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The general purpose mathematical programming sys- 
tems have greatly changed in the last few years and 
the aim of such codes is no longer to give access to 
an efficient algorithm but to integrate the solution of 
linear programming problems into a loop including 
the generation of the problem, its solution, its post 
optimal analysis and the edition of an output report 
of the results. The link between all these operations 
is done through a so-called control language program. 

All these aspects are more or less the same from 
one code to another but we think that new approaches 
should be brought into their design, organization, and 
implementation. The development cost of such programs 
being very high, usually in the order of 15 to 30 man 
years, it is necessary to provide facilities in order to: 

• offer suitable users and programming languages; 
• have a modular design; 
• handle memory allocation in a semi-optimal way; 
• make modifications and extensions easier; and 
• facilitate day to day programmers tasks. 
I shall present, in the following pages, the objectives 

that we had in mind when we began to implement these 
facilities within the large scale mathematical program- 
ming system OPHELIE 2 which we developed for the 
CDC 6600. 

P R O G R A M M I N G  L A N G U A G E S  

A comprehensive set of languages used or provided 
within a code includes: 

• matrix generation language to generate matrix rows, 
columns and coefficients; 

• report generation language; 
• control language to link various phases during the 

solution process; 
• programming languages used for the expression of 

the code; 
• updating language to correct or modify programs 

within the code. 

Control Language 
It is obvious that out of these five different languages, 

the first three have common features and specific as- 
pects. The specific aspects include the peculiar func- 
tions used for instance to build up and edit a line in 
a report, or to express the relations between input and 
output  streams through a distillation unit. But these 
functions are all under control of procedures wnich 
use the familiar concepts of arithmetic, logical or rela- 
tionnal expressions, branching and conditional state- 
ments and local or C O M M O N  variables which exist 
in most programming languages. All these common 
features have been included in the control language. 

Thus matrix generation language and report gener- 
ation language make use of the control language plus 
specific functions. 

In fact we have also extended the use of control 
language even within programs which make up the body 
of the code itself. In a code as in other programs, it 
is possible to distinguish two sorts of functions: com- 
mand and action, which are emphasized in a modular 
conception of programming. An action takes place with- 
in a module, a command executes initializations and 
then makes decisions and gives control to a module 
(Figure 1). 

Control language can therefore be used in command 
programs, the action programs being written in various 
usual programming languages as they make a compre- 
hensive use of all the facilities available within these 
languages and as their execution time is sizable. 

In order to make programming easier we have ex- 
tended the capabilities of both control and programming 
languages as will be described below. 

The development of a large mathematical program- 
ming system is neverending. It is very common that 
years after its original design, modifications are still 
included, this is particularly true in the development 
and debugging phase. 

During that period the modules themselves, once 
they are working satisfactorily are rarely modified, but 
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Figure l-Execution Diagram of Hierarchized Programs 

the method of initializing, and executing them changes 
frequently due to the programmers wanting to replace 
one module by another, to introduce a check after a 
module, to insert a printing sequence, etc . . . .  

Also, frequently these modifications are only tem- 
porary and are kept within the program only for 
several runs; or it is possible that these modules are 
effective only for a part of the run, therefore, they 
need to be introduced just prior to their use, then exe- 
cuted one or several times and removed afterwards. 

It is not very convenient to achieve this ability 
through the standard use of compiled or assembled pro- 
grams loaded in absolute form in memory. It is much 
easier if the programs to be modified are kept in 
symbolic form, that is if we use an interpretative tech- 
nique. And this is the way the code works. Modules 
are written in rather standard programming languages, 
then compiled and loaded in absolute form. Command 
programs are written in control language and are 
executed interpretatively. 

The control language has the following capabilities: 
• has access to a communication region controlling 

the interface between modules or, between con- 
trol language programs and modules; 

• defines local variables within control language 
program; 

• computes arithmetical and logical expressions; 
• branches on simple conditions, or branches un- 

conditionally; 
• calls either external programs or internal sequences 

within the same program; and 
• displays the contents of some communication region 

variables or local variables. 
See Appendix 1 for a sample of control language 

statements. 

