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It is the purpose of this discussion 
to analyze the effects of I/O on CPU 
performance for the conventional IOP 
priority discipline and for other 
priority disciplines which involve the 
buffering of IOP requests. A one CPU, 
one IOP system is considered together 
with some special assumptions about its 
behavior. 

Because any realistic evaluation of 
computer system performance must take 
into account degradation of CPU 
performance by I/O, there have been a 
number of previous investigations of the 
topic. Shemer and Gupta [i] analyzed 
the performance of a one CPU system 
(with "look-ahead") for the conventional 
IOP priority discipline. Skinner and 
Asher [2] analyzed multiple CPU systems 
for the same priority discipline. By 
another method, this author [3] analyzed 
the performance of a multiple CPU system 
for both the IOP priority discipline and 
another priority discipline involving 
one level of IOP buffering. Pirtle [4] 
studied by simulation several different 
priority and buffering schemes including 
ones where certain I/O devices (displays 
for example) could suffer a limited loss 
of data. Pirtle's paper is recommended 
as a good introduction to the issues of 
I/O handling in computer systems. 

The Model 

The general structure of the system 
considered is given in Figure i. The 
CPU and the IOP are connected to MM 
through a storage control unit (SCU). 
The SCU contains one buffer or queue 
position for a CPU request, one or more 
queue positions for IOP requests, and 
priority resolution hardware which 
determines whether a CPU or an IOP 
request receives MM service. 

The operation of the system is 
assumed to be synchronized to the cyclic 
operation of MM as indicated in Figure 
2. The MM access and cycle time is t . 
Processor requests (both CPU and IOn) 
are assumed to arrive at the beg inning 
of an MM cycle. 

A processor is termed queued if it 
is either waiting for or receiving MM 
service. The CPU is modelled by 
assuming that when it is not queued 
there is a stationary probability 
that it requests each MM cycle. This i~ 
equivalent to assuming a geometric 
distribution for CPU processing time. 
Suppose T is a random variable equal to 
the CPU Pprocessing time between the 
satisfaction of its current MM request 
and the issuance of the next. Then the 
(point) density function for Tp is: 

fTp (kt)=~p(l'~p)k' k=O, I, ",', (I) 

and the expected value of Tp, tp, is: 

tp= E ktmfTp(kt m) 

k=O 

(2) 

P tm0 
~p 

Equation (2) may be rewritten to express 
~pin terms of tp: 

"rrp 
tm (3) 

tm+t p 

Two distinct models are assumed for 
the IOP. Most I/O devices are 
characterized by a constant I/O transfer 
rate determined by their physical 
properties. If there is but a single 
I/O device or a majority of the I/O 
traffic comes from a single device, then 
the "regular" model for the IOP is 
appropriate. In this case the IOP is 
assumed to issue an MM request once 
every c cycles (with c an integer 
greater than one). If there are a 
number of concurrently active I/O 
devices each contributing significantly 
to the aggregate I/O traffic, then the 
IOP requests to MM take on more of a 
random character. For this case the 
"random" model of the IOP is appro- 
priate. In this case there is assumed 
to be a probability ~ that the IOP 
requests each MM cycle. ~he probability 

is equal to the ratio of the total 
average I/O rate R to the rate at which 
MM cycles are available I/tm, thus: 

~o = Rotm" (4) 

If an S cycle sequence of MM cycles is 
considered and I is a random variable 
equal to the number of MM cycles 
requested by the IOP, then the densit~ 
function of I is clearly: 

S k S-k 
fi(k) = (k)Wo (l-IT o) (5) 

Thus it can be seen that the random 
model for the IOP is equivalent to a 
binomial stochastic process with 
parameter ~o" The binominal process is 
the discrete analog of the Poisson 
process. 

