
http://crossmark.crossref.org/dialog/?doi=10.1145%2F1009373.805445&domain=pdf&date_stamp=1979-08-13

It is the purpose of this discussion
to analyze the effects of I/O on CPU
performance for the conventional IOP
priority discipline and for other
priority disciplines which involve the
buffering of IOP requests. A one CPU,
one IOP system is considered together
with some special assumptions about its
behavior.

Because any realistic evaluation of
computer system performance must take
into account degradation of CPU
performance by I/O, there have been a
number of previous investigations of the
topic. Shemer and Gupta [i] analyzed
the performance of a one CPU system
(with "look-ahead") for the conventional
IOP priority discipline. Skinner and
Asher [2] analyzed multiple CPU systems
for the same priority discipline. By
another method, this author [3] analyzed
the performance of a multiple CPU system
for both the IOP priority discipline and
another priority discipline involving
one level of IOP buffering. Pirtle [4]
studied by simulation several different
priority and buffering schemes including
ones where certain I/O devices (displays
for example) could suffer a limited loss
of data. Pirtle's paper is recommended
as a good introduction to the issues of
I/O handling in computer systems.

The Model

The general structure of the system
considered is given in Figure i. The
CPU and the IOP are connected to MM
through a storage control unit (SCU).
The SCU contains one buffer or queue
position for a CPU request, one or more
queue positions for IOP requests, and
priority resolution hardware which
determines whether a CPU or an IOP
request receives MM service.

The operation of the system is
assumed to be synchronized to the cyclic
operation of MM as indicated in Figure
2. The MM access and cycle time is t .
Processor requests (both CPU and IOn)
are assumed to arrive at the beg inning
of an MM cycle.

A processor is termed queued if it
is either waiting for or receiving MM
service. The CPU is modelled by
assuming that when it is not queued
there is a stationary probability
that it requests each MM cycle. This i~
equivalent to assuming a geometric
distribution for CPU processing time.
Suppose T is a random variable equal to
the CPU Pprocessing time between the
satisfaction of its current MM request
and the issuance of the next. Then the
(point) density function for Tp is:

fTp (kt)=~p(l'~p)k' k=O, I, ",', (I)

and the expected value of Tp, tp, is:

tp= E ktmfTp(kt m)

k=O

(2)

P tm0
~p

Equation (2) may be rewritten to express
~pin terms of tp:

"rrp
tm (3)

tm+t p

Two distinct models are assumed for
the IOP. Most I/O devices are
characterized by a constant I/O transfer
rate determined by their physical
properties. If there is but a single
I/O device or a majority of the I/O
traffic comes from a single device, then
the "regular" model for the IOP is
appropriate. In this case the IOP is
assumed to issue an MM request once
every c cycles (with c an integer
greater than one). If there are a
number of concurrently active I/O
devices each contributing significantly
to the aggregate I/O traffic, then the
IOP requests to MM take on more of a
random character. For this case the
"random" model of the IOP is appro-
priate. In this case there is assumed
to be a probability ~ that the IOP
requests each MM cycle. ~he probability

is equal to the ratio of the total
average I/O rate R to the rate at which
MM cycles are available I/tm, thus:

~o = Rotm" (4)

If an S cycle sequence of MM cycles is
considered and I is a random variable
equal to the number of MM cycles
requested by the IOP, then the densit~
function of I is clearly:

S k S-k
fi(k) = (k)Wo (l-IT o) (5)

Thus it can be seen that the random
model for the IOP is equivalent to a
binomial stochastic process with
parameter ~o" The binominal process is
the discrete analog of the Poisson
process.

Several different priority
disciplines are considered for the SCU.
The first, of course, is the conven-
tional lOP priority discipline for both
regular and random I/O. Secondly, a CPU
priority discipline is considered for
both regular and random I/O where an
infinite number of lOP request queue

28

I, CPU~

IOP q-
1"

!

(l-Tip} (1--Tr O) tj=i.-i l

f
~p(l-~o) + ~o(l-~p) 1 ,j=II , i>0.

