one would
need brackets so that the reference operation
would not be applied to the value of the string
preceding P. In fact, despite the possibility
of more frequent use of the pattern than of
its name, we have chosen the latter course,
since the f operation 1) would not be applied
to bracketed expressions, 2) would not have
a unique value, 3) would be costly in terms
of storage and implementation time, and

4) would, in any case, require brackets for
the same reason that the § operation does.

In passing, one might mention a third
organization that could prove feasible if
translation occurred in an interpretive mode
(not currently the case): namely, the repre-
sentation of a pattern as a subroutine which
would generate the pattern nodes and links,
and which would be constructed dynamically
as the execution of a statement produced and
named new patterns.

Operations on Patterns and Lists

The attempt to replace nodes or links
in statements by patterns or lists opens the
way to several interpretations of the oper-
ations given above in Table 1. For example,
if P1, L, and P2 are pattern names, should
[(P1{J[L{] [P2}] mean that each node of P1
should be linked with each node of P2 by the
node addresses of L, a complete linkage, as
shown in Figure 6, or that the first node of
P1 is linked to the first one of P2, the next
to the next, etc, a mirror linkage as shown
in Figure 7. Or, perhaps one should intro-
duce new notation to permute and reduce the
source and sink lists? Since the last two
possibilities require a detailed knowledge of
the ordering of the pattern contents—not the
usual circumstance—it is reasonable to give
[p14] [L4] [P24] the first interpretation,
which is equivalent to regarding lists as un-
ordered sets. For mirror linkage, we will

FIGURE 6—Complete linkage

501

use the notation ":" (e.g., [P1y]:[L{] [P2).

For permutation and reduction, careful defi-
nition or redefinition of patterns should suf-
fice, and no new notation will be introduced.

(Each link represents a link list)

FIGURE 7T—Mirror linkage

Another problem arises in interpreting
the expression P1¥+[P2}]. Certainly the
value is a list. But should the list itemize
nodes and list-names? Each name would
refer to a sink node list retrieved by ap-
plying [P2{]to a particular node in PL. If
such were the case, one would, for consist-
ency's sake, require the expression A+B}}
in order to access a sink node. Therefore,
in order to avoid a cumbersome notation
in the case of node retrieval, it is sufficient
to interpret the original expression as pro-
ducing an unstructured list of all the nodes
retrieved.

Still another problem arises with the
expression Plt=A. If P1} produced a node,
should A be given the value of the node ad-
dress or that of the name address? The is-
sue is decided by noting that if P1} werea
list, one would be forced to say that identi-
fier definition must be definition of the list.
But then how would one identify a node? The
solution is given by use of the index oper-
ation: i.e., Pl.1=A gives to A the value of
the first (and perhaps only) node address in
P1.

In addition to basic GIRL operations,
PIRL contains operations necessary for the
manipulation of sets structured as patterns
and lists, namely: U (union), N(intersection),
~7(complementation). The union and inter-
section operations have the usual connota-
tions of joining and excluding, respectively,
those components which are held in common,
as Figure 8 shows. On the other hand, com-
plementation here is a binary operation and
serves to exclude a pattern, node, or list
from the preceding argument, as shown in
Figure 8; that is, [Pf}»[R}] produces the com-
plement of R relative to P. This peculiar

definition arises from a reiuctance to suffer
the tedious implementation of a universal
complementation (that is, a complementation
relative to the whole graph). Finally, note
that an operation may result in a null pattern
or list, represented internally by a pattern
or list name with no further linkage.

