
Quantitative measurement of program quality*

by R A Y M O N D J. RUBEY and
R. DEAN H A R T W I C K

Logicon, Incorporated
San Pedro, California

I N T R O D U C T I O N

A black-box approach typifies current software quality
assurance procedures: a program is good it it satisfies
certain operating specifications. While it is common
to manage the development of software under quality
assurance systems previously devised for hardware,
the tools of measurement are not transferable owing
to the very basic differences in the nature of hardware
and software. In the absence of specific, applicable
quantitative measurement tools there exists no means
of defining the desired level of quality in a computer
program, where quality is considered as something
beyond correct program functioning, nor of ascertaining
whether the desired level has been achieved. A user
should be able to specify precisely how good a product
he wishes to buy, such things as how easy the program
should be to run production with and how easily it
can be modified. Rarely can the user even discuss
these factors, much less specify the ext~nt of their
importance to him.

The problems in achieving and measuring quality
in spaceborne sof tware- tha t is, software which operates
on a vehicle-borne aerospace compu te r - a r e particularly
acute because this type of software has stringent re-
quirements to be error-free, functionally precise, and
responsive to modifications. A study of quality in
spaceborne software performed for the Air Force Space
and Missile Systems Organization forms the basis of
this discussion. Although the study has its primary
emphasis in the field of spaceborne software, the ap-
proach taken and the techniques developed are applic-
able to other software fields. This study considered the
programming and check-out phases of the software
development cycle but did not enter into the earlier
phases of problem definition and development of the
programming specification. The present discussion fol-
lows along the same lines.

* Portions of the material presented here were developed under
Contract F04695-67-C-0165 with the Air Force Space and
Missile Systems Organization.

Quality was considered in terms of the components
which go into its makeup: the quality attributes. Defin-
itive statements of the quality attributes were formu-
lated in the first phase of the study. Each attribute is
a precise statement of a specific software characteristic.
The attribute statements in themselves constitute a
definition of quality for software. For a program to be
of high quality, it must possess substantially all of the
applicable quality attributes. During the second phase,
a metric was developed for quantitative measurement
of each quality attribute. These metrics, which are
stated as mathematical formulas relating measurable
characteristics to the determination of program quality,
can be used to produce a numerical value that makes
it possible to compare a given program with other
programs or a desired standard.

This discussion concentrates on presentation and
discussion of the attributes. All of the attributes devel-
oped in the study are listed; although some reflect
the study's orientation to spaceborne software, the
majority are general in nature. Only a few of the
metrics are given to exemplify their relationship to
the attributes. Many of them require a detailed analy-
sis of the program being evaluated, which would be
very difficult for any but the simplest programs. One
way to circumvent this difficulty would be to develop
computer programs to mechanize the analysis. Prefer-
ence for this approach during the study made it neces-
sary to define the metrics rigorously; hence the com-
plete set is far too bulky to present here. Another
way to circumvent detailed analysis of an entire pro-
gram would be to extrapolate the results obtained
from analyzing only sample sections.

Being able to define the quality attributes and express
them in metrics does not complete the story, since
many external factors influence a program's performance
with respect both to individual attributes and to the
overall quality determination. These external factors
and their influence were considered in the third phase
of the study, and an overall quality model was then
constructed using the metrics together with weighting

671

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800186.810631&domain=pdf&date_stamp=1968-01-01

672 Proceedings--1968 ACM National Conference

coefficients and normalization factors derived from the
external factors evaluation. This quality model, besides
being used as a tool for the measurement or com-
parison of program quality, can be useful in evaluating
the importance of various aspects of the programming
environment and directing the development of the
program. Following brief discussion of external factors
and the quality model, some of the potential appli-
cations of the quality model are suggested in the final
section of this presentation.

QUALITY ATTRIBUTES AND METRICS

The attributes of software are visualized as forming
a pyramid whose apex is the attribute that the program
be of high merit and whose base is a myriad of minor
computer-, system-, and application-dependent attri-
butes. The attributes, Ai, defined here lie in the
middle range, being general enough to apply to a wide
range of programs yet specific enough to permit prac-
tical program evaluation. They are classed in the fol-
lowing seven groups, each group corresponding to what
might be considered a major requirement imposed upon
a program; those in any group are conditions that
generally should be met to assure that the correspond-
ing major group attribute is satisfied.