Pie = 1
~o~p, jfi+l (13a)

FIG.I SYSTEM STRUCTURE

MM CYCLE CYCLE
m-I m

CYCLE
,1+1

I
f

ALL PROCESSOR REQUESTS
FOR MM CYCLE m ASSUMED
TO ARRIVE AT THIS POINT

FIG. 2 SYSTEM OPERATION

serviced, the number of queued IOP
requests can conceivably become
arbitrarily large. Because the CPU
always has priority, the CPU processing
rate is just that given by (6):

R = Zp , (12) P t
m

and the quantities of interest to
determine are the maximum rate of I/O
permissible and the value of E[n].

Let us characterize the state of the
system by S(k) where k is the number of
lOP requests queued just after the
beginning of an arbitra[y MM cycle.
Suppose the system was zn state S(i)
just after the beginning of the last MM
cycle and consider the probability Pi"
that the system is in state S(j) jus~
after the beginning of the current MM
cycle. Suppose i is greater than zero.
If j=i-i then there must have been
neither a CPU request for the last MM
cycle or an IOP request for the current
MM cycle. If j=i there must have been
either a CPU request for the last MM
cycle and no IOP request for the current
MM cycle or no CPU request for t~e--~
cycle and a---n IOP request for the current
cycle. If j=i+l there must have~
both a CPU request for the last MM cycle
and an IOP request for the current MM
cycle. Summarizing the ~ and
assigning the appropriate probabilities
to the events given yields:

Since the number of queued IOP requests
cannot change by more than one for each
MM cycle:

Pij = O' lj-ll>l (13b)

Finally:

= i-~ and: (13c) P O0 o

= P 01 nO' (13d)

since it is only required that an IOP
request be not made or made respectively
for the current MM cycle.

It is assumed that the system is in
equilibrium such that there exist
equilibrium probabilities p(k) for the
states S(k) . (For a discussion of
equilibrium in queuing systems see [6].)
The usual equation relating the
equilibrium probabilities is:

Gm

P(J) = T. Pijp(i),
i=0

(14)

Now let us introduce the following
notation:

a 0 = (i-~o) (i-~ p) (15a)

a 2 = ~d~p (15b)

a I = ~o(1-~p) + ~p(l-~ o) (15c)

= l-a0-a2.

Substituting (13) and (15) into (14)
gives the following set of equations:

30

p(j)=aop(j+l) + (l-ao-a2)P(j) (16a)

+a2P (j-l) , j>l,

p(1)=aoP(2) + (l-ao-a2)p(1) (16b)

+ToP (0)

p(0)=(l- ~o)P(O) + a0P(1) . (16c)

Equation (16a) is a second order
difference equation in p(j) and may be
solved in the usual manner [7] by
assuming a solution of the form:

p(j) = A~, j = 1,2 (17)

with A a constant.

Substituting (17) in (16a) gives the
characteristic equation:

0 = a 0 e2_(ag+a2) e + a2

= (a 0 ~-a 2) ((~-i) (18)

For equilibrium to exist there must be a
root ~ of (18) such that 0 < a < 1.
Hence :

e = a2.< 1

a 0

(19a)

or:

IT pit o (19b)
< 1

(I-IT o) (l-~rp)

which may be written:

z o <l-~p. (19c)

Equation (19c) is simply the reasonable
result that the sum of the probabilities
that the CPU and the IOP request each MM
cyc]e cannot exceed one. The value of

obtained from (16b) or p(0) 2can be
(16c) ; here (16c) is employed:

aOP(1)
p(0)

IT o

= a0A a 2

To ~0

= A~p. (2o)

The value of A is determined by the
requirement that the probabilities p(k)
sum to one:

1 = Z P (k)

k=O

co

=A(N + ~ ~.k)
k = l

=A(~ + c~) (21)
i-~

or

A =
(l-e) ~p+C~ (22)

E[n] is obtained from the expression
for p(k) :

oo

E[n] =)~ kp(k)

k=O

k
kc~

= A Z

k=l

=
I-(Z (~+ITp(l~) ' (23)

From this it is seen clearly that as
(~+0, E[n]-~O and as c{-~l, E[n] -~.