PAT2

(a) pattern def1n1t1ons

PAT1

(b) union: PAT1YU[PAT2Y]

L
©

(c) intersection: PATI1 N{PAT2{]

(d) complementation: PAT1y>[PAT1{N
[PAT24

FIGURE 8—Set operations

Now that set operations have been intro-
duced, it seems reasonable to use them—and
indeed, any operation discussed thus far—to
concatenate patterns, i.e.,
sions. The corollary of this decision is to
allow nested brackets in PIRL statements,an
infix notation which neutralizes the vaunted
legibility of the left-to-right scan of GIRL
statements. For the sake of legibility, one
could of course insist on manipulating brack-
eted expressions outside of GIRL statements,
naming the result, and using only names in
GIRL statements, but this hardly seems a
sufficient reason to exclude the convenience
of mixed notation. Accordingly, we also
permit the stand-alone bracketing of indexed,
referenced, or redefined identifiers (e. g.,
[r.1], [R{j [R=S]), or combinations there-
of. Also, cond1t10na1 transfers should be

permitted within such brackets.
The preceding discussion by no means
covers all the design issues involved, but

bracketed expres-

502

does give a fair notion of the outstanding
problems.

Quantification and Logical Operations

The use of free identifiers permits one
to find pattern instances anywhere in the
stored graph. For the sake of descriptive
convenience, it may be desirable to limit
the search to a specified subgraph. One
should note that such a limitation may de-
crease the retrieval efficiency, especially
if one uses a paging system such as that in
LEAP{1]). One means of specifying search
limits would be to introduce a sequence of
quantifiers, such as (for) ALL and (there)
EXIST , each bounding a succeeding sequence
of free identifiers found in a pattern form to
follow. The EXIST quantifier might be fol-
lowed, optionally, by the number of patterns
expected to be found. The entire expression,
when evaluated, would produce a name of a
list of pattern names. For compilation ease,
and indeed for user convenience in remem-
bering which identifiers are free, the use of
free identifiers is restricted to quantified
pattern forms (or, as we shall see, to a
logical eoncatenation of quantified pattern
forms). Although the definition of a free
identifier is local to the range of its bound-
ing quantifier, the free identifier may be re-
named as a global identifier within a pattern
form. The new name is used to hold the
internal name of a list of values which suc-
cessfully match the pattern form in the free
identifier.

One might further delimit the search by
introducing a notation for membership— say
IN P, where P is a pattern name—to precede
the pattern form to be quantified. One might
alternatively, or additionally, consider re-

lacing the pattern P by an expression, say
G, d, L}, which would limit the search to
nodes emanating from a node G, to a depth
d, by links contained on a list L. Moreover,
one might introduce the logical connectives
AND, OR, NOT to concatenate quantified

forms. However, the implementation of
these notations, appealing as they may be,
is quite elaborate. Therefore, in the first
phase implementation, we restrict ourselves
to logical connectives and two quantifiers
before the outermost bracket of a pattern
form, and leave membership and more com-
plex quantification for another time.

A fundamental objective in creating the
notations of pattern and pattern form was to

allow for the sequence:

quantified {pattern match)> —
pattern transformation or further match. (2)

Like FORTRAN, PIRL has conditional trans-
fers to accomplish the transition between
matching—say, an algebraic condition in the
case of FORTRAN—and transformation, or
even further matching. On the other hand,
ALGOL provides an if..., then..., else...
structure that has some appeal, from the
viewpoint of descriptive power: i.e. the
capability of coding a potentially large sub-
graph of a flowchart in one statement. As a
by-product, free identifiers which are evalu-
ated in a pattern match would be available
for use in the transformation field without
naming. Nevertheless, one must allow in
any case for the naming of free variables

(i. e. the naming of the list of values which
satisfy the pattern form) so that transfor-
mations under the control of conditional
transfers may use the names. In the inter-
est of minimizing the notation explosion and
keeping statements concise and legible, we
adopt a compromise between conditional
transfers and if..., then..., else..., by
introducing the operator -as above in
Equation (2), and by requiring free identifiers
to be renamed for global usage. Thus, the
else field is effectively placed on another
line and is executed by the failure option of
a conditional transfer following the pattern
match, The example which follows should
clarify these ideas.

EXAMPLE

The example presented here is a parser
for the web grammar representing the class
of non-trival, basic, two-terminal, series-
parallel networks (TTSPN's) discussed
somewhat more elegantly by Pfaltz and
Rosenfeld [8].

