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The design of a pa t te rn  manipulat ion lan- 
guage, PIRL, is d e s c r i b e d  here.  P IRL can 
handle a r b i t r a r y ,  o r ien ted  pa t te rns  (i .  e . ,  
subgraphs)  of l i s ts ,  nodes,  numer ic  and 
Hol ler i th  data  on many levels  of abs t r ac t ion  
in a concise ,  legible manner .  Pa t t e rns  and 
l i s t s  may be inser ted ,  r e t r i eved ,  deleted,  
indexed, compared ,  named,  in te r sec ted ,  
united, and complemented .  Pa t te rn  names  
may  be r e f e r e n c e d  to a lower  level  of 
abs t r ac t ion  and pa t te rn  f o r m s  may be 
quantified. PIRL should be of cons ide rab le  
value in the solut ion of ce r t a in  p r o b l e m s  in 
informat ion r e t r i eva l ,  l inguist ic ana lys is ,  
scheduling s imulat ion,  and pa t te rn  r ecog -  
nition. 
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INTRODUC TION 

PIRL (Pa t t e rn  Informat ion  R e t r i e v a l  
Language) is a p rog rammi ng  language 
des igned to convenient ly  manipula te  infor-  
mation in graph s t r uc t u r e s .  As such, the 
language wil l  p lay a key  ro le  in the con- 
s t ruc t ion  of the organiza t iona l  s c h e m e s  
found, fo r  example ,  in informat ion  r e t r i e v -  
al, l inguist ic  ana lys is ,  and p r o c e s s  sched-  
uling s y s t e m s .  The language is wr i t t en  to 
complemen t  an a lgebra ic  language such as  
FORTRAN or  ALGOL, in the s ense  that 
PIRL s t a t emen t s  a r e  d is t inguished f rom 
the s t a t emen t s  of the a lgebra ic  language 
and may  be in te r l eaved  with those  s t a te -  
ments .  The p r i m a r y  advantage of sepa -  
rat ing symbol ic  and numer ic  s t a t emen t s  is  
that the p r o g r a m m e r  is a f forded  a l inear ,  
one-one  t r a c e  of graph opera t ions  in the 
code descr ip t ion .  F r o m  an opposing point 
of view, Fe ldman  and R o v n e r ' s  L E A P  [1] 
and R o s s ' s  AED-0 [ 2 ] ,  for  example ,  a r e  
ex tens ions  of ALGOL in the s ense  that  
graph o r  l i s t  opera t ions  a r e  i n t e r s p e r s e d  
with numer ic  opera t ions .  The r e su l t  is  
that  code sequencing of graph ope ra t ions  is  
bound by the infix, ph ra se -  subst i tu t ion 
na ture  o f the a lgebra ic  language, and does  
not lend i t se l f  to an e a s y  scan of the graph.  
On the o ther  hand, the ALGOL extens ions  
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offer  a un i formi ty  of notation n e c e s s a r i l y  
miss ing  f rom PIRL. 

The function of PIRL is to identify, in- 
ser t ,  r e t r i eve ,  delete ,  and compare  sub- 
graphs ,  or  pa t tern  images ,  which range 
f rom single nodes and l i s t s  to a r b i t r a r y ,  
d i rec ted  graph s t ruc tu res .  As such, PIRL 
is an expansion of a less  sophis t icated lan- 
guage cal led GIRL (Graph Informat ion  _Re- 
t r i eva l  Language), r-eporte'd e l sewhere  [3], 
which confines i ts  graph manipulat ion act ivi-  
t ies  to single nodes and l is ts .  The GIRL 
language was designed to be pr imi t ive  
enough to allow the bootstrapping of the 
PIRL compi le r  (or p r ep roces so r ,  as  hap- 
pens to be the case) f rom the GIRL prepro-  
ce s so r ,  in t e r m s  of GIRL s ta tements .  
Fe ldman  and Rovner ' s  paper [1] contains a 
d iscuss ion  and comprehens ive  bibl iography 
of the languages and p rogramming  s y s t e m s  
which lie in the background of cu r r en t  
thinking on assoc ia t ive  languages [4, 5, 6, 
7]. 

Af te r  giving a very  brief  descr ip t ion  of 
GIRL, this  paper will  d i scuss  the design 
cons idera t ions  behind PIRL. This paper  is 
not intended as a p rogramming  manual ,  but 
r a the r  as a descr ip t ion  of the pros  and cons 
of a language design. A concise  render ing  
of the GIRL syntax may be found in the 
Appendix. 

NOTATION OF GIRL 

The function of GIRL is to manipulate  
node- l ink-node s t ruc tu r e s  of the type shown 
in F igure  1. One may think of such a s t ruc -  
ture  as a function (B), a rgument  (A), value (C) 

tr iplet ;  or  as a subject  (A), re la t ion  (B), 
object  (C) associa t ion.  The language is 
based on the opera t ions  given in Table 1. 

B 

FIGURE 1--Node- l ink-node  t r ip le t  

F r o m  a descr ip t ion  as br ief  as the cu r r en t  
one, the r e a d e r  cannot hope to achieve pro- 
g ramming  competence  in the language, but 
the following comments ,  together  with the 
example,  should give an idea of the basic 
a r ch i t ec tu re  of the language. 

Note f i r s t  that inser t ion  (non-selective) 
is  non-des t ruc t ive ,  so that  links may  be 
cons idered  as mult ivalued functions,  and 
sink nodes as  o rde red  se ts  (or l ists) .  Sec- 
ondly, the X in Table 1 may  be rep laced  by 
any lef t -hand portio~--i ,  e . ,  pref ix--of  a 
GIRL s ta tement  whose value is a node when 
p roces sed  in a l e f t - t o - r igh t  scan. Accord-  
ingly, paren thes iza t ion  is employed to indi- 
cate  a sequence of suff ixes of a GIRL s ta te-  
ment  and imbedding occurs  s t r i c t l y  to the 
right,  as opposed to the phrase  subst i tut ion 
function of a lgebraic  ~nfix notation for  which 
imbedding is not n e c e s s a r i l y  oriented.  A 
notion of "p re f ix  sequence" was cons idered  
but d i sca rded  due to dif f icul t ies  in legibi l i ty  
and compilat ion.  In fact,  the r e ade r  will  
see that the notion of a pa t te rn  to be in t ro-  
duced la te r  will  obviate the need for  a pre-  
f ix sequence.  Thirdly,  the condit ional  t r ans -  
f e r  sequence may t e s t  the r e su l t  of any 
opera t ion (except definition) and continue to 
p rocess  the s t a tement  when 1) the t r a n s f e r  