Variable priority - random I/O with
fixed IOP queue space: For this
priority discipline the rule is im-
plemented that until the IOP queue is
filled the CPU has priority and other-
wise the IOP has priority. This is
handled as an extension of the previous
analysis and the same notation will
apply here. Suppose there are E (£ > 2)
queue positions. Then the system canbe
in states S(k) , k=0, i, 2, ... ~ . If
p(~) is the probability of being in state
S(E) , then the CPU will run at a rate
specified by (6), ~p/tm, a fraction l--Pa
(Z)of the time and at rate zero
fraction p(Z) of the time. Thus the
average CPU rate is:

Rp = (1-p (£))~P
t
m

(24)

2There is one redundant equation in the
set specified by (16).

31

The transition probabilities Pi-" are!
similar to those given in the pre#ious
case except obviously pi4=~ for i >£ or
j>~ and p£(~_l) = i-T o ~nd P££ = ~o"
The latter two arise because the CPU Is
blocked when the system is in state
s(£). Substituting these p.. in (14)
gives the following set of eqlu~tions :

p(j) = a0p(j+l) + (l-ao-a 2) p(j) + a2p(j-l),

l<j<£-l, (25a)

p(£) = IToP(£) + a 2 p(Z-l) (25b)

p(£-l) = (I-1T o) p(£) + (l-a0-a 2) p(Z-l)

+ a 2 p(£-2) (25c)

p(1) = a0P(2) + (l-ao-a 2) p(1) + IToP(O) (25d)

p(0) = (I-IT o) p(0) + a 0 p(1). (25e)

The equations (25 a, d, e) are the same
as those given by (16) for the same
arguments of p(). Hence p(j), 0 < j
<£must be of the same form as given by
(17) and (19a) above. (The constant A
is different of course .) The
probability p(£) can be expressed in
terms of p(£-i) by using either (25b)
or (25c) . Using (25b) :

a 2
p (Z) =~i_-~-- p (Z-l)

O

(26)
0

The factor A is determined by the usual
requirement:

£

1 = ~ p(k)

k=O

Z-I £
= A(ITp + T. (~k + (l_~p)C~)

k=l

= A(ITp + i- ~) (I-C~£), (27)

Hence :

1 i-(~
(28)

E[n] can now be determined:

EEn]= ~ kp(k)

k=0

£-i
£ k~ -- + £(1-~p)C¢ £ . (29a) A

k=l

After considerable reduction this
becomes :

~11_~ ~) Ra~ ~ + (o ~ - l) ' n ' p
EEn] = A - - - ~ ., , (29b)

(l-c~) 2 I-Q

Substituting for A, the following
results:

E[n]= fc.~ ~"Cz-~)+5 - l-Ca e
P

(29c)

CYCLE
m

I

I
IOP

REQUEST
("LAST"}

CYCLE
m+l

I

CYCLE CYCLE
m+c-I m+c

i I

I
IOP

REQUEST
("NEXT")

FIG.3 SYSTEM OPERATION WITH REGULAR 1/0

This expression should be compared with
(23) for the CPU priority case. As
£~ the average queue size for the
variable priority case approaches the
average queue size for the CPU priority
case as would be expected intuitively.

IOP Priority - regular I/O: Now the
various priority disciplines will be
examined for regular I/O. Recall that
regular I/O is characterized by an lOP
request once every c MM cycles. A
diagram of this is given in Figure 3.
The IOP requests MM cycles m, m+c,
m+2c, and so forth. Now consider the c
cycle sequence of MM cycles m through
m+c-l. Since the IOP has priority, a
CPU request for cycle m is serviced
during cycle m+l. The probability cycle
m+l services a CPU request is the
probability the CPU requested either
cycle m or cycle m+l (but not both since
that is impossible) and is thus 2

2 The probability that any specified
o~e "of the remaining c-2 cycles of the
sequence is used by the CPU is ~ p.
Thus the average number of cycles used
during 2 the c cycle sequence is (2~p

-wn) + (c-2) Wp and the average CPU
~ate ~Is :

32

R =

P

2 21T-IT + (c-2)Wp
P P

ct
m

(i-) c

m

(30)

As c+ ~ (the I/O rate goes to zero) the
expression for R given by (30)
approaches (6) whichPgives Rp for the no
I/O case.