There are no special difficulties encountered in design- 
ing an interpreter for this control language except that 
control language programs have to be linked with other 
programs in either a compiled or an interpretative 
form. 

Some difficulties arise with actual and formal para- 
meters due to their type, this problem may be resolved 
without the necessity of having type declaration state- 
ments. 

This interpretative technique permits much flexibility 
and allows dynamic modifications of programs in core, 
but it is a time consuming technique. Therefore we 
had a choice to make: use extensively the interpretative 
form which is flexible but time consuming, or restrict 
this use to selected command programs which cuts 
down execution time but also versatility. 

As a matter of fact, we chose another possibility. 
It is possible to distinguish between command pro- 
grams which are currently in debugging status and in 
which frequent alterations are made and command pro- 
grams which work satisfactorily and in which few 
modifications are made. Let us assume that the for- 
mer are executed interpretatively and the latter are 
compiled, loaded then normally executed, provided that 
there are no modifications to apply, their execution 
time is minimal. If modifications are to be introduced, 
we use the interpretative form. Thus the control lan- 
guage is designed to be interpreted or compiled. 

It is of course necessary that the compiled and in- 
terpreted versions produce exactly the same results, 
which is not a trivial problem. 

Programming language 
Command programs have been written in control 

language, but the main part of the 50,000 symbolic 
instructions of the code are inserted in modules and 
it is of course necessary to have access to a well adapt- 
ed programming language. On a CDC 6600, the choice 
is restricted to two alternatives: Fortran or macro- 
assembly languages. Machine language is a must in 
some time consuming routines such as algorithm or 
character handling (for instance the interpreter). For 
all other programs which consume little time we de- 
cided to use a higher level language, because of the 
facility of its use, and also because programs written 
in this type of language are readily understood by other 
programmers. This language is basically Fortran plus 
some modifications designed to increase readibility. 
We call this language the L language. Each of us 
has noticed that rapidly looking back into our own 
programs 6 months, a year, or two years later is not 
sufficient to understand them, even with the use of 
comment cards, flow charts and documentation. 
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The modifications that we have added to Fortran are 
the following: 

• the ability to express variable names and subroutine 
names with more than 7 characters; our upper 
limit is 30. With up to 30 characters, it is possible 
to understand the meaning of any identifier; 

• the possibility to give names instead of numbers 
to a statement identifier; 

• the possibility of a dynamic allocation of blocks 
in core, the programmer no longer being obliged 
to know where a block is located. For instance, if 
the solution vector named SOLUTION is situated 
in a COMMON block named POOL, K words 
after the beginning of POOL, K varying dynamic- 
ally, the third component of SOLUTION is in 
Fortran SOLUTION (3 + K) and in L language 
SOLUTION (3). It is of course necessary at execu- 
tion time to handle 3 + K but this is done auto- 
matically before compilation; 

• an elementary macro capability available at that 
level to facilitate COMMON definitions. More 
than 800 programs are used in such a code, most 
of them use communication region cells or vari- 
ables in various COMMON blocks. When such a 
variable is to be referred to in a program, it must 
be defined within it, and many mistakes are avoided 
if it is possible to automatically introduce at the 
beginning of any programs the definition of all 
or part of the communication region or of COM- 
MON blocks. A modification of the size of a 
block can be automatically introduced in the 800 
programs. 

All the specific orders that are available in control 
language are also available in L language. For instance 
the possibility to call internal sequences within a pro- 
gram (PERFORM) or to display some information at 
the console (DISPLAY). 

The L language is much too sophisticated to be 
handled easily by an interpretative routine and used 
extensively in that mode, it is also quite a considerable 
task to write a special compiler for it. But in about 6 
programmer months it has been possible to design and 
implement a translator which produces a Fortran ver- 
sion of any program written in that language. As a 
matter of fact, this translator is also able to generate 
COMMON and communication region definitions in 
programs written in macro assembly language. 

