
The development of a large scale
mathematical programming system

by JACQUES DE BUCHET
Metra-Sema
Paris, France

The general purpose mathematical programming sys-
tems have greatly changed in the last few years and
the aim of such codes is no longer to give access to
an efficient algorithm but to integrate the solution of
linear programming problems into a loop including
the generation of the problem, its solution, its post
optimal analysis and the edition of an output report
of the results. The link between all these operations
is done through a so-called control language program.

All these aspects are more or less the same from
one code to another but we think that new approaches
should be brought into their design, organization, and
implementation. The development cost of such programs
being very high, usually in the order of 15 to 30 man
years, it is necessary to provide facilities in order to:

• offer suitable users and programming languages;
• have a modular design;
• handle memory allocation in a semi-optimal way;
• make modifications and extensions easier; and
• facilitate day to day programmers tasks.
I shall present, in the following pages, the objectives

that we had in mind when we began to implement these
facilities within the large scale mathematical program-
ming system OPHELIE 2 which we developed for the
CDC 6600.

P R O G R A M M I N G L A N G U A G E S

A comprehensive set of languages used or provided
within a code includes:

• matrix generation language to generate matrix rows,
columns and coefficients;

• report generation language;
• control language to link various phases during the

solution process;
• programming languages used for the expression of

the code;
• updating language to correct or modify programs

within the code.

Control Language
It is obvious that out of these five different languages,

the first three have common features and specific as-
pects. The specific aspects include the peculiar func-
tions used for instance to build up and edit a line in
a report, or to express the relations between input and
output streams through a distillation unit. But these
functions are all under control of procedures wnich
use the familiar concepts of arithmetic, logical or rela-
tionnal expressions, branching and conditional state-
ments and local or C O M M O N variables which exist
in most programming languages. All these common
features have been included in the control language.

Thus matrix generation language and report gener-
ation language make use of the control language plus
specific functions.

In fact we have also extended the use of control
language even within programs which make up the body
of the code itself. In a code as in other programs, it
is possible to distinguish two sorts of functions: com-
mand and action, which are emphasized in a modular
conception of programming. An action takes place with-
in a module, a command executes initializations and
then makes decisions and gives control to a module
(Figure 1).

Control language can therefore be used in command
programs, the action programs being written in various
usual programming languages as they make a compre-
hensive use of all the facilities available within these
languages and as their execution time is sizable.

In order to make programming easier we have ex-
tended the capabilities of both control and programming
languages as will be described below.

The development of a large mathematical program-
ming system is neverending. It is very common that
years after its original design, modifications are still
included, this is particularly true in the development
and debugging phase.

During that period the modules themselves, once
they are working satisfactorily are rarely modified, but

433

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800186.810607&domain=pdf&date_stamp=1968-01-01

434 Proceedings--1968 ACM National Conference

1 MODULE I

I
MODULE 2

r ~ ~ MODULE n-1

I

COMMAND

~.~ MODULE n
/ • /

¥

ACTION

Figure l-Execution Diagram of Hierarchized Programs

the method of initializing, and executing them changes
frequently due to the programmers wanting to replace
one module by another, to introduce a check after a
module, to insert a printing sequence, etc

Also, frequently these modifications are only tem-
porary and are kept within the program only for
several runs; or it is possible that these modules are
effective only for a part of the run, therefore, they
need to be introduced just prior to their use, then exe-
cuted one or several times and removed afterwards.

It is not very convenient to achieve this ability
through the standard use of compiled or assembled pro-
grams loaded in absolute form in memory. It is much
easier if the programs to be modified are kept in
symbolic form, that is if we use an interpretative tech-
nique. And this is the way the code works. Modules
are written in rather standard programming languages,
then compiled and loaded in absolute form. Command
programs are written in control language and are
executed interpretatively.

The control language has the following capabilities:
• has access to a communication region controlling

the interface between modules or, between con-
trol language programs and modules;

• defines local variables within control language
program;

• computes arithmetical and logical expressions;
• branches on simple conditions, or branches un-

conditionally;
• calls either external programs or internal sequences

within the same program; and
• displays the contents of some communication region

variables or local variables.
See Appendix 1 for a sample of control language

statements.

There are no special difficulties encountered in design-
ing an interpreter for this control language except that
control language programs have to be linked with other
programs in either a compiled or an interpretative
form.

Some difficulties arise with actual and formal para-
meters due to their type, this problem may be resolved
without the necessity of having type declaration state-
ments.

This interpretative technique permits much flexibility
and allows dynamic modifications of programs in core,
but it is a time consuming technique. Therefore we
had a choice to make: use extensively the interpretative
form which is flexible but time consuming, or restrict
this use to selected command programs which cuts
down execution time but also versatility.