For regular I/O it is convenient to
define E[n] as the average number of IOP
requests queued just after the arrival
of an IOP request. Then for the IOP
priority case, clearly:

E[n] = i. (31)

The average elapsed time between the
issuance of an IOP request and its
completed service cannot be obtained so
simply for regular I/O as for random
I/O. Little's result [5] requires that
the average number of queued IOP
requests be known where the average is
taken over all MM cycles - not just over
those which receive lOP requests. Since
the average number of queued IOP
requests where the average is taken over
MM cycles which receive IOP requests is
obviously higher than where the average
is taken over all MM cycles, the ratio
E[n]/(i/ct) = cE[n]t gives an upper
bound on t~e average e~psed IOP waiting
time for the regular I/O case.

CPU Priority - regular I/O: Since
the CPU always has priority, the average
CPU rate will be just that given by (6):

wn
R = r f- , (32)
P ~m

and again the analysis focuses on the
determination of E[n] and the maximum
permissable I/O rate.

CYCLE CYCLE CYCLE
m-I m m+l

I li I

IOP REQUEST STATE (i): i
iOP REQUESTS

QUEUED

Let us characterize the state of the
system by S(k), k = l, 2, ... , where k
is the number of queued IOP requests
measured just after the arrival of an
IOP request. Refer to Figure 4. (Note
the difference in definition here from
that used for the random I/O analysis.
There the state was defined for all MM
cycles; here it is defined only for MM
cycles which receive IOP requests.)
Suppose there were i IOP requests queued
just after the arrival of the last IOP
request and consider the probability Pi~
that there are j IOP requests queueo
just after the arrival of the next IOP
request. Referring again to Figure 4,
suppose there are r IOP requests
serviced during cycles m through m+ c-l.
Then there are i-r+l IOP requests queued
after the beginning of cycle m+c.
Setting i-r+l equal to j, r is equal to
i+l-j. If j > I, then for i+l-j
requests to have been serviced during
the c cycle sequence, the CPU must have
requested c-(i+l-j) MM cycles and not
requested i+l-j. SiP~e the i+l-j cycles
can be chosen in (i+l_~)j ways, Pij can
be written:

= c i+l-j c-(i+l-j)
Pij (i+l-j)(l-~P) ~p , j>l (33)

The system is assumed to be in
equilibrium such that there exist
equilibrium probabilities p(k) for the
states S(k) . The equation relating the
equilibrium probabilities is:

co

p(j) = Z PijP (i)-

i = l

(34)

It should be noted at this point that
there is no expression given for Pi "
The expression for Pil is much mo~e
complex than that for Pi~' ~n > i.
However, the set of equ%ti s (34)
contains one redundant equation. In the
present analysis the equation for p(1)
is not used and hence Pil is not needed.

CYCLE CYCLE
mTc-I m÷c

- "- I ii I

ZOP REQUEST STATE (if: J
lOP REQUESTS

QUEUED

FIG. 4 STATE DETERMINATION FOR REGULAR][/0

33

Let us again assume a solution of the
form :

P(k) ~ AC~ k, k=l, 2, ..., (355

where A is a constant.
(33) and (35) in (34) gives:

co

Ac~J= ~ Pij AC41

i = l

Substituting

(36)

oo

c) i+l- j ~TpC- (1+l-j)(i
=A): (i+l_j5 (l-~p ,j>l.

After.multiplying both sides of (36) by
A- e I-3, the following results:

co

c~ = i=ID (i+l_j)c (e_e~p) i+l- j ITpC- (i+l-j) . (37)

Since j > 1 the binomial theorem can be
applied to the right side of (37)
g iv ing :

= (~_e~ + ~)c. (38)
P P

th
The latter is a c order polynomial in
e which has one root e =i. For
equilibrium to exist there must be a
root e such that 0 < ~ <i.

The relationship between c and ~T 5~
such that there is a root ~, ~ ~-±,
can by established by considering Figure
5. Here f (c~) = (x and f (c~)=(c~-~r~ +Tr_, c.