A~ -Mathematical calculations are corrected per-
formed.

A2 -The program is logically correct.
A 3 - There is no interference between program entities.
A4 -Computat ion time and memory usage are opti-

mized.
A~ -The program is intelligible.
A 6 - T h e program is easy to modify.
A7 -The program is easy to learn and use.
Not all of the attributes within a group may be

applicable to a particular program and not all have
equal importance; some reflect minor program details
and others relate to whether a program is useful at
all. In some cases an attribute could be properly con-
sidered as belonging in several groups; and indeed
the interrelationships among attributes has been found
to be extremely complex.

Each metric, Mi, is designed so that a program of
highest merit will achieve a score of 100 for the re-
spective attribute, and a program of lowest merit a
score of 0. The aim has been to make the metrics as
objective as possible. In the case of those attributes
for which subjective evaluation is necessary, particularly
those in the last three groups, a degree of objectivity
is preserved by so formulating the metrics that the
attributes are separated into components that are eval-
uated subjectively. These subjective decisions are made
by having the evaluator assign a rating from a range
of permissible values. The ratings thus obtained for
separate aspects of the same attribute are then summed

and combined according to a formula to obtain a single
numerical value.

The list of quality attributes follows, segregated ac-
cording to the seven major groups. Each list is accom-
panied by brief discussions relating the particular attri-
butes to the software characteristics they define and
outlining some of the concepts used in formulating their
respective metrics.
A~ -Mathemat ica l calculations are correctly per-

formed.
A~.j- Fixed-point variables and constants are scaled

to allow storage at the required accuracy.
Ai.2-Fixed-point variables and constants are scaled

to allow storage for the allowable range of values.
A~.3- Intermediate scalings and scaling readjustments

are minimized for all calculations.
A~.4- Arithmetic calculations, including data-base con-

versions, maintain the maximum accuracy possible
within the given number of bits of storage allo-
cated for each variable and overall admissible
combinations of possible input values.

A~. 5 - Arithmetic calculations maintain the requisite
accuracy overall admissible combinations of pos-
sible input values.

, 4 1 . 6 - Calculations are capable of processing data with-
out overlow over all admissible combinations
of input.

A~.--Constants are biased upon conversion to com-
pensate for subsequent numerical truncation or
hardware arithmetic peculiarities.

One of the prime functions of computer programs
is to perform numerical calculations. The results of
these calculations may be the output of the program;
they may be used as input quantities by still other
calculations performed by the program; or they may be
used by the program to make decisions regarding other
functions to be performed. In all three cases, the cal-
culations must be correctly performed and their results
must have the requisite accuracy.

Since the attributes in this group all relate to the
maintenance of accuracy in calculations and the pre-
vention of overflow, their metrics tend to be measures
of the accuracy lost in calculations. To evaluate the
significance of accuracy degradation due to word size
and instruction functioning, it is necessary to know the
overall software system accuracy requirements. If the
accuracy requirement is not known for each constant
and for each variable, it is usually possible to establish
an overall accuracy requirement, for example requiring
that each item be calculated to five significant figures
or that calculations maintain the accuracy achievable
with six-place tables.

Multiple-precision arithmetic can be used where suffi-
cient precision cannot be maintained within the normal
word size of the computer. Although this will result

Quantitative Measurement of Program Quality 673

in higher scores for several attributes in this group,
lower scores will then result for several attributes in
other groups, particularly group A4, which is concerned
with optimizing computation time and memory utili-
zation.