A non-trival, basic TTSPN is defined
(roughly) as follows. Let the terminal vo-
cabulary be a}, the non-terminal vocabulary
{A}. The initial string is:

a A a
O >0— >0

503

Then any basic TTSPN can be derived from
the initial string by repeated application of
the following rules:

R1 (series expansion); A A

1. Expand a node A to the edge O—>0

2. Let any edge originally entering A now
enter the first node of the new. edge.

3. Let any edge originally leaving A now
leave the second node of the new edge.

R2 (parallel expansion): OA

1. Expand a nodeA to the nodes OA

2. Let any edge originally entering A now
enter both new nodes.

3. Let any edge originally leaving A now
leave both new nodes.

R3 (termination):

1. Replace A by a.

In order to code a PIRL program to
recognize whether or not a given graph is
basic TTSPN, we establish the following
conventions for inputting a graph:

1. The graph must be entered from the
node Bl by an R link, and must pro-
vide an exit via an R link to node B2.

2. Every link must be designated as R.
For every pair of nodes A, B connected
by R from A to B, insert link L from
B to A. All links are connected by R
links to B2 and by L links to Bl.

The PIRL program, complemented to
FORTRAN, follows, with explanatory re-
marks. (n.b. the symbol #, not heretofore
introduced, means simply, 'is not equal to",
posed as a question. The expression .-K
means ""eliminate the Kth node from the pre-
ceding list".)

P SER ..EXIST A2[<A2:A2N(#(B1, B2),
P *+R=A3)>..AND..NOT[<A3.2>..OR
P *<A3{+L. 2>])/ PAR—
P *A2N. =A2(-R, +L7A4, - L)
N=1
1 M=1
P A4.N/SER=A4N+R=A4R
P 2 A4R.M/5=A2/3/4
3 M=M+1
GO TO 2
P 4 AANR.MA3LA4N
5 N=N+1
GO TO 1

PAR ..EXIST A2, A4<A2(=(B1, B2),
*, 1=A1, 1=A11, +R=A3. EA31>
*, . AND. .NOT[<A1l.2>., OR<AS3. 2>
* . OR<A11=A313.. AND<A4A41
*(2(A11, A2, A31, B1, B2), +L. 1=A11,
*4R. 1=A31)>. . AND<A11+R¥n [A3Y}]
*=NULL>]/TEST

oYY od

K=0
J=0
A31.1:A3
All,1=A1
6 K=Ki+1
Al1+R.K=A4/6
7 J=J+1
A3+L. J=A4/7
Al+R. -K
A3+L, -J
A4(-R,-1)//SER
TEST .. EXIST A6[<A6(+(B1, B2), +L{-B1,
+R¥=B2)] /8/NO
8 BI+R.2/YES/NO

oYY g

Program

The first pattern match is for series
reduction: if there are non-entry/exit nodes
A2, A3 linked by single-valued R, L links,
respectively, then reduce the graph by elim-
inating the A2 to/from A3 linkage and re-
placing A2 by A3; if such A2, A3 do not exist,
try a parallel reduction: if there are non-
entry/exit nodes A2, A4 which are both
linked by single-valued R, L links to the same
non-entry/exit nodes A3, Al, respectively,
and if A1, A2, A3, A4 are all distinct and Al
and A3 are not linked, then reduce the graph
by removing A4, and again try a series re-
duction; if such A2, A4 do not exist, test
whether or not the graph has been reduced
to the initial string.

IMPLEMEN TA TION

PIRL is being prepared to complement
FORTRAN on a recently acquired CDC 6700,
The GIRL portion of the system currently
runs on the CDC 6700. The system will be
available in several options which will allow
the programmer to tune the system to some
extent, These options include: no-list
(destructive insert), fixed-length list defini-
tion (so that lists are accessed as vectors in
sequential storage for the sake of speed but
at a loss of dynamic storage), no-paging
(for a small associative graph in main mem-
ory).