To help debugging, the translator of L or control 
language into Fortran produces; 

• a source listing in L or control language; 

• an object listing in Fortran; 
• a list of all the program names and COMMON 

cell names together with their translation in For- 
tran; 

• for each program a list of the source name for 
identifiers and labels together with their corres- 
ponding translation. 

It is worthwhile to notice that the clarity of expres- 
sion is sufficient enough to allow in most cases a 
debugging restricted to L language listings by proper 
insertion of printing sequences or snaps. 

There are two kinds of syntax checkings, by the L 
translator and by the Fortran compiler, in practice no 
difficulty arises from the necessity to look at both lists 
because L statements are not deeply modified when 
translated into Fortran. 

See Appendix 2 for a sample of L language state- 
ments. 

DYNAMIC MEMORY ALLOCATION 
The hardware of the CDC 6600 does not allow any 

paging or dynamic memory allocation, thus memory 
allocation must be done exclusively on a software basis. 
The reasons for which we implemented such a package 
are as follows: 

• modularity can be achieved only if modules are 
independent of the position of the blocks and 
files in central memory or in auxiliary storage; 

• simplicity of programming can be improved dras- 
tically if the programmer no longer is required 
to take care of the file handling and of the use 
of the same place in core for different blocks and 
file records; 

• efficient use of all central memory can be achieved 
better automatically by a unique special program 
rather than under command of the programmer. 
It is then possible to adapt more easily the size 
of the blocks or the number of file records in 
central memory to the size of the linear program, 
to the memory requirements of the phase under 
process, or to the central core field length allocated 
to the job when running in a multiprogramming 
environment. 

In a linear programming code written in a standard 
form, 20 per cent of the instructions deal with memory 
allocation problems or I /O  optimization. 

Before going into further details concerning the 
memory allocation scheme, some details about the 
organization of central and auxiliary memories in the 
CDC 6600 must be given. 

PERIPHERAL I =1 CENTRAL I I  PROCESSORS F ~ I MEMORY 

1 CENTRAL I~EX I ; I PROCESSOR 
DISCS J STORAGE 

Figure 2-CDC 6600 Organization 
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The CDC 6600 has II  processors. One, the central 
processor which has access to a central core memory 
and ten peripheral processors which have access to 
the central memory and to the disc units. The very 
high transfer rate which is necessary to keep the 
central processor busy during an algorithmic routine 
cannot be achieved by the use of a disc. Only the use 
of extended core storage offers this transfer rate. 

Thus, the memory allocation scheme should use a 
hierarchy of auxiliary devices. All that cannot be kept 
in central or extended core memory must be stored on 
discs. 

Description of the memory allocation scheme 

The allocation of programs in core .is not effected 
by the scheme which deals only with data. Two sorts 
of data are used in a code: blocks which must be en- 
tirely in core when needed and files which are split 
into records, only one record being active at a time. 
Scalars or blocks local to a program are not handled 
by the scheme. All the blocks and files are considered 
to be in the data pool and each of them is accessed 
through a call in the communication region which gives 
its address when in core or an illegal address if out of 
central core. 

Several steps corresponding to a specific treatment 
such as linear programming data input or optimization 
or output occur in a typical job. Each of these steps 

-needs to have a particular memory structure. Within 
a step it is possible to have logical phases. Blocks and 
files needed are not the same from one phase to ano- 
ther. But, in the same phase all the blocks used must 
stay in core from the beginning to the end and all the 
files must have buffers at the same time. 

Usually, all blocks and files that are needed in a 
step are known beforehand as well as the various 
phase numbers in which they are used. It is then 
possible to declare at" the beginning of a step which 
blocks and files are needed and in which phases. 

