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INTRODUCTION 

Many investigators have made use of syntactic analy- 
sis of figures for pattern recognition purposes during 
the recent years.l-5 Also a general theory of pattern 
analysis has been formulated recently be Grenander. 6 
Most of the earlier investigators concentrated their 
attention on the problem of line patterns, namely fig- 
ures which could be composed by thin lines. Such is 
the case, for example, of the bubble chamber photo- 
graphs. 4"5 This paper attempts to develop a similar 
analysis for the case of set patterns and in particular 
for polygons. Any two-dimensional figure could be 
reduced into this form by quantizing its levels of 
illumination. Then all points with a given level of 
illumination form a plane set. Such sets could then 
be approximated by polygons. This could be achieved 
by a computer-controlled scanner with rectilinear motion 
or by a number of other techniques. Sometimes the 
polygonal approximation is only implicit (see the section 
on Implementation, below). The reason for the poly- 
gonal approximation will become evident in the next 
section. It should be emphasized that this process 
and the subsequent analysis which is the subject of 
this paper, are very sensitive to noise, and therefore, 
a prefiltering of the figure may be necessary. This 

sensitivity is a common feature of all the techniques 
which deal with the analysis of figures in simpler 
components. A more detailed discussion of these points 
is given elsewhere, v In this paper we will try to em- 
phasize only the basic ideas of our approach. 

REPRESENTATION OF FIGURES 
T H R O U G H  SIMPLER ELEMENTS 

Let ~ , ~ 2 , . . . . ~ ,  denote a number of directions 
in the x-y plane (~t can be considered as their angle 
with the x-axis). Let s~,s3, • • .s2i_l,,S2n_~ be half planes 
whose boundaries are parallel to the above directions 
and pass through the origin. The halfplanes are assumed 
to lie in the side of negative y's. Lets2,s2i, s2ndenote 
similar halfplanes,, but on the side of the positive y's. 

Note that the union of s2i-i and s2i is the whole plane. 
Figure 1 illustrates this notation. Let G be the group 
of parallel translations which in this case are also the 
similarity transformations of interest and l e t g s k d e n o t e  

the halfplane resulting fromskby translating itsboundary 
by the vector g.* These halfplanes are the primitives 
of our analysis or signs according to the term used by 
Grenander. 6 

J 

Figure 1--Il lustration of the Nota t ion  Used for the Signs. 

The additional assumption is made that any given 
figure can be approximated by a polygon with sides 
parallel to ~,~,2,. .r .  Sn.Obviously, the intersectioi~ of a 
number of halfplanes (if not empty) is a convex poly- 
gon. 6, s It is also clear that any nonconvex polygon 
can be represented as a union of convex polygons 

* A halfplane can be characterized by the no rma l  on its boun-  
dary from the origin n and a second parameter  denot ing  
on which side it lies. A translat ion by a vector g will result 

in a new normal  n(1 + < n ' g > )  where the expression<n,g> 
< n , r / >  

denotes  a scalar product .  The derivation of this formula  
is trivial. 
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(e.g. triangles). What is not as obvious is that any 
(nonconvex in general) polygon can be represented as 
a union of convex polygons which are intersections 
of halfplanes determined by its sides. This will be dis- 
cussed in the next section, but here we note that 
under these circumstances any polygon F could be 
written as 

I F  = o ( n  p~) (1) 
k e K  aeAk 

where K and Ak are index sets and Pa. are signs of the 
form gsm for some geG and l < m < 2 n .  The convex 
polygons 

l p ,  = n po ( 2 )  

aedk 

will be called the primary subsets of F. 
One can now try to introduce a finite number of basic 

components Bj,B2 . . . .  Bu which will be convex poly- 
gons and which can approximate all other such sets. 
This can be achieved by introducing a similarity metric 
in the set of convex polygons. One possible candidate 
for this purpose is the Hausdorff  distance but other 
techniques could be used as well. One of these is 
described in the section of the Identification of Basic 
Components,  below. More details can be found in 
reference 7. 

As a result of either procedure, a primary component 
P will be substituted by a set of the form gB where 
geG and B is a basic component.  Then Equation (1) 
will have the form: 

F ~- u g ,  Bi(,) (3) 
k e K  

The similarity transformations appear in Equation 
(3) because the relative position of the various com- 
ponents is important. However, since F and gF carry 
the same meaning (for any g) a normalization of 
Equation (3) will be necessary in practice. 