As an example of the metrics in this group, that for
A~.t is given. The evaluation of this attribute involves
comparing the actual storage allocation with that needed
to satisfy precision requirements. The metric is such
that a program's measured quality diminishes each
time not enough bits have been allocated, but no credit
is given for allocation of more than the required
number of bits. The metric is as follows:

m1.1 100(m + n)/

~(SC~,SC3 + ~ ~(SV~,SV3
=1 i=1

where

~(a,b) = l 1

a-b+

if a _ < b

otherwise

Ci = each of the fixed-point constants in the
program, i = 1,2 m

Vi = each of the fixed-point variables in the
program, i = 1,2 n

r radix of the data representation, e.g.,
2 for binary machines, 16 for hexadeci-
mal machines

S C i scaling index of Ci, i.e., that power of r
such that Ci × rSCigives the true value
of the constant represented by Ci

SC~ = scaling index of Ci that would give the
required precision

SVi = scaling index of Vi

SV~ = scaling index of Vi that would give the
required precision

The scaling notation has been chosen such that num-
bers with any integer part have a positive scaling index
and those with only a fractional part have a zero or
negative scaling index.
A2 - The program is logically correct.
A2.,- There are no open branches.

A2. 2 - B r a n c h e s point to the correct place in the pro-
gram.

A2.3 -Branches do not initiate an unending loop.
A2.4 - Equality comparisons between floating-point oper-

ands are avoided.
A2.5 -Limit checks are provided on index tables.
A2. 6 - P r o g r a m entities are capable of performing th.eir

required functions in less than the maximum and
more than the minimum time allowed.

A2. 7 - Input and computed variables are time-coherent.
.42.s -Validity checks are made for input data.
A2. 9 - D i a g n o s t i c outputs are implemented for both

recoverable and catastrophic errors.
A2.~o~ Recovery procedures are implemented for mo-

mentary, correctable errors.
A2.~-The program initializes all functional elements

such .that no assumptions are made about their
existing states.

A2.~2-Reference to illegal or unfilled locations will
cause a branch to an alarm or error recovery
routine.

In addition to performing all mathematical calcu-
lations correctly, a computer program must be con-
structed so as to insure that it performs all of its
functions in the proper sequence, at the proper time,
with appropriate constants and variables, etc. This
general characteristic is classified as logical correctness.
As an example, the metric for attribute A2.6 is:

M2.6 = 100] '~"~ (Ai + Bi)]/2n
It ~-=1 1

where

1 if the maximum execution time for the i th [
program entity is less than its allowable Ai
maximum

0 otherwise
1 if the minimum execution time for the

Bi = program entity is greater than its allow-
able minimum

0 otherwise

n = number of program entities

A3 -There is no intereference between program entities.
A 3 . 1 - Entities that may be referenced at the same

time do not physically overlap.
A3.2 - Program entities change only those other entities

which have been designed to be changed or
which act as communication media.

-,43. 3 - A l l program entities accept input and transmit
output at proper rates.

A3.4 - Subroutines are capable of being reentrant where
usage requires.

A3. 5 - S u b r o u t i n e s preserve and restore all common
locations and registers they use.

674 Proceedings--1968 ACM National Conference

The attributes in this group are meaningful for pro-
grams having a structure which is correlated to such
things as function, memory overlay, or input/output
requirements. To measure quality with respect to these
attributes, this structure and the individual program
entities of which it is composed must be discernible
by those performing the analysis. To some extent these
ent i t ies can be identified by the coding that exists;
for example, a subroutine can be identified by the
fact that it is executed as the result of some return
jump instruction and exits to the locality of that return
jump. However, for higher levels in the structure, infor-
mation additional to the computer code is required.
A4 -Computation time and memory usage are opti-

mized.
A4.1 - Several data items are packed into a single word.
A4.2 - Constants and variables are so located in memory

as to allow indexing operations for acquiring,
using, and storing them.

A 4 . 3 - Redundant subroutines are used to optimize
time utilization.

A4.4 - The conditional branch coding selected from the
available set uses the smallest possible amount
of memory.

A4.5 - The conditional branch coding selected from the
available set executes in the shortest possible time
for the longest possible path.

A4.6 " The conditional branch coding selected from the
available set requires the shortest possible execu-
tion time for the most likely path.

A4.7 - Routine usage of coding techniques that carry
burdensome overheads is avoided.

A4.8- Items stored in logical arrays have uniform
scaling.

A4.9 - The redundant portions of constants and vari-
ables stored in arrays and of stored character
strings are eliminated.

A4.10-Unnecessa ry storing of intermediate results is
avoided.

A4.~: Frequently exercised sequences of code are pro-
grammed using subroutines.

A 4 . t 2 - T h e manipulation of those registers required
for accessing different memory segments is min-
imized.