TABLE 1--Opera t ions  in GIRL 

F o r m  
X Y Z  
XY.  K C  

X+Y 
X-Y 

X=Y 
X+Y. I 
X=y 

/F/S 

Function 
Inser t ion  
Selective 
inser t ion  
Re t r i eva l  
Deletion 

C ompar i son  
Indexing 
Node 
definit ion 
Condit ional  
t r a n s f e r  

Meaning 
Connect source  node X to sink node Z by link Y. 
Let  the sink node l is t  linked to X by Y contain as 
its Kth i tem the node C. 
Find the node(s) linked to node X by the link Y. 
Let  X no longer  be assoc ia ted  with any node(s) 
by the link Y. 
Do X and Y r e f e r  to the same  node? 
Find the Ith i tem on the l is t  a cces sed  by X+Y. 
Give the name Y to the node (link, list) r e f e r r e d  
to byX.  
If the preceding operat ion fai ls ,  go to the label 
F; o therwise  to S. 
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is wr i t t en  as F and success  occurs ,  or 
2) the t r a n s f e r  is wr i t ten  a s / / S  and fa i lu re  
occurs .  Note that fa i lu re  of inser t ion occurs  
when the node- l ink-node t r ip le t  has a l r eady  
been inser ted .  The following example should 
help c la r i fy  the preceding notation• 

C 

! 

T 

FIGURE ?,--Sample graph 

Suppose the graph shown in F igure  2 
has been inserted•  Then the following GIRL 
sta tement :  

G 5 A-~-X+B. 2(S F M N, +R(-C, =X/5)) 

produces  the graph shown in F igure  3. 

B 

S M 

FIGURE 3---Sample graph t r a n s f o r m e d  

The s ta tement  will  have the following in ter -  
pretat ion:  

G 
5 
A-X 
+B 

. 2  

(S F 

MN 

, +R 

,-C 

The s ta tement  is  a GIRL s ta tement .  
The s ta tement  has label 5. 
Let  A have the name X. 
F r o m  X, follow the B link to the l is t  
E ,D.  
Take the second i tem on the l i s t  E, D; 
i . e . ,  D. 
In se r t  the assoc ia t ion  "D linked by S 
to F". 
Insert the association "F linked by M 
to N". 
(Second suffix) From D, follow the 
~f link (to A) 

A has a C'link, delete it. 

, = x / 5  (Second suffix) Do A and X r e f e r  to 
the same  node? If not r e tu rn  to 5; 
o therwise  continue. 

In addition to the above opera t ions ,  and 
aside f rom many deta i ls  omit ted  for  the sake 
of brevity,  one should be aware  of GIRL 
fac i l i t i es  for  ident i f ier  definition, numer ic  
and Hol ler i th  data, and function subprograms .  

• Ident i f ie r  definition• There  a re  two 
equivalent  ways to ass ign  in te rna l  nodes to 
ident i f ie rs ,  say Xl,  YI: e i ther  by wri t ing  
the GIRL s ta t ement  

G DEFINE (Xl, Y1) 

or by wri t ing $-Xl  and $-Y1, e i ther  as 
separa te  s t a t emen t s  or  within the context  
of a s ta tement ,  where  $ means :  genera te  a 
random in te rna l  node address•  The iden- 
t i f i e r s  then a re  va r iab les  having in teger  
values which can be acces sed  in a lgebra ic  
s ta tements•  

• Numeric  and Hol ler i th  data. One can 
in se r t  data  as a sink node or  l i s t  in the fo rm 
of 1) numbers ,  2) the value of a lgebra ic  
express ions ,  or  3) Hol ler i th  s t r ings .  F o r  
example,  X G("/5/3+X2Y",  "IA+2", "I4") 
means:  i n se r t  the c h a r a c t e r  s t r ing  3+X2Y 
(of length 5), the value of the in teger  expres -  
sion A+2, and the in teger  4, respec t ive ly ,  
as l i s t  values  of the function G of X. 

• Funct ion s u b p r o g r a m s .  One can re -  
place a node or  link ident i f ier  at any point 
in a GIRL s ta t ement  by a function of the fo rm 
*ID(A1, A 2 , . . . ,  AN), where  ID is an iden- 
t i f i e r  and (A1, A 2 , . . . ,  AN) is a l is t  of input 
ident i f ie rs ,  a lgebra ic  v a r i a b l e s ,  or  con- 
s tants .  The function is defined in the s a m e  
way as a p rocedure  of the c o m p l e m e n t a r y  
a lgebraic  language, and may contain GIRL 
s ta tements•  Whether  or  not the function is 
r e c u r s i v e  depends on the r e c u r s i v e  capa-  
bi l i t ies  of the a lgebraic  language. 

STRUCTURE OF PIRL 

Pa t t e rns  and Pa t te rn  F o r m s  

In designing PlRL, the main object ive 
was to produce a concise  notat ion for  the 
ident i f icat ion and r e t r i e v a l  of subgraphs  (or 
pat terns)  contained within a s to red  graph. 
Moreover ,  the notation was to be compat ible  
with the syntax of GIRL so that  pa t t e rns  
could be manipulated as genera l i zed  nodes 
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in a manner  to be d iscussed .  Since the re -  
t r i eva l  of pa t te rns  in no way t r a n s f o r m s  any 
of the under ly ing  graph s t ruc tu re ,  use  of a 
bracketed GIRL s ta tement  which does not 
contain any inser t ions  or delet ions seems  an 
appropr ia te  way of descr ib ing a pattern.  
Fo r  example,  the sample  graph of F igure  2 
might be r e t r i eved  as the pat tern  express ion  
in (I). 

<A+(C=F/I+T=G/2, B(. 1=E/3+S=G/4, 
• 2 =D/5+R=A/6)) > (1) 

The transfers and comparisons are optional, 
and one can name the entire bracketed ex- 
pression in the same way as one names a 
node. In the example just given, the node 
identifiers are assumed to have been defined 
by a DEFINE statement or definition oper- 
ator. If the identifiers were not defined, 
they would be undefined, or free. The 
resulting bracketed statement would then be 
a pattern form and would refer t o the list 
of patterns generated by the pattern form as 
the free identifiers range over the nodes of 
the graph. Thus, a free identifier is a 
symbolic variable, and a defined identifier 
is a symbolic constant. The implications of 
the preceding choice of notation for patterns 
and pattern forms within statements produce 
a host of problems which will now be dis- 
cussed in a not-too-random order. 