Several different priority 
disciplines are considered for the SCU. 
The first, of course, is the conven- 
tional lOP priority discipline for both 
regular and random I/O. Secondly, a CPU 
priority discipline is considered for 
both regular and random I/O where an 
infinite number of lOP request queue 
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serviced, the number of queued IOP 
requests can conceivably become 
arbitrarily large. Because the CPU 
always has priority, the CPU processing 
rate is just that given by (6): 

R = Zp , (12) P t 
m 

and the quantities of interest to 
determine are the maximum rate of I/O 
permissible and the value of E[n]. 

Let us characterize the state of the 
system by S(k) where k is the number of 
lOP requests queued just after the 
beginning of an arbitra[y MM cycle. 
Suppose the system was zn state S(i) 
just after the beginning of the last MM 
cycle and consider the probability Pi" 
that the system is in state S(j) jus~ 
after the beginning of the current MM 
cycle. Suppose i is greater than zero. 
If j=i-i then there must have been 
neither a CPU request for the last MM 
cycle or an IOP request for the current 
MM cycle. If j=i there must have been 
either a CPU request for the last MM 
cycle and no IOP request for the current 
MM cycle or no CPU request for t~e--~ 
cycle and a---n IOP request for the current 
cycle. If j=i+l there must have~ 
both a CPU request for the last MM cycle 
and an IOP request for the current MM 
cycle. Summarizing the ~ and 
assigning the appropriate probabilities 
to the events given yields: 

Since the number of queued IOP requests 
cannot change by more than one for each 
MM cycle: 

Pij = O' lj-ll>l (13b) 

Finally: 

= i-~ and: (13c) P O0 o 

= P 01 nO' (13d) 

since it is only required that an IOP 
request be not made or made respectively 
for the current MM cycle. 

It is assumed that the system is in 
equilibrium such that there exist 
equilibrium probabilities p(k) for the 
states S(k) . (For a discussion of 
equilibrium in queuing systems see [6].) 
The usual equation relating the 
equilibrium probabilities is: 

Gm 

P(J) = T. Pijp(i), 
i=0 

(14) 

Now let us introduce the following 
notation: 

a 0 = (i-~o) (i-~ p) (15a) 

a 2 = ~d~p (15b) 

a I = ~o(1-~p) + ~p(l-~ o) (15c) 

= l-a0-a2. 

Substituting (13) and (15) into (14) 
gives the following set of equations: 
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p(j)=aop(j+l) + (l-ao-a2)P(j) (16a) 

+a2P (j-l) , j>l, 

p(1)=aoP(2) + (l-ao-a2)p(1) (16b) 

+ToP (0) 

p(0)=(l- ~o)P(O) + a0P(1) . (16c) 

Equation (16a) is a second order 
difference equation in p(j) and may be 
solved in the usual manner [7] by 
assuming a solution of the form: 

p(j) = A~, j = 1,2 ..... (17) 

with A a constant. 

Substituting (17) in (16a) gives the 
characteristic equation: 

0 = a 0 e2_(ag+a2) e + a2 

= (a 0 ~-a 2) ((~-i) (18) 

For equilibrium to exist there must be a 
root ~ of (18) such that 0 < a < 1. 
Hence : 

e = a2.< 1 

a 0 

(19a) 

or: 

IT pit o (19b) 
< 1 

(I-IT o) (l-~rp) 

which may be written: 

z o <l-~p. (19c) 

Equation (19c) is simply the reasonable 
result that the sum of the probabilities 
that the CPU and the IOP request each MM 
cyc]e cannot exceed one. The value of 

obtained from (16b) or p(0) 2can be 
(16c) ; here (16c) is employed: 

aOP(1) 
p(0) 

IT o 

= a0A a 2 

To ~0 

= A~p.  (2o)  

The value of A is determined by the 
requirement that the probabilities p(k) 
sum to one: 

1 = Z P (k) 

k=O 

co 

=A( N + ~ ~.k) 
k = l  

=A(~ + c~ ) (21) 
i-~ 

or 

A = 
(l-e) ~p+C~ (22) 

E[n] is obtained from the expression 
for p(k) : 

oo 

E[n] = )~ kp(k) 

k=O 

k 
kc~ 

= A Z 

k=l 

= 
I-(Z (~+ITp(l~) ' (23) 

From this it is seen clearly that as 
(~+0, E[n]-~O and as c{-~l, E[n] -~. 