The metrics for the attributes in this group are
directly related to the size and execution time of
program elements. They reflect the fact that program-
ming techniques for reducing the amount of memory
required tend to increase execution time and vice
versa. Thus it is clear that it will be difficult or im-
possible for a program to achieve high scores both
on metrics concerned with program size and on those
concerned with execution time. The complexity of these
interrelationships can be described by the following
example: Subroutines are used to save space at a

slight increase in time, and to a large extent in situa-
tions in which program size is critical. When time is
critical, however, a single general subroutine's timing
penalty may be unacceptable. Several specialized sub-
routines could be used to reduce overall execution time,
but this would result in an increase in the memory
space used. In analyzing whether a program maintains
an efficient balance between time and space constraints,
the amount of and reason for subroutines must be
considered.

It is important to establish early in the software
development cycle the allowable memory space and
execution time for various program elements. These
budgets then serve as guidelines in evaluation of pro-
gram performance. Even if budgets are not specifically
established, an absolute limitation on program size
is imposed by the memory capacity of the computer,
and desired program response times often impose a
timing requirement. A program of high quality not only
meets these budgets, whether established or not, but
also uses a minimum of space and time, thereby per-
mitting modifications and expansions to be made to
the original program.
A5 - T h e program is intelligible.

As.~- Consistent coding techniques are set up and
followed.

A5.2- Frequent comments are inserted to clarify the
code.

As. 3 - I n s t r u c t i o n s are not modified during program
execution. If they are modified, however, such
modifications are clearly identified.

A5.4- Indirect methods of referencing quantities are
clearly identified.

A5.5- The real-time constraints of a program are
clearly identified.

A5.6 - T h e program flow is easy to follow.
A5. 7 - Symbolic names and labels are clear and meaning-

ful.
These attributes relate to the ease in which a program

can be analyzed and do not, like the first four groups,
affect program correctness. A program may function
perfectly while operating and still be deficient with
regard to these attributes. Such deficiencies increase
the cost of program development and debugging and
make acceptance testing difficult or impossible. These
attributes also influence the ease in which a program
can be modified (which is covered more fully in group
A6), and the ease in which a program can be learned
and used (which is covered in group A7).

The metric for attribute A5.3 exemplifies this group.

M 5 . 3 = m a x [0,100 (I - 2N + C) / /]

where
I = number of instructions in the program

Quantitative Measurement of Program Quality 675

N = number of instructions modified during program
execution

C = number of modified instructions that have com-
ments which indicate the source of modification,
the type, and the result that can occur during
execution

A 6 - T h e program is easy to modify.
A6. l - The program structure is correlated to functional

demands.
A6.2 - T h e program logic is as simple as possible.
A6. 3 - M u l t i p l e storage assignments for constants or

variables are minimized.
A6.4 -Areas that require frequent changes are capable

of being changed by input option.
A6.5- Data words are organized so as to be easily

modified.
A6. 6 - P r o g r a m units are standardized so as to be

interchangeable.
Changes and refinements may require modification of

a program to accomplish the original objectives. Further,
many computations are common to various types of
applications; if a program is easily modified it may be
adaptable to many tasks at considerable savings in
cost and time.

The metrics in this group indicate whether a program
is amenable to change; they do not give a breakdown
of the expense expected when modifications are made.
For example, consider the following metric for ,46.2 :

100 ~ f i
M6.2 - n "R"

i = l
where

n = number of instructions in the program
Fi= number of programmer-accessible registers free

after the i th instruction, i = 1, 2, . . . , rt
R = total number of programmer-accessible registers
It will be nearly impossible to score 100 on this

metric; thus the resulting measurement is only a rela-
tive indication of how tight the coding is. For example,
at least one of the 20 registers on the IBM 360 con-
tains a base address at all times, so that the maximum
any 360 program could score on this metric would
be 95.

A7 - T h e program is easy to learn and use.
AT., - External communication is readily analyzed and

acknowledged.
A7.2 - The program documentation is meaningful, clear,

concise, and readable, and provides a ready
reference for learning, operating, and debugging
the program.

A7.3- Intermediate instruction listings corresponding
to higher level statements are adequate.