SUMMARY

The design of a pattern manipulation
language, PIRL, has been described. PIRL
can handle arbitrary, oriented patterns
(i. e. subgraphs) of lists, nodes, numeric
and Hollerith data on many levels of abstrac-

tion in a concise, legible manner.

Patterns

and lists may be inserted, retrieved, dele-
ted, indexed, compared, named, intersected,
united, and complemented. Pattern names
may be referenced to a lower level of ab-
straction, and pattern forms may be quan-

tified.

APPENDIX -

SYNTAX OF PIRL

In the following abbreviated syntax of
PIRL, the usual BNF notation suffices for
the metasyntactic symbols ::= (is defined to
be) and | (exclusive or); a string of small
Roman characters represents a syntactic
category; and FORTRAN Hollerith charac-

ters form the terminal alphabet.

A list of

mnemonics for the syntatic categories (in
alphabetical order), together with a brief
functional description of each category, pre-
cede the syntax. Heavy underlines in the
syntax indicate the PIRL additions to the

GIRL syntax.

Mnemonic

a
ae
ans
be
bk
bks
bo
cons
data
define
digit
dix
dnode
dpatu
dseq
dsuff
emp
GIRL-1like
statement
h
hns
i
id
idcfl
idf
idf1
idsub
int
ive
ix
ixnd
ixve

Category Description
alphabet
algebraic expression
alphabet with no slash
blank string or colon
single blank
blank (space) string
binary operator
constant
data (numeric or Hollerith)
definition of identifiers
digit
data index
data node
data pattern—unparenthesized
data in sequential space
data suffix
empty
statement without pattern match
and/or quantification
Hollerith string
Hollerith string—no slash
identification
identifier (or substitute)
identifier and/or constant list
identifier
identifier list
identifier substitute
integer
integer variable or constant
index
index—no delete
index followed by integer

Mnemonic

la
label
labi
ladix

lai
laix

1b
lbe

1bo
lbon

1c
led
Ice
leix

leixve

link
na
nabc
nb

nc
node
pat
patu
pbo
PIRL

statement

pdsuff
pexp
pl

pla
plb
plbdix

plbi
plbix

pna
pnab
pnb
ppt

psuff
ptrans
q

qf
qlog

Category Description (cont.)

variable or constant

(suffix) list type-a

label

label and/or identification
(suffix) list type-a entry fol-
lowing data index operator
(suffix) list type-a entry fol-
lowing definition operator
(suffix) list type-a entry fol-
lowing index operator
(suffix) list type-b

(suffix) list type-b following
identification

logical binary operator
logical binary operator or
..NOT

(suffix) list type-c

(suffix) list type-c data entry
(suffix) list type-c entry
(suffix) list type-c entry fol-
lowing index operator
(suffix) list type-c entry start-
ing with index operator

link

node type-a

node type-a, -b, or -c

node type-b

node type-c

node

pattern
pattern—unparenthesized
pattern binary operator

PIRL statement

pattern data suffix

pattern expression

pattern list

pattern (suffix) list type-a
pattern ﬁsuffix; list type-b
pattern (suffix) list type-b—
data index

pattern (suffix) list type-b—
identifier

pattern (suffix) list type-b—
index

pattern node type-a

pattern node type-a or -b
pattern node type-b

pattern match to pattern match
or transformation

pattern suffix

pattern transformation
quantifier

quantification
quantificational (or simple
pattern) logic item

305

qp

ro
suff
suffbc

suffne
ta

ti
type

SYNTAX

quantified (or unquantified)
pattern

reference operator

suffix

suffix following by blank or
colon

suffix—not empty

transfer address

transfer and/or identification
(sequential data) type

1. null and blank

emp
bk
bks

(empty category)
(blank character)
bk|bk bks

Honon

Note: Blank sequenceg(bks) may be
used at will, except where required explic-
itly by the syntax. Moreover, even where
required explicitly, they may be omitted if
bks is preceded or followed by a delimiter.