As a matter of fact, we chose another possibility.
It is possible to distinguish between command pro-
grams which are currently in debugging status and in
which frequent alterations are made and command pro-
grams which work satisfactorily and in which few
modifications are made. Let us assume that the for-
mer are executed interpretatively and the latter are
compiled, loaded then normally executed, provided that
there are no modifications to apply, their execution
time is minimal. If modifications are to be introduced,
we use the interpretative form. Thus the control lan-
guage is designed to be interpreted or compiled.

It is of course necessary that the compiled and in-
terpreted versions produce exactly the same results,
which is not a trivial problem.

Programming language
Command programs have been written in control

language, but the main part of the 50,000 symbolic
instructions of the code are inserted in modules and
it is of course necessary to have access to a well adapt-
ed programming language. On a CDC 6600, the choice
is restricted to two alternatives: Fortran or macro-
assembly languages. Machine language is a must in
some time consuming routines such as algorithm or
character handling (for instance the interpreter). For
all other programs which consume little time we de-
cided to use a higher level language, because of the
facility of its use, and also because programs written
in this type of language are readily understood by other
programmers. This language is basically Fortran plus
some modifications designed to increase readibility.
We call this language the L language. Each of us
has noticed that rapidly looking back into our own
programs 6 months, a year, or two years later is not
sufficient to understand them, even with the use of
comment cards, flow charts and documentation.

The Development of a 'Large-Scale Mathematical Programming System 435

The modifications that we have added to Fortran are
the following:

• the ability to express variable names and subroutine
names with more than 7 characters; our upper
limit is 30. With up to 30 characters, it is possible
to understand the meaning of any identifier;

• the possibility to give names instead of numbers
to a statement identifier;

• the possibility of a dynamic allocation of blocks
in core, the programmer no longer being obliged
to know where a block is located. For instance, if
the solution vector named SOLUTION is situated
in a COMMON block named POOL, K words
after the beginning of POOL, K varying dynamic-
ally, the third component of SOLUTION is in
Fortran SOLUTION (3 + K) and in L language
SOLUTION (3). It is of course necessary at execu-
tion time to handle 3 + K but this is done auto-
matically before compilation;

• an elementary macro capability available at that
level to facilitate COMMON definitions. More
than 800 programs are used in such a code, most
of them use communication region cells or vari-
ables in various COMMON blocks. When such a
variable is to be referred to in a program, it must
be defined within it, and many mistakes are avoided
if it is possible to automatically introduce at the
beginning of any programs the definition of all
or part of the communication region or of COM-
MON blocks. A modification of the size of a
block can be automatically introduced in the 800
programs.

All the specific orders that are available in control
language are also available in L language. For instance
the possibility to call internal sequences within a pro-
gram (PERFORM) or to display some information at
the console (DISPLAY).

The L language is much too sophisticated to be
handled easily by an interpretative routine and used
extensively in that mode, it is also quite a considerable
task to write a special compiler for it. But in about 6
programmer months it has been possible to design and
implement a translator which produces a Fortran ver-
sion of any program written in that language. As a
matter of fact, this translator is also able to generate
COMMON and communication region definitions in
programs written in macro assembly language.

To help debugging, the translator of L or control
language into Fortran produces;

• a source listing in L or control language;

• an object listing in Fortran;
• a list of all the program names and COMMON

cell names together with their translation in For-
tran;

• for each program a list of the source name for
identifiers and labels together with their corres-
ponding translation.

It is worthwhile to notice that the clarity of expres-
sion is sufficient enough to allow in most cases a
debugging restricted to L language listings by proper
insertion of printing sequences or snaps.

There are two kinds of syntax checkings, by the L
translator and by the Fortran compiler, in practice no
difficulty arises from the necessity to look at both lists
because L statements are not deeply modified when
translated into Fortran.

See Appendix 2 for a sample of L language state-
ments.

DYNAMIC MEMORY ALLOCATION
The hardware of the CDC 6600 does not allow any

paging or dynamic memory allocation, thus memory
allocation must be done exclusively on a software basis.
The reasons for which we implemented such a package
are as follows:

• modularity can be achieved only if modules are
independent of the position of the blocks and
files in central memory or in auxiliary storage;

• simplicity of programming can be improved dras-
tically if the programmer no longer is required
to take care of the file handling and of the use
of the same place in core for different blocks and
file records;

• efficient use of all central memory can be achieved
better automatically by a unique special program
rather than under command of the programmer.
It is then possible to adapt more easily the size
of the blocks or the number of file records in
central memory to the size of the linear program,
to the memory requirements of the phase under
process, or to the central core field length allocated
to the job when running in a multiprogramming
environment.

In a linear programming code written in a standard
form, 20 per cent of the instructions deal with memory
allocation problems or I /O optimization.