A7.4 - Program images and supporting data or materials
are explicitly and consistently identified.

A7.5 " All errors are clearly communicated to the user
in a meaningful manner and are indicative of the
proper user response.

A7.6 -Suf f i c i en t time is allowed for the user to com-
prehend and respond to messages.

A7.7 - M i n i m a l effort is needed for the user to effect
a response.

A7.8- The program input is simple, intelligible, and
easy to modify.

It is often difficult to separate the learning and using
functions. In some on-line applications the user might
not require an intimate knowledge of the program
but would be concerned about the ease of using it.
In other applications the user must have an accurate
and detailed knowledge about how the program works.
Ease of learning and use also minimizes the effects
of personnel turnover and maximizes the benefits ob-
tainable by using the program over a long time period
in several applications.

The metric for A7.2 illustrates how a quantitative
value is assigned to qualitative judgments. The eval-
uator rates the program with-respect to the applicable
questions from the following list on a scale from 0
(low) to 10 (high).

1) Are the flow charts adequately descriptive without
being slavish copies of the coding?

2) Are several levels of flow charts provided if
necessary for clarity?

3) Can the flow charts be quickly related to the
corresponding coding and vice versa?

4) Are potentionally marginal situations (such as
overflow, critical timing, etc.) identified by the
documentation?

5) Are user instructions sufficient without reference
to detailed program documentation?

6) Can the documentation be easily used in training
classes and design reviews?

7) Are adequate cross-references provided between
program error outputs, pertinent documentation,
and corresponding coding?

8) Does the documentation reflect the actual pro-
gram?

9) Is the documentation organized so that it can
be easily updated?

10) Are appropriate references made to ancillary
documentation such as programming specifica-
tions and computer manuals?

The metric is:

4/-, 1___0_0
M7.2 = L Qi

n i= l

where
n =number of applicable questions
Qi =rat ing for the i th question

676 Proceedings-1968 ACM National Conference

EXTERNAL FACTORS

The attainment of perfect scores on the metrics will
often be impossible because of influences and constraints
imposed by the environment within which a program is
developed. For a certain environment there will be a
maximum and a minimum score possible for each of
the attributes; these maxima and minima are deter-
mined by subjectively evaluating the influence of all
applicable external factors on the attributes. The exter-
nal factors relate to the computer hardware, the pro-
gramming specification, the schedules, the state of the"
art, and so forth.

The external factor concept permits the software
developer to be judged in the context of how well he
did under existing conditions. Only those external
factors which cannot be controlled by the developer
are considered; it is up to him to attain the highest
level of quality possible under existing conditions.
For example, consider the case in which low scores
are made for A5.7 (symbolic names and labels are
clear and meaningful) because the imposed program-
ming language did not permit meaningful statement
identification. The external factor, the required pro-
gramming language, therefore has caused a degradation
in measured quality. Given this external factor, no
organization or technique could overcome this handi-
cap. However, if the choice of programming language
had been left to the program developer, this same
external factor would not apply; he could have scored
higher on this attribute by using a more suitable
language.

Consider as another example A4.7 (routine usage of
coding techniques that carry burdensome overheads is
avoided). If the program has to be developed in a
very short period of time, it would probably be un-
avoidable that off-th.e-shelf subroutines be used instead
of subroutines tailored to the particular application.
The external factor, imposed schedules, would there-
fore limit the achievable quality with regard to this
attribute and should be accounted for in the quality
evaluation. However, if there were adequate time for
program development but performance with respect to
A4.7 was poor because inexperienced programmers were
employed, no external factor would apply and no
adjustment should be made in the final quality eval-
uation.

It is desirable that the significance and applicability
of the external factors be established as early as pos-
sible. Both of the foregoing have been examples of
such factors. In some cases, however, the influence of
external factors will become apparent only as the
program development progresses. If the programming
specification is modified late in the development cycle,
low scores are certain to result for many attributes.