Usually, the sequence in which phases are executed 
is known beforehand, thus it is conceptually possible 
to allocate room in core for all blocks used in a phase 
and at least some records for all the files. Depending 
upon the size of the pool and upon the size of the part 
allowed for blocks, it is possible to find a feasible 

solution to this allocation and even to choose the 
best between several alternatives. 

At the beginning of a step, the pool is divided into 
two consecutive parts, one allocated to blocks and 
the other to files. The method of handling blocks and 
files in their respective parts is completely different. 

Block allocation 
In a mathematical programming system blocks are 

not necessarily of the same size but can fall into three 

categories. One in which the block length is equal to 
the number of constraints in the problem, the percent- 
age of these blocks in 50-70 per cent; another category 
which is a fraction of the number of constraints plus 
variables 10-30 per cent; and a third category in which 
are miscellaneous blocks 10-20 per cent. 

We kept the idea of handling three classes of blocks 
two for the same length blocks and one for the remain- 
ing ones. 

The principle of the allocation is the following: affect 
address in core to all the blocks so that at least all 
the blocks needed in each phase are together in memory 
at least during that phase and so that from one phase 
to another the swapping between extended core storage 
or discs and central core is minimum. The resolution 
of the problem is of a mixed integer nature and of 
Course it would be too expensive to solve it at the be- 
ginning of each step. To find a satisfactory solution, 
we use heuristics which sound reasonable. 

A. Determine the category of all blocks of the step, 
L1 length, L2 length, miscellaneous. 

B. Examine the maximum number of L1 blocks 
needed in a phase. If we allocate throughout 
the steps that number to the L! blocks they 
can be handled independently of the other blocks. 

C. It is then possible that all remaining blocks can 
stay in core throughout the step. It is also 
possible that the remaining core memory is not 
sufficient to handle the other blocks, if this is 
the case - apply procedure B) to L2 blocks set. 

D. Same as C) miscellaneous blocks can stay in 
core throughout the step or it is not possible 
to find room for them or it is possible but the 
miscellaneous blocks must share common places. 

We have divided the various blocks into categories 
which can be handled separately, and at the beginning 
of each phase blocks must eventually be swapped 
between main and auxiliary storage. To minimize 
these transfers, taking into account frequency and 
sequence of use is desirable. Beginning with the L1 
set, we look for a block which is the most frequently 
needed and try to force it to stay in core during the 
entire step, then we determine if it is possible to 
handle the other blocks of the set, in that case we 
do the same for all the blocks of the set in a de- 
creasing priority order up to a moment where a block 
cannot be forced to stay in core throughout the step, 
in this case we skip this block and do the same for a 
block of inferior priority. The priority being a function 
of frequency of utilization and for the same frequency 
the smallest blocks are given priority. The same algo- 
rithm is applied to L2 and to miscellaneous block 

sets. 
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File allocation 
During a phase each file must have at least some 

buffers in core. It is very often desirable to have 
various numbers of buffer for each file according to 
its use. To define the fule buffers allocatiofi scheme, 
we assumed that a file which is in a reading state 

during a phase is entirely scanned forward or back- 
ward, that it is possible to write files or to read a 
file and add records to it. Contrary to the block 
case, the length of the files is not known at the be- 
ginning of the step therefore it has not been possible 
to use the same priority criterion, but as the length 
of all the records of all the files is the same it has 
been possible to affect priority to files at the beginning 
of a step and to adapt dynamically the number of 
buffers allocated at least for the high priority files. 
The file which is most often read in all the phases is 
considered to be the file with the highest priority, a 
maximum number of buffers is devoted to that file. 
In fact this number depends upon the file length and 
is dynamically adapted. The remaining buffers are 
assigned to other active files of the step. 