Besides having expressed a figure through a finite 
number of simpler figures, it is desirable to use only a 
finite number of transformations. This can be achieved 
as follows. Lett(g~,g2) denote the norm of the vector 
g,-g2. This is a metric defined on G. Let H e be a sub- 
group of G which is countable and has the property 
that for any geG exists on h e l l  such that 

t(g,h) < ¢ (4) 

where e is given. An example of He is the set of vectors 
with integer coordinates and e = 0.5. 

In general, the figures are projected on a finite screen 
and therefore only a finite number of elements H e of 

H~ are expected to be of interest. Then figure F can be 
represented by a binary matrix M whose columns cor- 

respond to the basic components Bj,B2, • • Bu  and the 
rows to the elements ofH~. An element mij of M will 
be set equal to one of hiBi is an approximation of a 
primary component of F. Otherwise, it will be set 
equal to zero. 

Once a figure has been represented by a binary 
matrix (or a vector if the columns of the matrix are 
concatenated) then anyone of the standard classifi- 
cation techniques can be usedfl '1° However, the pre- 
processing usually results in strong clustering (pos- 
sibly multimodel) of the points belonging to a certain 
class and it is often very easy to devise discriminant 
functions. Experimental results using this approach 
have been described elsewhere. 11 

It should be emphasized that this is not necessarily 
the best approach. One might use instead Equation (l)  
directly and substitute for each P a  the primitive s j (a)  
whose,pla is under a translation by a vector g a  which 
belongs to H~. Then Equation (l)  would be written as 

F ~- U ( o gasj(a) ) (1 ') 
kEK ~eAk 

In this way F is represented by two finite "a lphabets"  
( H ~ a n d  the set of si 's) which are joined to form 
"words"  (the primary subsets) and a "phrase"  (the 
figure F). This seems to be the most promising avenue 
for further investigatioo. 

D E T E R M I N A T I O N  OF THE SYNTACTIC 
S T R U C T U R E  OF A GIVEN F I G U R E  

The first step in determining the structure described 
by Equation (1) is to obtain the signs present in a 
figure F. Let PJ,P2, • • • Pn be the signs present in a 
given figure F'. We proceed now to give a precise 
definition of the primary sets. Let Qo be the intersection 
of all the signs, i.e. 

n 

Qo = iN=l Pi" (5) 

One can now form an increasing sequence of sets by 
removing from the intersection one sign at a time. 
If I is the index set [ij,i2 .... ik]then Q~ will denote the 
intersection of all the signs except Pi l ,P i  2 . . . .  P 'k  Thus for 
a particular choice of indices we will have a sequence 
of the form 

n 

Qj = in= l Pi 

i~j 

n 
O_j, = p '  

i ~ k  

etc. 
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Obviously, if all the signs are removed, one obtains 
the whole plane which includes the figure F. Therefore, 
the sequence must have an element which is such that 
if one more sign is removed from it the next element 
will not be included in F. This maximal element will 
always exist although it may be the empty set. Now we 
can introduce the following definition: 

Definition: 
If a sequence of subsets of F of the form of Equa- 

tion (6) has a nonempty maximal element, that element 
will be called a primary (convex) subset of F. 

The following result is of importance in our analysis: 

Theorem: 
The union of the primary subsets of a polygon F 

equals F. 
The proof of the theorem is rather lengthy and it 

is presented elsewhere. 7 Here we will show by an ex- 
ample how the primary sets can be obtained. 

Consider the polygon A B C D F G H K N  of Figure 2. 
The intersection of all the signs Q0 is the triangle 
CPR. It is seen that this is also the intersection of 
the halfplanes #2,3 and 6 and therefore, only the 
sets Q2,Q3 and Q6 will be different from Q0-The  
set Q2 is the trapezoid PDEH,  the set Q3, the trape- 
zoid TURS and the set Q6, the triangle MCL. Figure 
3 illustrates by a tree-like diagram the generation 
of these sets. Each node of the tree is characterized 
by two numbers, one refers to the halfplane removed 
from the intersection and the other (in parentheses) 
is the numbers of halfplanes necessary to form that 
intersection. This will be removed successively in the 

next step. For example, Q2 is the intersection of the 
halfplanes #3,4,6 and 7. The set Q23 is the rectangle 
TEHS which is not entirely included in the polygon 
and therefore is not considered any further. The same 
is true for the set Q24. On the other hand Q26 is the 
trapezoid DEKM which is the intersection of the 
halfplanes #3,4,7 and 8. If either one of them is 
removed, the resulting set is not included in the original 
polygon. Hence Q26 is a primary subset. In the same 
way one can verify that Q27 (the trapezoid DFGP)  
and Q364 (the trapezoid ABLN) are also primary 
subsets. It can be readily checked that their union 
equals the original polygon. 