Trans fo rma t ion  of Levels  of Abs t rac t ion  

If pa t te rns  (or the i r  e x t e r n a l  names) 
a re  to be used in place of nodes, one mus t  
decide whether  the l i s t  of in te rna l  a d d r e s s e s  
of the nodes contained in the pat tern  or  the 
address  of the pa t tern  name is to replace  
the pa t tern  (or i ts  ex te rna l  name). If, dur-  
ing execution, one were  to subst i tute  the 
address  of the pa t tern  name for  a pat tern,  
then all  pa t tern  linking would occur  among 
names.  Consequently,  in o rde r  to p rocess  
the graph at the node level  and de t e rmine  
the exist ing linkage, one would requ i re  a 
means  of in te r roga t ing  a node to d i scover  
with which pa t te rns  one level  of abs t r ac -  
tion up---the node was assoc ia ted•  The node 
r e t r i eva l  t ime would be g r e a t e r  than GIRL 
re t r i eva l  t ime; s to rage  would be requ i red  
both for  n a m e - t o - p a t t e r n  r e t r i eva l  and fo r  
the inverse  r e t r i eva l  (although it is t rue  
that no s to rage  would be needed for  pat tern  
node linkage); and, mos t  important ,  a s soc i -  
ation between pat terns  would be confined to 

the effect ive assoc ia t ion  of all  nodes of one 
pat tern with all  nodes of another  by a common 
link. It is p referab le ,  then, to introduce 
the effect ive naming scheme shown in F igure  
4, and a una ry  r e f e r ence  opera to r  ~ to de- 
scend f rom a name to i ts  r e fe ren t  pattern.  
In other  words ,  the occur rence  of a pat tern  
in a s ta tement  is  replaced at execution t ime 
by its in te rna l  name; but if the pat tern  it-  
self is des i red ,  a r e f e r ence  operat ion can 
access  the pattern• Storage is now requi red  
for  pat tern  node linkage, but no level as-  
cension is needed, and node r e t r i eva l  is the 
same as in GIRL. Moreover ,  one can han- 
dle unconnected subgraphs as components  of 
a single pattern.  As an example of this  
s t ruc tu re ,  cons ider  F igure  4. In o rde r  to 

~ % 1  Pattern to 
be named @ x 

., PA TTERN 

P1 P 

BI A\ 

B, 2;A ] 

FIGURE 4 Example  of pa t tern  naming 
organiza t ion  

avoid ambiguity,  the nodes PATTERN and 
P1 a re ,  in fact ,  in te rna l ly  genera ted ,  d is-  
t inguished,  random nodes not o therwise  
used in the graph. The PATTERN node is a 
source  for  all  pat tern  names  and each pat- 
t e rn  links all  of i ts  nodes to PATTERN node, 
using the pa t tern  name (e. g . ,  P1) as link. 
Moreover ,  in o rde r  to avoid r e t r i eva l  ambi-  
guity, the P1 link f rom a pat tern  node R 
points both to the subset  of links of the 
graph which a re  intended as links in the 
pat tern  f rom R, and also to the subset  of 
indices for  each mult ivalued link. That is  
to say,  if one specif ied only the link subset ,  
then links in the graph not to be included in 
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the pat tern---such as the dashed B link in 
F igure  4 would spur ious ly  fo rm a par t  of 
the pattern.  Note that  s imply  linking the 
nodes to the PATTERN node does not un- 
ambiguously  exclude links of the type just  
mentioned,  s ince the linked nodes may en- 
t e r  the pa t tern  by linkage outside the pattern,  
as does E in F igure  4. Note also that  linking 
all  pat tern  nodes by the name link is not as 
redundant  as it would seem,  s ince the link- 
age not only provides  unambiguous t e r m i -  
nation of loop t r aces ,  but also saves  much 
t ime in pat tern  node r e t r i eva l  as agains t  a 
s t r a igh t fo rward  t r ace  of the pat tern.  Since 
a s i m i l a r - - b u t  s i m p l e r - - s t r u c t u r e  obtains 
for  l i s t s  (see F igure  5), one can speak of 
l i s ts  of pa t tern  names  (or pa t te rns  of l is t  
names) to any level  of abs t rac t ion.  Indeed, 
a cons is ten t  extension of the notation defined 
e a r l i e r  for  pa t te rns  might,  for  example,  
have the fo rm:  

<A, B, C, D> 

where  each a rgument  r e p r e s e n t s  a s t r ing  
whose value is an in te rna l  address .  Such a 
l is t  fo rm may be named, and the subgraph 
under ly ing the abs t rac t ion  is r e t r i evab le  by 

[ P A T T E ~ ]  
L1 

FIGURE 5- -Example  of l is t  naming 
organizat ion 

success ive  r e f e r ence  operat ions .  One by- 
product  of the naming scheme is that  a name 
r e f e r s  effect ively  to an in te rna l  node add re s s  
un i fo rmly  for  nodes,  l is ts ,  or  pa t te rns ,  so 
that a specia l  naming notation is not needed 
to dis t inguish nodes f rom more  complex 
s t ruc tu r e s ,  as was previous ly  thought [3]. 

Now that  l i s t s  have been s t ruc tu r ed  as 
types of pa t te rns ,  one wonders  whether  it 
would not be cons is ten t  to s t r uc tu r e  nodes as  
types  of l is ts .  If we suppose that  a node and 
i ts  name were  not dis t inguishable ,  then an 
inser t ion  would requ i re  knowing whether  a 
l ist ,  a node, or  nothing had been inser ted .  
Inser t ion  would then take place by adding to 

the l ist ,  c rea t ing  a new l ist ,  or  c rea t ing  a 
node- l ink-node s t ruc tu r e  , respect ively .  F o r  
example,  if one wished to execute A B C, it 
would be n e c e s s a r y  to rep lace  the inser t ion  
t r ip le t  with the following GIRL code at com-  
pilation t ime: 

G A(+B=-D//1, BC / / 3 )  
G 1 PATTERN(+D/2, D C/ /3 )  
G 2 A (-B, B$-=NEW) 
G PATTERN NEW(D, C) 

3 

As an a l t e rna t ive  to this  c u m b e r s o m e  in te r -  
pre ta t ion of inser t ion,  one might  r eg a rd  a 
sink node as a univalue l is t ,  so that  the in- 
se r t ion  of a new node- l ink-node  t r ip le t  would 
requ i re  a l i s t  name definition. Thus, the 
inser t ion  t r ip le t  A B C would be rep laced  at 
compila t ion t ime  by the code: 

G A (+ B-D//i, B $=-D) 
G 1 PATTERN D C 

On the o ther  hand, this  p rocedure  would re -  
qui re  our  wr i t ing  A+B~ when the node, not 
the node name,  was des i red .  Although this 
is not too g rea t  a demand,  one might  avoid 
even this  r equ i r emen t  (and ex t ra  s torage ,  
by the way) by replacing A+B by the sink 
node C, when A+B points to a s t r i c t l y  uni- 
value list .  Thus, A+B would be rep laced  at 
compila t ion t ime  by the code: 

G A+ B-=C/FAI L 
G PATTERN+C(. 2 / / 1 ,  . I~-C) 

This scheme s e e m s  an inequitable t rade ,  
however,  for  the burden of us ing a r e f e r e n c e  
opera tor .  Thus, we have decided to r ega rd  
sink nodes as univalue l is ts ,  and r e t r i e v a l  
as the r e t r i e v a l  of a l is t  name. On the bas is  
of this  decision,  note that the pa t te rn  defi-  
nition in Expres s ion  (1) above r equ i r e s  the 
inser t ion  of a r e f e r ence  opera to r  a f te r  every  
re t r i eva l .  