1 . 2 ~
are plotted agalnst ~. The plot of f3
can take either the form of the lowe["
broken line (wher e there is a root ~, 0 <
e<l) or of the upper broken line (where
there is no root e , 8 < ~ < I). For the
plot of f2 to have the form of the lower
broken line clearly df2(1) >I. Since:

du

df 2 c- 1
= c(cL-c~Tr +7~) (i-~) (395

d~ P P P

this requirement becomes:

c(l-~) > 1 (40)
P

or:

I+ ~ "< i. (41)
C p

Informally, the latter relation states
that the sum of the fraction of MM
cycles used by the CPU and the fraction
of MM cyles used by the IOP cannot
exceed one.

Given that I~ and c are such that
(41) holds, A in ~35) can be found from
the usual requirement:

1 = Z P (k)

k=l

k = I "

= A ~

(42)

Hence:
i-~

A = ~ (43)

and thus :

p(k) = (l-U) ~k-l. (44)

From this E[n] can be obtained:

oo

E[n] = X kp(k)
k = l

=(I-~5 ~ k~ k-I

k=l

I

1-~ (45)

It can be seen from this relation that
as c~ + 0 (reflecting the no I/O case),
E[n] ÷ i, and as u ÷ 1 (reflecting the
complete utilization of all the MM
cycles) , E[n] + ~ .

Variable Priority - regular I/O:
Unlike the random I/O case, there does
not appear to be a convenient general
solution for variable priority for
regular I/0. In order to indicate the
type of analysis required, a discussion
for the case of the single IOP queue
position follows.

Referring to Figure 3, consider the
c cycle sequence of MM cycles m through
m+c-l. For MM cycles m through re+c-2
the CPU has priority. If the IOP
request (which arrived at the beginning
of cycle m) has not received service by
the end of cycle m+c-2, then the IOP
request has priority for cycle m+c-l.
At the beg inning of an MM cycle which
receives an IOP request the system can
be in one of two states. The state S(0)

34

I
I I

/
zzy II

_ f2//I/ /I
"-'- i.,//I//i/~a

iz /j-
j l fs~,

fl .

I
I 11

FIG. 5 GRAPH TO DETERMINE RELATION
BETWEEN c AND~p

is characterized by the CPU being able
to request that MM cycle. The state
S(1) is characterized by the CPU being
queued as a result of its having
requested the previous MM cycle but not
getting it as a result of the IOP
exercising priority. When the system is
in state S(1) the CPU necessarily gets
the current MM cycle.

It is assumed that the system is in
equilibrium and there exist equilibrium
probabilities p(0) and p(1) for the
states S~0) and S(1). Necessarily:

p(1) = l-p(o). (46)

Now let us consider the probability P0~
that the system is in S(0) just afte~
the arrival of the current IOP request
given that it was in S(0) just after the
arrival of the last IOP request. For
this to occur there must have been at
least one of the c MM cycles m through
m+c-i free of an IOP request. Hence

C

P = i-~ (47)
O0 p

If the system was in S(1) just after the
arrival of the last IOP request and in
S(0) just after the current IOP request,
then cycle m was used to service the CPU
and at least one of the c-i MM cycles
m+l through m+c-i must have been free of
a CPU request. Thus:

Plo i- IT C-I = (48)
P

The equation relating the equilib-
rium probabilities is:

p(O) = PooP(O) + PloP(l). (49)

Substituting (46), (47), and (48) in
(49) gives:

(l_~pC c-l) (l-p(O)) (50) p(O) - i p(O) + (l-ITp

35

Figures 10, Ii, and 12 are for
regular I/O again with tp equal to 0.25
t , 1.5 thm, and 9 t respectively.
A~though _.._ plots aremdrawn as smooth
curves, they are of course meaningful
only at those I/O rates marked with c=10
through c=2. In comparison with the
plots for random I/O, it can be seen
that for a given t and I/O rate the CPU
rate for the IOP ~riority discipline is
higher for regular I/O than for random.
This is a well known queuing theory
result and is most noticeable for t
equal to 1.5 t and 9 t . Because o~
the way it is ~efined, Efn] for regular
I/O is not directly comparable with E[n]
for random I/O. The variable priority
discpline even with single IOP queue
position is noticeably better than the
IOP discipline particularly for tp equal
to 0.25 t m and 1.5 t m.