Variable priority - random I/O with 
fixed IOP queue space: For this 
priority discipline the rule is im- 
plemented that until the IOP queue is 
filled the CPU has priority and other- 
wise the IOP has priority. This is 
handled as an extension of the previous 
analysis and the same notation will 
apply here. Suppose there are E (£ > 2) 
queue positions. Then the system canbe 
in states S(k) , k=0, i, 2, ... ~ . If 
p(~) is the probability of being in state 
S(E) , then the CPU will run at a rate 
specified by (6), ~p/tm, a fraction l--Pa 
(Z)of the time and at rate zero 
fraction p(Z) of the time. Thus the 
average CPU rate is: 

Rp = (1-p (£))~P 
t 
m 

(24) 

2There is one redundant equation in the 
set specified by (16). 
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The transition probabilities Pi-" are! 
similar to those given in the pre#ious 
case except obviously pi4=~ for i >£ or 
j>~ and p£(~_l) = i-T o ~nd P££ = ~o" 
The latter two arise because the CPU Is 
blocked when the system is in state 
s(£). Substituting these p.. in (14) 
gives the following set of eqlu~tions : 

p(j) = a0p(j+l) + (l-ao-a 2) p(j) + a2p(j-l), 

l<j<£-l, (25a) 

p(£) = IToP(£ ) + a 2 p(Z-l) (25b) 

p(£-l) = (I-1T o) p(£) + (l-a0-a 2) p(Z-l) 

+ a 2 p(£-2) (25c) 

p(1) = a0P(2) + (l-ao-a 2) p(1) + IToP(O) (25d) 

p(0) = (I-IT o) p(0) + a 0 p(1). (25e) 

The equations (25 a, d, e) are the same 
as those given by (16) for the same 
arguments of p( ). Hence p(j), 0 < j 
<£must be of the same form as given by 
(17) and (19a) above. (The constant A 
is different of course .) The 
probability p(£) can be expressed in 
terms of p( £-i) by using either (25b) 
or (25c) . Using (25b) : 

a 2 
p (Z) =~i_-~-- p (Z-l) 

O 

(26) 
0 

The factor A is determined by the usual 
requirement: 

£ 

1 = ~ p(k) 

k=O 

Z-I £ 
= A(ITp + T. (~k + (l_~p)C~) 

k=l 

= A(ITp + i- ~ ) (I-C~£), (27) 

Hence : 

1 i-(~ 
(28) 

E[n] can now be determined: 

EEn]= ~ kp(k) 

k=0 

£-i 
£ k~ -- + £(1-~p)C¢ £ . (29a) A 

k=l 

After considerable reduction this 
becomes : 

~11_~ ~) Ra~ ~ + ( o ~ - l ) ' n ' p  
EEn] = A - - -  ~ ., , (29b) 

(l-c~) 2 I-Q 

Substituting for A, the following 
results: 

E[n]= fc.~ ~"Cz-~)+5 - l-Ca e 
P 

(29c) 
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FIG.3 SYSTEM OPERATION WITH REGULAR 1/0 

This expression should be compared with 
(23) for the CPU priority case. As 
£~ the average queue size for the 
variable priority case approaches the 
average queue size for the CPU priority 
case as would be expected intuitively. 