Before going into further details concerning the
memory allocation scheme, some details about the
organization of central and auxiliary memories in the
CDC 6600 must be given.

PERIPHERAL I =1 CENTRAL I I PROCESSORS F ~ I MEMORY

1 CENTRAL I~EX I ; I PROCESSOR
DISCS J STORAGE

Figure 2-CDC 6600 Organization

436 Proceedings-1968 ACM National Conference

The CDC 6600 has II processors. One, the central
processor which has access to a central core memory
and ten peripheral processors which have access to
the central memory and to the disc units. The very
high transfer rate which is necessary to keep the
central processor busy during an algorithmic routine
cannot be achieved by the use of a disc. Only the use
of extended core storage offers this transfer rate.

Thus, the memory allocation scheme should use a
hierarchy of auxiliary devices. All that cannot be kept
in central or extended core memory must be stored on
discs.

Description of the memory allocation scheme

The allocation of programs in core .is not effected
by the scheme which deals only with data. Two sorts
of data are used in a code: blocks which must be en-
tirely in core when needed and files which are split
into records, only one record being active at a time.
Scalars or blocks local to a program are not handled
by the scheme. All the blocks and files are considered
to be in the data pool and each of them is accessed
through a call in the communication region which gives
its address when in core or an illegal address if out of
central core.

Several steps corresponding to a specific treatment
such as linear programming data input or optimization
or output occur in a typical job. Each of these steps

-needs to have a particular memory structure. Within
a step it is possible to have logical phases. Blocks and
files needed are not the same from one phase to ano-
ther. But, in the same phase all the blocks used must
stay in core from the beginning to the end and all the
files must have buffers at the same time.

Usually, all blocks and files that are needed in a
step are known beforehand as well as the various
phase numbers in which they are used. It is then
possible to declare at" the beginning of a step which
blocks and files are needed and in which phases.

Usually, the sequence in which phases are executed
is known beforehand, thus it is conceptually possible
to allocate room in core for all blocks used in a phase
and at least some records for all the files. Depending
upon the size of the pool and upon the size of the part
allowed for blocks, it is possible to find a feasible

solution to this allocation and even to choose the
best between several alternatives.

At the beginning of a step, the pool is divided into
two consecutive parts, one allocated to blocks and
the other to files. The method of handling blocks and
files in their respective parts is completely different.

Block allocation
In a mathematical programming system blocks are

not necessarily of the same size but can fall into three

categories. One in which the block length is equal to
the number of constraints in the problem, the percent-
age of these blocks in 50-70 per cent; another category
which is a fraction of the number of constraints plus
variables 10-30 per cent; and a third category in which
are miscellaneous blocks 10-20 per cent.

We kept the idea of handling three classes of blocks
two for the same length blocks and one for the remain-
ing ones.

The principle of the allocation is the following: affect
address in core to all the blocks so that at least all
the blocks needed in each phase are together in memory
at least during that phase and so that from one phase
to another the swapping between extended core storage
or discs and central core is minimum. The resolution
of the problem is of a mixed integer nature and of
Course it would be too expensive to solve it at the be-
ginning of each step. To find a satisfactory solution,
we use heuristics which sound reasonable.

A. Determine the category of all blocks of the step,
L1 length, L2 length, miscellaneous.

B. Examine the maximum number of L1 blocks
needed in a phase. If we allocate throughout
the steps that number to the L! blocks they
can be handled independently of the other blocks.

C. It is then possible that all remaining blocks can
stay in core throughout the step. It is also
possible that the remaining core memory is not
sufficient to handle the other blocks, if this is
the case - apply procedure B) to L2 blocks set.

D. Same as C) miscellaneous blocks can stay in
core throughout the step or it is not possible
to find room for them or it is possible but the
miscellaneous blocks must share common places.

We have divided the various blocks into categories
which can be handled separately, and at the beginning
of each phase blocks must eventually be swapped
between main and auxiliary storage. To minimize
these transfers, taking into account frequency and
sequence of use is desirable. Beginning with the L1
set, we look for a block which is the most frequently
needed and try to force it to stay in core during the
entire step, then we determine if it is possible to
handle the other blocks of the set, in that case we
do the same for all the blocks of the set in a de-
creasing priority order up to a moment where a block
cannot be forced to stay in core throughout the step,
in this case we skip this block and do the same for a
block of inferior priority. The priority being a function
of frequency of utilization and for the same frequency
the smallest blocks are given priority. The same algo-
rithm is applied to L2 and to miscellaneous block

sets.