This allocation scheme seems perhaps far from being 
optimal, but it should be kept in mind that dynamic 
allocation must represent only a small percentage of 
the total time, 10 per cent at maximum, and that two 
factors make things easier: first the mathematical pro- 
gramming system runs in a multiprogramming environ- 
ment so that control can be given to another person 
during I /O requests. And secondly that transfers be- 
tween extended core storage and central memory not 
being, simultaneous, it is not necessary to issue read 
or write requests to or from ECS in advance. In any 

case, we keep track of all the transfers which are made 
and we will have some figures which can help to 
adjust or modify the basic algorithms. 

We believe that a well designed code should not 
only make its implementation or implementation of ex- 

tensions easier but should also facilitate the programmers 
task. For instance, using well adapted languages to 
write the code, having a satisfactory modularity or a 
dynamic memory allocation scheme is not all that is 
desirable. The conditions in which runs are made are 
also very important. Before each run, corrections are 
to be made to the symbolic text of the code, fol- 
lowed by compilation or assembly and loading, and per- 
manent corrections should be dispatched to every 

programmer. A suitable design of the updating system 
can save much clerical work and errors. 

During the debugging period or later on when addi- 
tions are made, it is very convenient to have an ex- 
tensive list of all the programs which use a specific 
variable, usually a communication region cell, this is 

possible through the translator which was described 
earlier. 

We believe that permitting a lot of facilities within 
the development phase is a rewarding operation. It 
allows easy extensions to the system many years after 
the original design. This is obviously a necessity be- 
cause even when the options given to the mathematical 
programming system users are extensive, most of these 
users want to develop special features of their own to 
adapt the code to their specific problems. 

Any matrix generator, control language, report gen- 
eration or mathematical programming algorithm should 
be easily modifiable and extendable. 

APPENDIX I 

C 

*RESET T~ 

SAMPLE OF CONTROL LANGUAGE STATEMENTS 

/M/  SUBROUTINE MAIN PR(~GRAM 

C~MM~N/CR/N,NUMBER (~F ROWS,TEXT 
L~GICAL ERR(~RS IN DATA 
DISPLAY : / : T~  MUCH ERRORS IN DATA=/: 
N= N+I 0 "(NUMBER g)F R~)WS--I) 
IF(N.GE.5) ERR(~RS IN DATA =.TRUE. 

INDEX=NUMBER ~F R(~WS 
ZER~ S~)LUTI~N(INDEX)=0 
TALLY INDEX,RESET T(~ ZER(~ 
M~)VE TEXT= :/:T~(~ MUCH ERRORS IN DATA:/: 
RETURN 
END 

EXAMPLE OF CONTR~)L LANGUAGE 
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APPENDIX 

SAMPLE OF L LANGUAGE STATEMENTS 

/L/SUBR(~UTINE C~LUMN HANDLING 
C~MM~N /CR/ 
C~MM~N /BLUE/ 
C~MM~N/C(~LUMN/C~LUMN(2500) 
TYPE D~UBLE C~LUMN 

C 
C THIS PROGRAM WRITTEN IN L LANGUAGE 
C L~KS F~R A C(~LUMN IN MATRIX FILE, 
C THE C~LUMN NUMBER IS GIVEN BY SUBR~U 
C TINE F~LLOWING C~LUMN 

IF(RECORD N~T FINISHED) G~) T~ L ~ K  IN RECORD 
RECORD N~T FINISHED=.TRUE. 
PERFORM NEW RECORD 

~ L ~ K  IN REC(~RD ~ 
INDEX=INDEX +NUMBER ~F C~EFFIClENTS -I-I 
IF(MATRIX(INDEX).EQ.O) PERFORM NEW RECORD 
EXTRACTION ~F MIDDLE BITS(MATRIX(INDEX),NUMBER ~F'C~EFFICIENTS) 
RETURN 

* NEW REC(~RD* FILE READ(MATRIX, *ERROR* ) 
C (L(~K IF VARIABLE IS IN RECORD) 

NUMBER LAST VECT~R=MATRIX(I ).AND.777777B 
NEXT 

ERRS)R* DISPLAY 4: END ~F FILE ~N MATRIX FILE:~ 
RETURN 
END 