By introducing a r e f e r ence  opera tor ,  
one makes  it possible  to subst i tu te  an in ter -  
nal add re s s  for  a pa t tern  at execution t ime,  
as s ta ted  above. But what subst i tut ion 
should one make for  an ex te rna l  name?  If 
one were  to subst i tute  the pa t te rn  (or list) 
i tself ,  one would need a d i f fe ren t  r e f e r ence  
opera tor ,  say t, to acces s  the in te rna l  ad- 
d r e s s  of the name,  one level  up. On the 
other  hand, if one were  to subst i tu te  the 
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in te rna l  address ,  one would at t imes  need a 
f o r m a l i s m  like [P~] to access  the pat tern  
(or list) r e f e r r e d  to by P; that is, one would 
need 5rackets  so that the r e f e r ence  operat ion 
would not be applied to the value of the s t r ing 
preceding P. In fact,  despi te  the possibi l i ty  
of more  f requent  use of the pat tern  than of 
its name, we have chosen the la t te r  course ,  
s ince the ~ operat ion 1) would not be applied 
to bracketed express ions ,  2) would not have 
a unique value, 3) would be cos t ly  in t e r m s  
of s torage  and implementa t ion  t ime,  and 
4) would, in any case,  requ i re  brackets  for  
the same reason  that  the ~ operat ion does. 

In passing, one might mention a th i rd  
organizat ion that could prove feas ib le  if 
t rans la t ion  occur red  in an in te rpre t ive  mode 
(not cu r ren t ly  the case):  namely,  the r ep re -  
sentat ion of a pat tern  as a subroutine which 
would genera te  the pat tern  nodes and links, 
and which would be cons t ruc ted  dynamica l ly  
as the execution of a s ta tement  produced and 
named new pat terns .  

Operat ions on Pa t t e rns  and Lis t s  

The a t tempt  to rep lace  nodes or  links 
in s ta tements  by pat terns  or l i s ts  opens the 
way to s eve ra l  in te rp re ta t ions  of the oper-  
ations given above in Table 1. Fo r  example,  
if P1, L, and P2 a re  pat tern  names ,  should 
[PI~][L~] [P2~] mean that each node of P1 
should be linked with each node of P2 by the 
node add re s se s  of L, a complete  linkage~ as 
shown in F igure  6, or that the f i r s t  node of 
P1 is linked to the f i r s t  one of P2, the next 
to the next, etc, a m i r r o r  linkage as shown 
in F igure  7. Or, perhaps one should intro-  
duce new notation to permute  and reduce the 
source  and sink l i s t s?  Since the last  two 
poss ibi l i t ies  r equ i re  a detai led knowledge of 
the order ing  of the pat tern  con ten t s - -no t  the 
usual  c i rcumstance- - - i t  is reasonable  to give 
[PI~] [L~] [P2~] the f i r s t  in terpre ta t ion ,  
which is equivalent to regard ing  l i s t s  as un- 
o rdered  sets .  Fo r  m i r r o r  linkage, we will  

FIGURE 6---Complete linkage 

use the notation " :"  (e. g . ,  [PI~]:[L~] [P2~]). 
Fo r  permuta t ion  and reduction,  ca re fu l  defi-  
nition or redef in i t ion of pa t te rns  should suf- 
fice, and no new notation will be introduced. 

(Each link r e p r e s e n t s  a link list) 

FIGURE 7 - - M i r r o r  linkage 

Another  problem a r i s e s  in in te rpre t ing  
the express ion  PI~+[P2~]. Cer ta in ly  the 
value is a list. But should the l ist  i temize  
nodes and l i s t - n a m e s ?  Each name would 
r e f e r  to a sink node l is t  r e t r i eved  by ap- 
plying [P2~]to a pa r t i cu la r  node in P1. If 
such were  the case,  one would, for  cons is t -  
ency ' s  sake, r equ i re  the express ion  A+B~ 
in o rde r  to access  a sink node. Therefore ,  
in o rde r  to avoid a cumber some  notation 
in the case  of node re t r i eva l ,  it is suff icient  
to in te rp re t  the or ig inal  express ion  as  pro- 
ducing an uns t ruc tu red  l ist  of al l  the nodes 
re t r ieved .  

Still another  problem a r i s e s  with the 
express ion  PD-A. If PI~ produced a node, 
should A be given the value of the node ad- 
d r e s s  or  that of the name a d d r e s s ?  The is-  
sue is decided by noting that if PI~ were  a 
list,  one would be forced  to say that identi-  
f i e r  definition must  be definit ion of the list.  
But then how would one identify a node? The 
solution is given by use of the index oper-  
ation: i . e . ,  P1.1--A gives to A the value of 
the f i r s t  (and perhaps only) node add re s s  in 
P1. 

In addition to basic GIRL operat ions ,  
PIRL contains operat ions  n e c e s s a r y  for  the 
manipulat ion of se ts  s t ruc tu red  as pa t te rns  
and l is ts ,  namely:  U (union), N(intersect ion) ,  
--z(complementation). The union and in ter -  
sect ion opera t ions  have the usua l  connota- 
t ions of joining and excluding, respect ive ly ,  
those components  which are  held in common,  
as F igure  8 shows. On the other  hand, com- 
plementat ion here  is a binary operat ion and 
se rves  to exclude a pattern,  node, or l is t  
f rom the preceding argument ,  as shown in 
F igure  8; that is, [p{~[R~] produces the com- 
plement  of R re la t ive  to P. This pecul iar  
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definition a r i s e s  f rom a re iuc tance  to suffer  
the tedious implementa t ion  of a un ive r sa l  
complementa t ion  (that is, a complementa t ion  
re la t ive  to the whole graph). Final ly ,  note 
that an operat ion may  resu l t  in a null pat tern  
or list,  r ep re sen t ed  i n t e r n a l l y  by a pat tern  
:or l is t  name With no fu r the r  linkage. 

(a) pa t tern  definit ions:  

PAT1 PAT2 

(b) union: PATI~U[PAT2~] 

(c) 

~ L 

intersection: PAT1 A[PAT2~] 

(d) complementa t ion:  PATI~-p[PATI~N 
[PAT2~]] 

FIGURE 8---Set opera t ions  

Now that  set  opera t ions  have been intro-  
duced, it s e e m s  reasonable  to use t h e m - - a n d  
indeed, any operat ion d i scussed  thus f a r - - t o  
concatenate  pat terns ,  i. e . ,  b racke ted  expres -  
sions. The co ro l l a ry  of this decis ion is to 
allow nes ted b racke t s  in PIRL s t a t emen t s , an  
infix notation which neu t ra l i zes  the vaunted 
legibi l i ty of the l e f t - to - r igh t  scan of GIRL 
s ta tements .  Fo r  the sake of legibil i ty,  one 
could of course  ins is t  on manipulat ing brack-  
eted express ions  outside of GIRL s ta tements ,  
naming the resul t ,  and using only names  in 
GIRL s ta tements ,  but this hard ly  s e e m s  a 
suff ic ient  r eason  to exclude the convenience 
of mixed notation. Accordingly,  we also 
pe rmi t  the s tand-a lone  bracket ing of indexed, 
re fe renced ,  or redef ined ident i f ie rs  (e. g . ,  
JR. 1], [R~], [ R - S ] ) ,  or  combinat ions  the re -  
of. Also, condit ional  t r a n s f e r s  should be 
pe rmi t t ed  within such brackets .  