2. identifiers, functions, definitions,

lablels, transfers

idf
cons
idcfl
idsub
define
idf1

i

id
label
ta
labi
ti

ﬁalphanumeric identifier)

constant)

idf| cons| idefl, idefl

idf| | * idf(idefl) |pat

DEFINE bks idfl

idf|idfl, idf

=idf | i= idf| emp

idsub i

idf| int

labell //1abell/1abel/ label

i bks label il label i

i ti|/labi|//labi|/labi/labi
emp

I T A T T TR N T TR T T

Note: An identification (i) may appear
anywhere in a statement (except after an op-

erator).

A function (*idf(idcfl)) or a ran-

domly generated address ($) may substitute

for an identifier.

The label (label) may be

variable if the complementary language al-
lows, and must take the form stipulated by

the complementary language.

A transfer

may occur anyplace in a string, and affords
an execution control switch which depends
on the success or failure of the last oper-

ation (excluding identification).

Exam ple:

/F1/81 means: go to F1 if failure; go

//81

to S1 if success

means: continue if failure; go

to S1 if success
means: go to F1 if failure; con-
tinue if success

/F1

3. Hollerith, numeric data

dig ::=011]2]31415(6 17/8|9

int ::= dig|int dig

ans ::= dig|A| B C|D| E|F|G|H|[|J|K
|L|M| N|O| P|Q|R| S| T|U| V| W
|X|Y|Z[+]-]. lbkl*l(l)l[l?l<
|>1=l#=[, [5]: [$]+]+]>[n]ul=1"

a = ans’/

h =aha

hns = ans|hns ans

ae = boolean, complex, real
single-precision, real
double-precision expression)

data = "type ae"|"//hns"|"/int/h"

type = B|C| R/ D|I|O

ive = idf|int

dseq = ;ive ; ive

Note: Data may be regarded as terminal
sink nodes of an insertion operation (cf. dsuff
below). Hollerith data may be entered fol-
lowing ""//as a string of characters exclud-
ing quote between quotes, or as a counted
string including quote. Thus, "//NO
QUOTE", or "/6/QUO"TE". Data of type
boolean (B), complex (C), double-precision
real (D), Hollerith (H), integer (I) or real
(R) may be entered into sequentially acces-
sible memory at a given address. Thus
;5; 11X+ 3 places the integer value of X+3
into SEQ(5), where SEQ is a reserved block
of memory. Similarly, ;3H('//NSL/,
1/3/SLA) places the strings NSL and SLA in-
to memory beginning at SEQ(3). All data can
be list named and accessed by index as
computer-dependent output.

4, _unparenthesized statements

bo = +|-|=]=|njul 7

ro := +| emp

ix =.].-].= -§|.-/].—"

dix =/ =/ -

ixi =.].=|./."

ixve := ixi ive tijemp

be = bks|;_

link = id ti

suffne ::= be link ixve bks id ro suff
| bo link ro suff|ti ro suff|ix
ive ro suff|zidf ro suff

suff = suffne| emp

dsuff = be link ixve dseq data ti

506

[be link ixve data tildix ive
ti|suff dsuff

node = id ro suffne| [nodel

dnode = id ro dsuff

nodei = nodelid

5. parenthesized statements

suffbc = suffne bcl emp

nabc = nal nbj nc| [nabce]

na ::= nodei ro (la)

la = suffneﬁsuff suff bo lbe
| suff bo (Ib)l suff ix (laix)
| suff dix (ladix) |suff = (lai)
| suffbe link ixve bks nabc
| suffbc link ixve (lc)
| suffbe link ixnd (lcix)
| suffbe link (lcixve) ro la
Ia, Ia

laix = ive lallaix, laix

ladix = ive tilladix, ladix

lai = idf lallai, lai

nb = nodei ro bo (Ib) [nodeiz(lai)