IOP Priority - regular I/O: Now the 
various priority disciplines will be 
examined for regular I/O. Recall that 
regular I/O is characterized by an lOP 
request once every c MM cycles. A 
diagram of this is given in Figure 3. 
The IOP requests MM cycles m, m+c, 
m+2c, and so forth. Now consider the c 
cycle sequence of MM cycles m through 
m+c-l. Since the IOP has priority, a 
CPU request for cycle m is serviced 
during cycle m+l. The probability cycle 
m+l services a CPU request is the 
probability the CPU requested either 
cycle m or cycle m+l (but not both since 
that is impossible) and is thus 2 

2 The probability that any specified 
o~e "of the remaining c-2 cycles of the 
sequence is used by the CPU is ~ p. 
Thus the average number of cycles used 
during 2 the c cycle sequence is (2~p 

-wn ) + (c-2) Wp and the average CPU 
~ate ~Is : 
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R = 

P 

2 21T-IT + (c-2)Wp 
P P 

ct 
m 

(i- ) c 

m 

(30) 

As c+ ~ (the I/O rate goes to zero) the 
expression for R given by (30) 
approaches (6) whichPgives Rp for the no 
I/O case. 

For regular I/O it is convenient to 
define E[n] as the average number of IOP 
requests queued just after the arrival 
of an IOP request. Then for the IOP 
priority case, clearly: 

E[n] = i. (31) 

The average elapsed time between the 
issuance of an IOP request and its 
completed service cannot be obtained so 
simply for regular I/O as for random 
I/O. Little's result [5] requires that 
the average number of queued IOP 
requests be known where the average is 
taken over all MM cycles - not just over 
those which receive lOP requests. Since 
the average number of queued IOP 
requests where the average is taken over 
MM cycles which receive IOP requests is 
obviously higher than where the average 
is taken over all MM cycles, the ratio 
E[n]/(i/ct ) = cE[n]t gives an upper 
bound on t~e average e~psed IOP waiting 
time for the regular I/O case. 

CPU Priority - regular I/O: Since 
the CPU always has priority, the average 
CPU rate will be just that given by (6): 

wn 
R = r f- , (32) 
P ~m 

and again the analysis focuses on the 
determination of E[n] and the maximum 
permissable I/O rate. 

CYCLE CYCLE CYCLE 
m-I m m+l 

I li I 

IOP REQUEST STATE (i): i 
iOP REQUESTS 

QUEUED 

Let us characterize the state of the 
system by S(k), k = l, 2, ... , where k 
is the number of queued IOP requests 
measured just after the arrival of an 
IOP request. Refer to Figure 4. (Note 
the difference in definition here from 
that used for the random I/O analysis. 
There the state was defined for all MM 
cycles; here it is defined only for MM 
cycles which receive IOP requests.) 
Suppose there were i IOP requests queued 
just after the arrival of the last IOP 
request and consider the probability Pi~ 
that there are j IOP requests queueo 
just after the arrival of the next IOP 
request. Referring again to Figure 4, 
suppose there are r IOP requests 
serviced during cycles m through m+ c-l. 
Then there are i-r+l IOP requests queued 
after the beginning of cycle m+c. 
Setting i-r+l equal to j, r is equal to 
i+l-j. If j > I, then for i+l-j 
requests to have been serviced during 
the c cycle sequence, the CPU must have 
requested c-(i+l-j) MM cycles and not 
requested i+l-j. SiP~e the i+l-j cycles 
can be chosen in (i+l_~)j ways, Pij can 
be written: 

= c i+l-j c-(i+l-j) 
Pij (i+l-j)(l-~P) ~p , j>l (33) 

The system is assumed to be in 
equilibrium such that there exist 
equilibrium probabilities p(k) for the 
states S(k) . The equation relating the 
equilibrium probabilities is: 

co 

p(j) = Z PijP (i)- 

i = l  

(34) 

It should be noted at this point that 
there is no expression given for Pi " 
The expression for Pil is much mo~e 
complex than that for Pi~' ~n > i. 
However, the set of equ%ti s (34) 
contains one redundant equation. In the 
present analysis the equation for p(1) 
is not used and hence Pil is not needed. 