THE QUALITY M O D E L

The quality model provides a means of relating all
factors necessary to judge a program's quality: the
absolute measure of the degree to which it possesses
the applicable attributes; the normalized measure in-
dicating how good the program is in view of the
external factors prevailing during its development; and
the weighted measure accounting for the relative impor-
tance of the attributes. A vector notation is used to
denote these three types of measures for the quality of
the i ih attribute, as follows:

Qi = M~

where \ M ; 7
Mi=absolute measure-of-quality for Ai
M[= normalized measure-of-quality for Ai
M ~ weighted measure-of-quality for A i
The absolute measure-of-quality for Ai is the com-

puted value obtained by the use of the metric. The
normalized measure is given by

Mi = l o 0 (M i - Mimin)

~ Mimax -- Mimin

where Mimin and Mima x define the practical range which
could be obtained for a given set of external factors.
The normalized measure allows the program developer
to be rated from 0 to 100 depending on his relative
position within this range. The. Mimi n and Mimax terms
are determined by considering for each A i all applicable
external factors and making a judgment as to their
influence on the minimum and maximum scores pos-
sible. These minimum and maximum values must
satisfy the relationships

0 < Mimin <__ Mimax < 100

Mimi n <__ Mi <__ Mima x

The weighted measure is obtained from

,, kiM[
Mi - 1 O0

where k i are attribute weights assigned by the user,
ranging in value from 0 (no importance) to 100 (max-
imum importance), for the specific program.

The concept of attribute weights provides the user
with an opportunity to specify the relative importance
of the attributes to him; in other words, the desired
character of the software to be produced. These weights
permit the user to convey attribute importance from the

Quantitative Measurement of Program Quality 677

very first, when the program development task is
defined or solicited. He can assign weights to the
individual attributes on an independent basis, especially
for those attributes he considers particularly vital, or
he can specify the same weights for all attributes within
a group. As an example, the user would be likely to
attach highest importance to the attributes within
groups A,, A2, and A3 for software to be developed
for a one-time operational application; medium impor-
tance for group A4; and low importance for the more
subjectively-oriented attributes in groups As, A6,. and
A7. On the other hand, if a prototype program was to
be developed for initial laboratory usage and there was
every intention to use it as a stepping-stone for future
operational program development, then the relative
importance of the attribute groups would very likely
be reversed to improve its flexibility, intelligibility,
and longevity.

To gain an overall figure of quality for an entire
program, the values achieved for each of the I"/ attri-
butes are combined as follows:

(Q/ Q = a"

\Q"7

where

n
Q' = E Mi

i=1

i= I n Mimax Mimin /

n n
Qttt.~_ lO0 Z Mi'7 ~ ki

i=1 i=1

The quality model does not include any coupling
effects between attributes, such as would be significant

for those in group ,44. However, such effects can be
accounted for in the selection O f Mimax and Mimin"

The quality model is clearly oriented toward appli-
cation from the initial stages of program procurement,
and it should provide a very positive influence on the
quality of the end-item software. The primary dividends
are expected to accrue from its use to express the ob-
jectives to be achieved by the developer, and their
relative importance; the user would be able to specify
the desired quality and the developer would have a
goal to work toward. The statement of these objectives
would almost certainly cause the developer to slant his
programming effort in such a way as to achieve higher
scores--certainly a positive result assuming the objec-
tives had been correctly determined in the first place.
The effect of the environment expected to exist during
the development would also be predicted and the terms
and conditions relative to an adverse environment
clearly indicated. The user would be likely to make
an effort to improve an adverse environment because
many of the resultant penalties to him would be
known beforehand. Thus the model can be used as a
management tool by both the user and the developer
to direct the effort toward the defined objectives.

The quality model is also expected to be of value
in pinpointing troublesome areas after program com-
pletion. Although a program may have passed all
acceptance tests, the receipt of consistently low scores
in an area such as ease of modification might portend
future troubles that could be obviated by timely re-
medial action. More immediately, low scores would
indicate that the developer had not completely per-
formed his tasks and lead to his being required to
make in-scope modifications to improve the program.

Use of quality model might increase software devel-
opment cost, since the tasks of performing the neces-
sary tests and obtaining the data would probably be
added to the cost of the programming effort. This is
typical of quality assurance procedures, however; a
trade-off exists between making expenditures during
development to assure a high-quality product and
preventing unnecessary future expenditures. Any excess
cost seems a small price to pay for establishing a means
of procuring a product in which both developer and
user have confidence.