The preceding d i scuss ion  by no means  
covers  all  the desigu i s sues  involved, but 

does give a fa i r  notion of the outstanding 
problems.  

Quantif icat ion and Logical  Operat ions  

The use  of f r ee  ident i f ie rs  pe rmi t s  one 
to find pat tern  ins tances  anywhere  in the 
s tored  graph. F o r  the sake of desc r ip t ive  
convenience,  it may be des i rab le  to l imit  
the s ea rch  to a specif ied subgraph. One 
should note that  such a l imi ta t ion may de- 
c r e a s e  the r e t r i e v a l  eff iciency,  espec ia l ly  
if one u ses  a paging sy s t em such as that  in 
LEAP[I ] .  One means  of specifying s ea r ch  
l imi ts  would be to introduce a sequence of 
quant i f ie rs ,  such as (for) A L L  and (there) 
EXIST,  each bounding a succeeding sequence 
of f r ee  ident i f ie rs  found in a pa t te rn  fo rm to 
follow. The EXIST quant i f ier  might  be fol-  
lowed, optionally,  by the number  of pa t te rns  
expected to be found. The ent i re  express ion,  
when evaluated,  would produce a name of a 
l is t  of pa t tern  names.  Fo r  compila t ion ease,  
and indeed for  u s e r  convenience in r e m e m -  
bering which ident i f ie rs  a re  f ree ,  the use  of 
f r ee  ident i f ie rs  is r e s t r i c t e d  to quantif ied 
pa t te rn  f o r m s  (or, as we shal l  see, to a 
logical  concatenat ion of quantif ied pa t te rn  
forms) .  Although the definit ion of a f r ee  
ident i f ier  is local  to the range of its bound- 
ing quant i f ier ,  the f r ee  ident i f ier  may be re -  
named as a global ident i f ie r  within a pa t tern  
form.  The new name is used  to hold the 
in te rna l  name of a l is t  of values  which suc-  
cess fu l ly  match  the pa t tern  fo rm in the f r ee  
ident if ier .  

One might  fu r the r  de l imi t  the s ea r ch  by 
introducing a notat ion for  m e m b e r s h i p - -  say 
IN P, where  P is a pa t tern  n a m e - - t o  precede  
the pa t tern  fo rm to be quantified. One might  
a l te rna t ive ly ,  or  addit ionally,  cons ider  r e -  

lacing the pa t tern  P by an express ion ,  say 
, d, L }, which would l imi t  the s ea rch  to 

nodes emanat ing f rom a node G, to a depth 
d, by links contained on a l ist  L. Moreover ,  
one might  introduce the logical  connect ives  
AND, OR, NOT to concatenate  quantif ied 
fo rms .  However,  the implementa t ion  of 
these  notat ions,  appealing as they may be, 
is quite e laborate .  Therefore ,  in the f i r s t  
phase implementat ion,  we r e s t r i c t  ou r se lves  
to logical  connect ives  and two quant i f ie rs  
before the ou t e rmos t  bracke t  of a pa t te rn  
form,  and leave m e m b e r s h i p  and more  com- 
plex quantif icat ion for  another  t ime.  

A fundamenta l  objective in c rea t ing  the 
notations of pat tern  and pat tern  f o r m  was to 
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allow for  the sequence: 

quantif ied <pattern match>--~  
pat tern  t r ans fo rma t ion  or fu r the r  match. (2) 

Like FORTRAN, PIRL has condit ional  t r ans -  
f e r s  to accompl ish  the t rans i t ion  between 
ma tch ing- - say ,  an a lgebraic  condition in the 
case  of FORTRAN--and t r ans fo rmat ion ,  or  
even fu r the r  matching. On the other  hand, 
ALGOL provides an i f . . . ,  t h ~ n . . . ,  e l s e . . .  
s t ruc tu re  that has some appeal, f rom the 
viewpoint of descr ip t ive  power: i . e .  the 
capabil i ty of coding a potential ly large  sub- 
graph of a f lowchar t  in one s ta tement .  As a 
by-produc t ,  f r ee  ident i f ie rs  which are  evalu- 
ated in a pat tern  match would be available 
for  use  in the t r ans fo rma t ion  f ield without 
naming. Never the less ,  one mus t  allow in 
any case  for  the naming of f r ee  var iab les  
(i. e. the naming of the l is t  of values which 
sa t i s fy  the pat tern  form) so that t r ans fo r -  
mat ions under  the control  of condit ional  
t r a n s f e r s  may use the names.  In the in ter -  
es t  of minimiz ing  the notation explosion and 
keeping s ta tements  concise  and legible, we 
adopt a compromise  between condit ional  
t r a n s f e r s  and i f . . . ,  t h e n . . . ,  e l s e . . . ,  by 
introducing the opera tor - , -as  above in 
Equation (2), and by requi r ing  f r e e  ident i f ie rs  
to be renamed  for  global usage.  Thus, the 
else f ield is effect ively placed on another  
line and is executed by the fa i lu re  option of 
a condit ional  t r a n s f e r  following the pat tern  
match,  The example which follows should 
c la r i fy  these  ideas.  

EXAMPLE 

The example presented  here  is a p a r s e r  
for  the web g r a m m a r  represen t ing  the c l a s s  
of non- t r iva l ,  basic,  two- te rmina l ,  s e r i e s -  
para l le l  networks (TTSPN's) d i scussed  
somewhat  more  elegantly by Pfaltz and 
Rosenfeld [ 8]. 