1b = lbe|lb, 1b

1be ::= link|node|dnodd nabc

nc ::= nodei be link ixve (1c)
[nodei be link ixve dseq (lcd)
|nodei be link ixi (leix)
|nodei be link (Icixve)

lc = lce|ro lcllc, lec

Ice = lbe|data ti

led = data tilled, led

leix = ive tidseqive ti bks Icelleix laix

lcixve = ixve dseq data tilixve bks

lcellcixvc, Icixve
GIRL-like ::= node|dnode|nabc|define
statement |ta|id=idf

Note: An unparenthesized string (node,
dncde) consists of a prefix string (id ro suff)
followed by a suffix string (suffne) which may
be continued or a data suffix (dsuff) which
terminates the string. The suffix operates
on the node address or pattern of addresses
produced by the prefix string in a strict
left- to-right scan. PIRL employs paren-
theses to sequence suffixes of an unparen-
thesized prefix pattern. Moreover, the
unparenthesized portion of each suffix may
itself be a prefix to a suffix sequence. Scan-
ning and imbedding are strictly to the right.
Thus, for example, <A+B>}(C X,D Y) means:
"find the pattern name associated with
<A+B>, access the pattern itself and com-
pletely link the pattern to X by C and to D
by Y.

6. quantified statements and pattern

transformations

q =..ALL]|..EXIST

1lbo = ..AND|..OR

lbon =..NOT|emp

af = q bks idfl|qf bks qf

ap = pat|qf pat|qp til[gp]
qlog = qp|qlog 1bo lbon bks qlog

lqlog lbo lbon[qlog]
laf [qlogliiqlog]

pot ::= qlog|. . NOT bks qlog
l. . NOT [qlog]jppt +ppt
ptrans ::= ppt+GIRL-like statement

7. unparenthesized pattern expressions

pbo =+ =|=|nu| =
psuff = pbo pat psuff|ti psuff
|=idf psuff|. ivc psuffiemp
pdsuff = dix ive ti|psuff pdsuff
patu = id ro psuff|[patul
dpatu = id ro pdsuff
pexp = patu|dpatu
8. parenthesized patterns and pattern
strings
pnab = pna|pnb
pna = patu (pla)
pla ::= psuff|pdsuff|psuff pbo plb
|psuff pbo (plbdix)|lpla]
Ipsuff. (plbix)|psuff dix
(plbdix)| psuff = (plbi)|ro pla
pla, pla
pnb = patu pbo (plb)| patu = (plbi)
plb = patu|dpatu|pnab|[plbjjplb, plb
plbix = ive plalplblx plbix
plbdix = ive ti[plbdix, plbdix
plbi = idf pla|plbi, plbi
pl = pexplpnablpatlpl pl
pat —<p1>|pat§|[pat}
REFERENCES
. Feldman, J.A. and Rovner, P.D., "An
ALGOL-based associative language', Comm.

ACM, 12, 8, pp. 439-449, 1969

2. Ross, D.T., "A generalized technique
for symbol manipulation and numerical
computation”, Comm. ACM, 4, 3, pp. 147-
150, 1961

3. Berkowitz, S., "Graph information
retrieval language—design of syntax'",
Software Engineering (Proc. COINS-69),

507

J.T. Tou (ed.), Vol.2, pp.119-139, 1971
Academic Press, New York

4, Christensen, C., "An example of the
manipulation of graphs using the AMBIT/G
programming language', Proc. Symp.
Interactive Syste Experim. A

Math. , Washington, D, C., 1967

5. Knowlton, K,C., "A programmers
description of L6", Comm. ACM, 9, 8
p. 616, 1966

6. McCarthy, J., etal., Lispl. 5
Programmer's Manual, MIT Press,
Massachusetts, 1962

T. Newell, A, (Ed.), Information Process-
ing Language-V Manual, Prentice-Hall, New
Jersey, 1961

8. Pfaltz, J., and Rosenfeld, A., "Web
grammars', Proc. of the International
Joint Conference on Artificial Intelligence,

p. 609, 1969