The Development of a Large-Scale Mathematical Programming System 437

File allocation
During a phase each file must have at least some

buffers in core. It is very often desirable to have
various numbers of buffer for each file according to
its use. To define the fule buffers allocatiofi scheme,
we assumed that a file which is in a reading state

during a phase is entirely scanned forward or back-
ward, that it is possible to write files or to read a
file and add records to it. Contrary to the block
case, the length of the files is not known at the be-
ginning of the step therefore it has not been possible
to use the same priority criterion, but as the length
of all the records of all the files is the same it has
been possible to affect priority to files at the beginning
of a step and to adapt dynamically the number of
buffers allocated at least for the high priority files.
The file which is most often read in all the phases is
considered to be the file with the highest priority, a
maximum number of buffers is devoted to that file.
In fact this number depends upon the file length and
is dynamically adapted. The remaining buffers are
assigned to other active files of the step.

This allocation scheme seems perhaps far from being
optimal, but it should be kept in mind that dynamic
allocation must represent only a small percentage of
the total time, 10 per cent at maximum, and that two
factors make things easier: first the mathematical pro-
gramming system runs in a multiprogramming environ-
ment so that control can be given to another person
during I /O requests. And secondly that transfers be-
tween extended core storage and central memory not
being, simultaneous, it is not necessary to issue read
or write requests to or from ECS in advance. In any

case, we keep track of all the transfers which are made
and we will have some figures which can help to
adjust or modify the basic algorithms.

We believe that a well designed code should not
only make its implementation or implementation of ex-

tensions easier but should also facilitate the programmers
task. For instance, using well adapted languages to
write the code, having a satisfactory modularity or a
dynamic memory allocation scheme is not all that is
desirable. The conditions in which runs are made are
also very important. Before each run, corrections are
to be made to the symbolic text of the code, fol-
lowed by compilation or assembly and loading, and per-
manent corrections should be dispatched to every

programmer. A suitable design of the updating system
can save much clerical work and errors.

During the debugging period or later on when addi-
tions are made, it is very convenient to have an ex-
tensive list of all the programs which use a specific
variable, usually a communication region cell, this is

possible through the translator which was described
earlier.

We believe that permitting a lot of facilities within
the development phase is a rewarding operation. It
allows easy extensions to the system many years after
the original design. This is obviously a necessity be-
cause even when the options given to the mathematical
programming system users are extensive, most of these
users want to develop special features of their own to
adapt the code to their specific problems.

Any matrix generator, control language, report gen-
eration or mathematical programming algorithm should
be easily modifiable and extendable.

APPENDIX I

C

*RESET T~

SAMPLE OF CONTROL LANGUAGE STATEMENTS

/M/ SUBROUTINE MAIN PR(~GRAM

C~MM~N/CR/N,NUMBER (~F ROWS,TEXT
L~GICAL ERR(~RS IN DATA
DISPLAY : / : T~ MUCH ERRORS IN DATA=/:
N= N+I 0 "(NUMBER g)F R~)WS--I)
IF(N.GE.5) ERR(~RS IN DATA =.TRUE.

INDEX=NUMBER ~F R(~WS
ZER~ S~)LUTI~N(INDEX)=0
TALLY INDEX,RESET T(~ ZER(~
M~)VE TEXT= :/:T~(~ MUCH ERRORS IN DATA:/:
RETURN
END

EXAMPLE OF CONTR~)L LANGUAGE

438 Proceedings--1968 ACM National Conference

APPENDIX

SAMPLE OF L LANGUAGE STATEMENTS

/L/SUBR(~UTINE C~LUMN HANDLING
C~MM~N /CR/
C~MM~N /BLUE/
C~MM~N/C(~LUMN/C~LUMN(2500)
TYPE D~UBLE C~LUMN

C
C THIS PROGRAM WRITTEN IN L LANGUAGE
C L~KS F~R A C(~LUMN IN MATRIX FILE,
C THE C~LUMN NUMBER IS GIVEN BY SUBR~U
C TINE F~LLOWING C~LUMN

IF(RECORD N~T FINISHED) G~) T~ L ~ K IN RECORD
RECORD N~T FINISHED=.TRUE.
PERFORM NEW RECORD

~ L ~ K IN REC(~RD ~
INDEX=INDEX +NUMBER ~F C~EFFIClENTS -I-I
IF(MATRIX(INDEX).EQ.O) PERFORM NEW RECORD
EXTRACTION ~F MIDDLE BITS(MATRIX(INDEX),NUMBER ~F'C~EFFICIENTS)
RETURN

* NEW REC(~RD* FILE READ(MATRIX, *ERROR*)
C (L(~K IF VARIABLE IS IN RECORD)

NUMBER LAST VECT~R=MATRIX(I).AND.777777B
NEXT

ERRS)R* DISPLAY 4: END ~F FILE ~N MATRIX FILE:~
RETURN
END