A non- t r ival ,  basic TTSPN is defined 
(roughly) as follows. Let the t e rmina l  vo- 
cabulary  be la}, the non - t e rmina l  vocabulary  
{A}. The init ial  s t r ing is: 

a A a 
o >o >o 

Then any basic  TTSPN can be der ived f rom 
the ini t ial  s t r ing by repea ted  application of 
the following rules:  

R1 (ser ies  expansion); A A 
1. Expand a node A to the edge O >O 
2. Let any edge or ig inal ly  enter ing A now 

enter  the f i r s t  node of the new edge. 
3. Let any edge o r i g i n a l l y  leaving A now 

leave the second node of the new edge. 
R2 (paral le l  expansion): ©A 

1. Expand a nodeA to the nodes OA 
2. Let any edge or ig inal ly  enter ing A now 

enter  both new nodes. 
3. Let any edge or ig inal ly  leaving A now 

leave both new nodes. 
R3 (termination):  

1. Replace A by a. 
In o rde r  to code a PIRL p r o g r a m  to 

recognize  whether  or not a given graph is 
basic  TTSPN, we es tabl i sh  the following 
conventions for  inputting a graph: 

1. The graph must  be entered  f rom the 
node B1 by an R link, and mus t  pro- 
vide an exit via an R link to node B2. 

2. Eve ry  link must  be designated as R. 
For  every  pair  of nodes A, B connected 
by R f rom A to B, inser t  link L f rom 
B to A. All  links a re  connected by R 
links to B2 and by L links to B1. 

The PIRL program,  complemented  to 
FORTRAN, follows, with explanatory re -  
marks .  (n. b. the symbol  ~, not he re to fore  
introduced, means  s imply,  " i s  not equal to",  
posed as a question. The e x p r e s s i o n .  -K 
means  "e l imina te  the Kth node f rom the pre-  
ceding l i s t" .  ) 

P SER . .  EXIST A2[<A2-A2N(¢(B1, B2), 
P *+ I~-A3)>.. AND.. NOT[<A3.2 >. .  OR 
P *<A3~+L. 2 > ] ] / P A R - - ~  
P *A2N. L--A2(-R, +LEA4, - L) 

N=I 
1 M=I 

P A4. N/SER-A4N+Re-A4R 
P 2 A4R. M/5=A2/3/4 

3 M=M+ 1 
GO TO 2 

P 4 A4NR.  MA3 L A 4 N  
5 N=N+I 

GO TO 1 
P P A R  . .  EXIST A2, A4[<A2(¢(B1, B2), 
P 
P 
P 
P 
P 
P 

*+Iz_A1. L-All ,  +l~-A3.1-=A31> 
*. .  AND.. NOT[<A1.2>. .  OR<A3.2> 
*. .  OR<A1 l = A 3 ~ . .  AND<A4~A41 
*(~(All ,  A2, A3I ,B1 ,  B2), +L. I=Al l ,  
*+R. l=A31)>. .  AND<All+R#n [A35] 
*=NULL>I/TEST 
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P 
P 
P 6 
P 

7 
P 
P 
P 
P 
P TEST 

8 

K=0 
J=0 
A31. lzA3 
A l l .  1=A1 
K=K+I 
AI+R. K=A4/6 
J=J+ 1 
A3+L. J=A4/7 
AI+R. -K 
A3+L. - J  
A4(-R, - L)//SER 
.. EXIST A6[<A6(;(BI, B2), +L~BI, 
+R#=B2>] /8/NO 
BI+R. 2 /YES/NO 

Program 

The f i r s t  pa t te rn  match  is for  s e r i e s  
reduct ion:  if the re  a r e  n o n - e n t r y / e x i t  nodes 
A2, A3 linked by s ing le -va lued  R, L links, 
r e spec t ive ly ,  then reduce  the graph by e l im-  
inating the A2 t o / f r o m  A3 linkage and r e -  
placing A2 by A3; if such A2, A3 do not exist ,  
t r y  a pa ra l l e l  reduct ion:  if t he re  a r e  non- 
en t ry / ex i t  nodes A2, A4 which a re  both 
linked by s ing le -va lued  R, L links to the s a m e  
n o n - e n t r y / e x i t  nodes A3, A1, r e spec t ive ly ,  
and if A1, A2,A3,  A4 a r e  all  d is t inc t  and A1 
and A3 a re  not linked, then r educe  the graph 
by removing  A4, and again t ry  a s e r i e s  r e -  
duction; if such A2, A4 do not exist ,  t e s t  
whe ther  or  not the graph has been reduced  
to the init ial  str ing.  

IMPLEMENTATION 

PIRL is being p r e p a r e d  to complemen t  
FORTRAN on a r ecen t ly  acqu i red  CDC 6700. 
The GIRL port ion of the s y s t e m  cu r r en t l y  
runs  on the CDC 6700. The s y s t e m  wil l  be 
avai lable  in s e v e r a l  options which wil l  allow 
the p r o g r a m m e r  to tune the s y s t e m  to some  
extent. These  options include: no- l i s t  
(des t ruc t ive  inser t ) ,  f ixed- length  l is t  defini-  
t ion (so that l i s t s  a r e  a c c e s s e d  as  v e c t o r s  in 
sequent ia l  s t o r age  for  the sake  of speed  but 
at a loss  of dynamic s torage) ,  no-paging 
(for a sma l l  a s soc i a t ive  graph in main m e m -  
ory).  

SUMMARY 

The des ign of a pa t te rn  manipulat ion 
language, PIRL, has been  desc r ibed .  PIRL 
can handle a r b i t r a r y ,  o r ien ted  pa t t e rns  
(i. e. s u b g r a p h s ) o f  l is ts ,  nodes,  numer ic  
and Hol le r i th  data  on many leve ls  of a b s t r a c -  

tion in a concise ,  legible manner .  Pa t t e rns  
and l i s t s  may  be inser ted ,  r e t r i eved ,  de le-  
ted, indexed, compared ,  named,  in te r sec ted ,  
united, and complemented .  Pa t t e rn  names  
may  be r e f e r e n c e d  to a lower  level  of ab- 
s t rac t ion ,  and pa t te rn  f o r m s  may be quan- 
tified. 

APPENDIX- SYNTAX OF PIRL 

In the following abbrev ia ted  syntax of 
PIRL, the usua l  BNF notation suf f ices  for  
the me tasyn tac t i c  s y m b o l s  ::= (is defined to 
be) and I (exclus ive  or); a s t r ing  of sma l l  
Roman c h a r a c t e r s  r e p r e s e n t s  a syntac t ic  
ca tegory;  and FORTRAN Hol ler i th  c h a r a c -  
t e r s  f o rm  the t e rmina l  alphabet .  A l is t  of 
mnemonics  fo r  the synta t ic  c a t e g o r i e s  (in 
a lphabet ica l  order) ,  toge ther  with a b r i e f  
funct ional  desc r ip t ion  of each ca tegory ,  p re -  
cede  the syntax. Heavy under l ines  in the 
syntax indicate  the PIRL addit ions to the 
GIRL syntax. 