The applicability to real systems of
the analysis and results of this
discussion of course depends on how well
the basic model reflects the operation
of those systems. An increasingly
prevalent feature in computer systems is
the so called "cache" memory [8]. From
the standpoint of the current discussion
the importance of the cache is that it
is often a single memory with a cycle
and access time equal to the processor
cycle time and having a synchronous
interface with the processor. If the
IOP also interfaces with the cache, the
operation of such a system is well
represented by the model. The analysis
presented here together with some
extensions has been used rather
successfully to predict the performance
of computers with cache memories.

lOP R e g u l a r ~ ;r

t (l'"~c)
m

lOP Random
~oTe

_e% (1 - l ~ o S . %) %

CPU R e g u l a r

Z
m

I
. ~ where ~ i s a o l u t i o n o f
" O H

,~ - (~-~-p-~p) ' : o ~ ~ ~ t

CPU Random

¢
m

I-~ " ~rp(l-~)

%%
" (1 - %) (1 - %)

where

V a r i a b l e
(One l e v e l) R e g u l a r

c - I 5 . T
~ P (l - P
I: m © . c - l . c '-% %

) l

V a r i a b l e Random
(~ l e v e l)

(l - (.~.~-~.) l ~ ~,5
':- (1 - ~ 5 " ~'e (l ' ~) + ~ "

T a b l e 1 . Summary o f R e s u l t s

i

where 1-~ " ~ P / r p (l - ~) l .(xE

~ = lrplro 0 -<cz < 1

(1-~ 'p) (1-~" o)

37

0.6

=0.4
a _
(..I,

PU

ILE

$=3 Jl
2L.

IOP

I I I, I 1 I I
0.5

I -0 RATE R 0

FIG. 6 RESULTS FOR lp = 0,25 I m (RANDOM)
i

0.4

0.3

CPU

CPU

3LE

|=3

VARIABLE

,i,...

l..a.J

~0.2

t ~ L

2~

0.I IOP

).0 0.5
I-O RATE R o

FIG. 7 RESULTS FOR tp = 1.5 I m (RANDOM)

38

0.81 " CPU

0 2 t ~ " ZOP,

• l VARIABLE

£-0 RATE R o

FIG. I0 RESULTS FOR tp=0.25 I m (REGULAR)

4

2"

=:=
I - - ,¢¢

0:0.;
Q .

0.4 C P U

0.3--

O.

~ V A R I A B L E

O.C

'lOP

VARIABLE

! c:lO c=5 c=3 ¢:2

I 0.2 0.3 0.4 0.5 0.6
I-O RATE R o

FIG. II RESULTS FOR tp= 1.5 t m (REGULAR)

- 4

%-,
- - IL,,.=

0.I0

0.08 -

" 0.06 --

0.04

0.02 --
c=lO

O.OOI , I
0.0 0.1

 cPu VARIABLE
ZIOP

CPU, £OP,
VARIABLE

c:5 c=3 c:2
I i I , { i

0.2 0.3 0.4 0.5 0.6
I-O RATE R 0

FIG. 12 RESULTS FOR tp = 9 t m (REGULAR)

07

References

[1]

[2]

J. Shemer and S. Gupta, "A
Simplified Analysis of Processor
'Look Ahead' and Simultaneous
Operation of a Multimodule Main
Memory", IEEE Trans. E.C., Vol.
c-18, Jan. 1969, pp. 64-71.

C. Skinner and J. Asher, "Effect of
Storage Contention on System
Performance", IBM Systems Journal,
vol. 8, No. 4, [969, pp. 319-333.

[3] W. Strecker, "An Analysis of the
Instruction Execution Rate in
Certain Computer Structures", Ph.D.
thesis, Carnegie-Mellon University,
1970, ch. 6.

[4]

[5]

M. Pirtle, "Interconnection of
Processors and Memory", AFIPS Proc.
FJCC 1967, Thompson Book Co.,
Washington, pp. 621-633.

J. Little, "A Proof of the Queueing
Formula: L= W" Opns, Res., vol
9, Mar. 1961, pp. 383-387.

[6] D. Cox, and W. Smith, Queues,
Methuen and Co., London, 1961.

[7] S. Goldberg, Introduction to
Difference Equations, Wiley, New
York, 19581

[8] C. Conti, "Concepts for Buffer
Storage", IEEE Comp. Group News,
vol. 2, Mar. 1969, pp. 9-13.

4O