This analytical procedure is well-defined and there- 
fore the resulting primary subsets are unique. 

I D E N T I F I C A T I O N  OF BASIC COMPONENTS 

The identification of a given convex polygon with 
a basic component mentioned in the section on Repre- 
sentation of Figures Through Simpler Elements is an 
important step. Such an identification should conform 
with our intuitive notions of shape similarity. 

One possible procedure is the following: Let the 
screen be scanned from left to right and from bottom 
to top. The first vertex of a polygon met in this way 
is used as a starting point and the boundary is scanned 
clockwise. During this procedure, the signs met are 
recorded together with their corresponding lengths so 
that the polygon is described by an ordered array of 
the form 

Si[ Si 2 . . . . .  Sir k 
Zt Z2 . . . .  JZk (7) 
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Figure 2--A Non convex Polygon with the Signs p!,p2 ...... p 
Present in Precise Notation p;. ~ gsk(i ). 
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Qo QI 
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Figure 3--A Tree Indicating the Determination of the Primary 
Subsets (VJ of the Polygon of Figure 2. These Turn 
out to be the Convex Polygons ABLNA, MDEKM 
and PDFGP. The Symbol ~ Indicates a Set not 
Included" in the Original Figure. The Sets (3467), 
(2469), (238) and (2489) Correspond to DEHPD, 
RSTUR, MCLM and LNTUL. 

Note that because of the convexity no sign will be 
encountered twice. Figure 4 shows an example. Note 
also that this representation is translation invariant. 
The double array of Equation (7) can be compared 
with similar representations of the basic components. 

The latter arc searched until one finds those which 
have the same permutation of signs i~,i2 . . . .  ik as the 
sample under consideration, or, possibly, have one 
additional element or one fewer element. Then the 
sum of the squares of the differences between the 
corresponding lengths can be considered as a measure 
of how dissimilar two figures are. In the example of 
Figure 3 the "dis tance" of P~ and P2 is given by 

d(P, ,P2)= (~, -~,)' 2 +9~2 + (£3_~2)2 , 2,+;~3,2 + (Zu_£u), 2 + (2s_~Zs), (8) 

The vector .4--A' connecting the two lowermost left- 
most points will give the relative translation g in Equa- 
tion (3). 

I M P L E M E N T A T I O N  OF THE ANALYSIS 

At present there is no complete implementation of 
the analysis described in the section on the Determina- 
tion of the Syntactic Structure of a Given Figure. 
The process is an algorithm in the sense that it can 

be described through a finite set of instructions to a 
draftsman and one could even attempt to write a 
F O R T R A N  program which would compare sets point 
by point. This is possible since the two-dimensional 
information to be processed by a computer is always 
in discrete form. Another approach is to describe each 
halfplane by a linear inequality and then use linear 
programming to solve the system of various sets of 
them and thus obtain the sets QI. 

Both techniques are time-consuming and therefore 
impractical. This limitation of course need not apply 
for the case of parallel processing but the only prac- 
tical methods implementing the analysis on a general- 
purpose sequential machine are approximate. A num- 
ber of them were developed by using the notion of 
integral projections. 

An integral projection of a figure along a given direc- 
tion has been defined as the length of the intersection 
of a figure with a line parallel to this direction taken 
as a function of the position of the line. It is obvious 
that a discontinuity in that function reveals in general 
the existence of a boundary of the figure parallel to 
that direction. This fact was used for the decom- 
position of figures and the method is described else- 
where together with experimental results on multi- 
font typewritten alphabetic characters resulting from 
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Figure 4-Representation of Convex Polygons through Signs. 

its application. 11 For a group of 10 letters an error 
rate less than 2% was achieved on the testing set. 
Another method currently under investigation uses 
integral projections also, but in a more complex way. 
Only two directions are used, vertical and horizontal. 
In this way, the primary subsets will be rectangles. 

Figure 5 shows examples of original characters and 
their representations through rectangles. In this case 
the integral projections may be computed directly 
for the original figure. The reconstructed figure, how- 
ever, is a polygon. 

1 
I -I 

I-- 
I 

Figure 5-Original Characters (left) and Characters Reconstruct- 
ed through the Pri_mary Subsets of the Polygonal 
Approximation (right). 
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A C K N O W L E D G M E N T  

The p rog ram which produced  the decompos i t ion  
shown in Figure  5 was writ ten by Mr.  R. Gross .  
The original  characters  were s tored on a tape supplied 
by the IBM Research Center  at  York town  Heights .  
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