Mnemonic 
a 

ae 
ans 
bc 
bk 
bks 
bo 
cons 
data  
define 
digit 
dix 
dnode 
dpatu 
dseq 
dsuff 
emp 
GIR L- like 

s t a t emen t  
h 
hns 

id 
idcfl  
idf 
idfl 
idsub 
int 
IVC 

1x  

ixnd 
IXVC 

Catego ry  Desc r ip t ion  
alphabet  
a lgebra ic  e x p r e s s i o n  
alphabet  with no s l a sh  
blank s t r ing  or  colon 
single blank 
blank (space) s t r ing  
b inary  o p e r a t o r  
cons tant  
data  (numeric  o r  Holleri th) 
definition of iden t i f i e r s  
digit  
data  index 
data  node 
data  p a t t e r n - - u n p a r e n t h e s i z  ed 
data  in sequent ia l  space  
data  suffix 
empty  
s t a t emen t  without pa t te rn  match  
a n d / o r  quant i f icat ion 
Hol le r i th  s t r ing  
Hol ler i th  s t r i n g - - n o  s l a sh  
ident if icat ion 
ident i f ier  (or subst i tute)  
ident i f ier  a n d / o r  cons tant  l is t  
ident i f ier  
ident i f ier  l is t  
ident i f ier  subs t i tu te  
in teger  
in teger  va r i ab le  or  cons tant  
index 
index- -no  de le te  
index fol lowed by in teger  
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Mnemonic 

l a  
label 
labi 
ladix 

lai 

laix 

Ib 
Ibe 

lbo 
lbon 

lc  
led 
Ice 
lcix 

lcixvc 

link 
na 
nabc 
nb 
nc 
node 
pat 
patu 
pbo 
PIRL 

s ta tement  
pdsuff 
pexp 
pl 
pla 
plb 
plbdix 

plbi 

plbix 

pna 
pnab 
pnb 
ppt 

psuff 
p t rans  
q 
qf 
qlog 

Category  Descr ip t ion  (cont.) 
var iab le  or  constant  
(suffix) l is t  t ype -a  
label 
label and /o r  identif ication 
(suffix) l ist  t ype -a  en t ry  fol- 
lowing data  index opera to r  
(suffix) l ist  t ype -a  en t ry  fol- 
lowing definit ion ope ra to r  
(suffix) l is t  t ype -a  en t ry  fol- 
lowing index opera to r  
(suffix) l is t  type-b  
(suffix) l is t  type-b  following 
identif icat ion 
logical b inary  ope ra to r  

b inary  ope ra to r  or  logical 
•. NOT 
(suffix) list type-c 
(suffix) list type-c data entry 
(suffix) list type-c entry 
(suffix) list type-c entry fol- 
lowing index operator 
(suffix) list type-c entry start- 
ing with index operator 
link 
node type-a 
node type-a,-b, or -c 
node type-b 
node type-c 
node 
pattern 
pat te rm--unpar  enthes iz ed 
pa t te rn  b inary  ope ra to r  

PIRL s ta tement  

p a t t e r n  data  suffix 
pa t te rn  express ion  
pa t te rn  l is t  
pa t te rn  (suffix) l ist  t ype -a  
pa t te rn  (suffix) l is t  type-b  
pa t te rn  (suffix) l is t  t y p e - b - -  
data  index 
pa t te rn  (suffix) l is t  type-b---  
ident i f ier  
pa t te rn  (suffix) l is t  t y p e - b - -  
index 
pa t te rn  node type -a  
pa t te rn  node t ype -a  or  -b  
pat tern  node type-b  
pat tern  match  to pa t te rn  match  
or  t r ans fo rma t ion  
pa t te rn  suffix 
pa t te rn  t r ans fo rma t ion  
quant i f ier  
quantif icat ion 
quantif icat ional  (or s imple  
pattern) logic i tem 

qP 

r o  
surf 
suffbc 

suffne 
ta 
ti 
type 

SYNTAX 

quantified (or unquantified) 
pa t te rn  
r e f e r e n c e  ope ra to r  
suffix 
suffix following by blank or  
colon 
suf f ix- -not  empty 
t r a n s f e r  add re s s  
t r a n s f e r  a n d / o r  identif icat ion 
(sequent ial  data) type 

1. null and blank 

emp 
bk 
bks 

::= (empty category)  
::= (blank cha rac te r )  
::-- bk Ibk bks 

Note: Blank sequences(bks) may be 
used at will, except  whe re  r equ i r ed  expl ic-  
itly by the syntax. Moreover ,  even whe re  
r equ i r ed  explicit ly,  they may  be omit ted if 
bks is p receded  or  followed by a de l imi te r .  

2. ident i f iers ,  functions,  definit ions,  
lablels,  t r a n s f e r s  

idf ::= (a lphanumeric  ident i f ie r )  
cons (constant) 
idcfl  ::= idf consl idcf l  , idcfl  
idsub ::= idf $1 * idf(idcfl) [pat 
define ::= DEFINE bks idfl 
idfl ::= idflidfl , idf 
i ::= ~idf I i= idfl emp 
id ::= idsub i 
label : := idf Iint 
ta  ::= labe l l / / labe l l  / l abe l / l abe l  
labi ::= i bks label  il label i 
ti ::= i t i l / l a b i [ / / l a b i l / l a b i / l a b i  

lemp 

Note: An ident if icat ion (i) may  appear  
anywhere  in a s t a t ement  (except a f te r  an op- 
era tor) .  A function (*idf(idcfl)) or  a ran-  
domly genera ted  add re s s  ($) may  subst i tute  
for  an identif ier .  The label  (label) may be 
var iab le  if the c o m p l e m e n t a r y  language al- 
lows, and mus t  take the f o r m  st ipulated by 
the c o m p l e m e n t a r y  language. A t r a n s f e r  
may occur  anyplace in a s tr ing,  and affords  
an execution cont ro l  switch which depends 
on the succes s  or  f a i lu re  of the last  oper -  
ation (excluding identification).  Exam pie: 

/ F 1 / S 1  means:  go to F1 if fa i lure;  go 
to S1 if succes s  

/ / S 1  means:  continue if fa i lure;  go 
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/ F 1  
to S1 if s u c c e s s  

m e a n s :  go to F1 if f a i l u r e ;  con-  
t inue if s u c c e s s  

3. Hol l e r i th ,  n u m e r i c  da ta  

dig ::= 0111213141516 !~1819 
int ::= dig int dig 
ans  ::= diglA[ I~ C .I~ E[F[G[H[I  J. K 

IL]~N OIPIQIRLSIT[UIVlW 
Ix lYIzl+l- I .  Ibk  *1( )1[ ] < , 
> : * - ,  ; : $ +  , - ~ n / u ~ I  

a ::: ansi /  
h := a l h a  
hns ::= ans [hns  ans  
ae  ::= Ooolean,  c o m p l e x ,  r e a l  

s i n g l e - p r e c i s i o n ,  r e a l  
d o u b l e -  p r e c i s i o n  e x p r e s s i o n )  

da ta  ::= " t y p e  a e " [ " / / h n s " [ " / i n t / h "  
type  ::= B[ C[ P~ D[ I [O 
ivc ::= idf[ int 
d s e q  ::= ; i r e  ; ivc 

Note:  Da t a  m a y  be r e g a r d e d  a s  t e r m i n a l  
s ink  nodes  of an i n s e r t i o n  o p e r a t i o n  (cf. dsuf f  
below).  H o l l e r i t h  da ta  m a y  be e n t e r e d  fo l -  
lowing " / / a s  a s t r i n g  of c h a r a c t e r s  exc lud-  
ing quo te  b e t w e e n  q u o t e s ,  o r  a s  a coun ted  
s t r i n g  inc luding q u o t e .  Thus ,  " / / N O  
Q U O T E " ,  o r  " / 6 / Q U O " T E " .  D a t a  of type  
boo lean  (B), c o m p l e x  (C), d o u b l e - p r e c i s i o n  
r e a l  (D), H o l l e r i t h  (H), i n t e g e r  (I) o r  r e a l  
(R) m a y  be e n t e r e d  into s e q u e n t i a l l y  a c c e s -  
s i b l e  m e m o r y  at  a g iven  a d d r e s s .  Thus  
;5;1"IX+3" p l a c e s  the  i n t e g e r  va lue  of X+3 
into SEQ(5), w h e r e  SEQ is  a r e s e r v e d  b lock  
of memory. Similarly, ;3H('//NSL/, 
I/3/SLA) places the strings NSL and SLA in- 
to memory beginning at SEQ(3). All data can 
be list named and accessed by index as 
computer-dependent output. 

4. u n p a r e n t h e s i z e d  s t a t e m e n t s  

bo ::: +l-I:l lnlul 
r__oo ::= +l e m p  

ix :::/)-!'i I 
dix  
ix i  "1 "'/i" ' ; -  
ixvc : := ixi ivc ti  I e m p  
bc ::= bks  I-- 
l ink ::= id t i  
suf fne  ::= be l ink ixvc  bks  id r o  surf  

]bo  l ink ro  suf f l t i  r__9.o--'-suff[ ix 
ivc r___oo s~-f[ ~idf r._gq surf  

surf  ::= suffne[ emp  
dsuf f  ::= be l ink ixvc d s e q  da ta  t i  

I bc link ixvc da ta  ti[ d ix  i-vc 
ti  I surf dsuf f  

node ::= id r___oo suffne[ [node] 
dnode  ::= id ro  dsuf f  
node i  :: = nod-~ id 

5. p a r e n t h e s i z e d  s t a t e m e n t s  

suf fbc  ::= suf fne  bcl e m p  
nabc  ::= n~ n~ nc I [ nabc ] 
na ::= node i  r o  (la) 
la suffneTdsuff  surf bo lbe 

[ surf bo (lb)[ suff  ix (laix) 
[ suff  dix  (ladix) [ su r f -  (lai) 
] suf fbc  l ink ixvc bks  nabc 
[ suf fbc  l ink ixvc (lc) 
] suf fbc  l ink ixnd (lcix) 
] suf fbc  l ink (lcixvc)] r__o la 
[.la, la 

la ix  ::= lvc la[ laix, la ix  
lad ix  ::= ivc ti [ladix, ladix  
lai  ::= idf la llai, la i  
nb ::= node i  ro  bo ( lb)[nodei=(lai)  
lb : := lbe] lb~--ib 
lbe ::= l ink [node[dnodd nabc  
nc ::= node i  bc l ink ixvc ( lc)  

[nodei bc l ink ixvc d s e q  (lcd) 
Inodei  bc link ixi  (lcix) 
]nodei bc l ink (lcixvc) 

lc ::= l c e [ r o  lc l lc ,  lc 
Ice ::= lbe [da ta  t i  
lcd ::= da t a  t~ .lcd, lcd 
lc ix  ivc ti dseq] ivc  ti  bks Icellci:~ lcix 
lc ixvc  ::= ixvc d s e q  da ta  t f l ixvc bks  

l c e l l c i x v c  , l c ixvc  
G I R L - l i k e  ::= n o d e [ d n o d e l n a b c l d e f i n e  
s t a t e m e n t  [ t a i i d = i d l  

Note:  An u n p a r e n t h e s i z e d  s t r i n g  (node, 
dnode) c o n s i s t s  of a p r e f i x  s t r i n g  (id ro  surf) 
f o l l owed  by a suf f ix  s t r i ng  (suffne) which  m a y  
be con t inued  o r  a da ta  suf f ix  (dsuff) wh ich  
t e r m i n a t e s  the  s t r ing .  The  suf f ix  o p e r a t e s  
on the node  a d d r e s s  o r  p a t t e r n  of a d d r e s s e s  
p r o d u c e d  by the  p r e f i x  s t r i n g  in a s t r i c t  
l e f t - t o - r i g h t  scan .  P I R L  e m p l o y s  p a r e n -  
t h e s e s  to s e q u e n c e  s u f f i x e s  of an u n p a r e n -  
t h e s i z e d  p r e f i x  pa t t e rn .  M o r e o v e r ,  the  
u n p a r e n t h e s i z e d  po r t i on  of e a c h  suf f ix  m a y  
i t s e l f  be a p r e f i x  to a suf f ix  s e q u e n c e .  Scan-  
ning and imbedd ing  a r e  s t r i c t l y  to the  r ight .  
Thus ,  f o r  e x a m p l e ,  <A+B>[(C X, D Y) m e a n s :  
" f ind  the p a t t e r n  n a m e  a s s o c i a t e d  wi th  
<A+B>, a c c e s s  the  p a t t e r n  i t s e l f  and c o m -  
p l e t e l y  l ink the p a t t e r n  .to X by C and to D 
by  Y. 
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6. quant i f ied s t a t e m e n t s  and pa t te rn  
t r a n s f o r m a t i o n s  

q 
lbo 
lbon 
qf 
qP 
q log 

p_pi 

pt rans  

: : = . .  ALL I . .  EXIST 
::--- . .  AND I . .  OR 
::= . .  N O T l e m p  
::= q bks idfllqf bks qf 
::= patlqf patlqp ti[[ qp] 
::= qplqlog lbo lbon bks qlog 

Lqlog lbo lbon [ qlog] 
Iqf [ qlog]l[qlog ] 

::= q l o g l . .  NOT bks qlog 
[.. NOT [qlog]Lppt-,-ppt 

::= p p t * G I R L - l i k e  s t a t emen t  

7. unpa ren the s i zed  pa t te rn  exp re s s ions  

pbo 
psuff 

p.dsuff 
patu 
dpatu 
pexp 

::= +1 : I *  nlu --, 
pbo pat psuff ti psuff 
I~idf psufft,  ivc psuffLemp 

::= dix ivc t i lpsuff  pdsuff 
::= id r___o_o psuffl[patu] 
::= id ro  pdsuff 
::= patuLdpatu 

8. parenth_esized pa t t e rns  and pa t t e rn  
s t r ings  

pnab :: = 
pna : • = 
p la ::= 

plb 
plbix . . -  
p lbdix  :: = 
plbi : := 
pA 
pat : : = 
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