CYCLE CYCLE 
mTc-I m÷c 

- "- I ii I 

ZOP REQUEST STATE (if: J 
lOP REQUESTS 

QUEUED 

FIG. 4 STATE DETERMINATION FOR REGULAR ][/0 
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Let us again assume a solution of the 
form : 

P(k) ~ AC~ k, k=l, 2, ..., (355 

where A is a constant. 
(33) and (35) in (34) gives: 

co 

Ac~J= ~ Pij AC41 

i = l  

Substituting 

(36) 

oo 

c ) i+l- j ~TpC- (1+l-j)(i 
=A ): (i+l_j5 (l-~p ,j>l. 

After.multiplying both sides of (36) by 
A- e I-3, the following results: 

co 

c~ = i=ID (i+l_j)c (e_e~p) i+l- j ITpC- (i+l-j) . (37) 

Since j > 1 the binomial theorem can be 
applied to the right side of (37) 
g iv ing : 

= (~_e~ + ~ )c. (38) 
P P 

th 
The latter is a c order polynomial in 
e which has one root e =i. For 
equilibrium to exist there must be a 
root e such that 0 < ~ <i. 

The relationship between c and ~T 5~ 
such that there is a root ~, ~ ~-±, 
can by established by considering Figure 
5. Here f (c~) = (x and f (c~)=(c~-~r~ +Tr_, c. 

1 . 2 ~ 
are plotted agalnst ~. The plot of f3 
can take either the form of the lowe[" 
broken line (wher e there is a root ~, 0 < 
e<l) or of the upper broken line (where 
there is no root e , 8 < ~ < I). For the 
plot of f2 to have the form of the lower 
broken line clearly df2(1) >I. Since: 

du 

df 2 c- 1 
= c(cL-c~Tr +7~ ) (i-~) (395 

d~ P P P 

this requirement becomes: 

c(l-~ ) > 1 (40) 
P 

or: 

I+ ~ "< i. (41) 
C p 

Informally, the latter relation states 
that the sum of the fraction of MM 
cycles used by the CPU and the fraction 
of MM cyles used by the IOP cannot 
exceed one. 

Given that I~ and c are such that 
(41) holds, A in ~35) can be found from 
the usual requirement: 

1 = Z P (k) 

k=l 

k = I  " 

= A ~ 

(42) 

Hence: 
i-~ 

A = ~ (43) 

and thus : 

p(k) = (l-U) ~k-l. (44) 

From this E[n] can be obtained: 

oo 

E[n] = X kp(k) 
k = l  

=(I-~5 ~ k~ k-I 

k=l 

I 

1-~ (45) 

It can be seen from this relation that 
as c~ + 0 (reflecting the no I/O case), 
E[n] ÷ i, and as u ÷ 1 (reflecting the 
complete utilization of all the MM 
cycles) , E[n] + ~ . 

Variable Priority - regular I/O: 
Unlike the random I/O case, there does 
not appear to be a convenient general 
solution for variable priority for 
regular I/0. In order to indicate the 
type of analysis required, a discussion 
for the case of the single IOP queue 
position follows. 

Referring to Figure 3, consider the 
c cycle sequence of MM cycles m through 
m+c-l. For MM cycles m through re+c-2 
the CPU has priority. If the IOP 
request (which arrived at the beginning 
of cycle m) has not received service by 
the end of cycle m+c-2, then the IOP 
request has priority for cycle m+c-l. 
At the beg inning of an MM cycle which 
receives an IOP request the system can 
be in one of two states. The state S(0) 
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is characterized by the CPU being able 
to request that MM cycle. The state 
S(1) is characterized by the CPU being 
queued as a result of its having 
requested the previous MM cycle but not 
getting it as a result of the IOP 
exercising priority. When the system is 
in state S(1) the CPU necessarily gets 
the current MM cycle. 

It is assumed that the system is in 
equilibrium and there exist equilibrium 
probabilities p(0) and p(1) for the 
states S~0) and S(1). Necessarily: 

p(1) = l-p(o). (46) 

Now let us consider the probability P0~ 
that the system is in S(0) just afte~ 
the arrival of the current IOP request 
given that it was in S(0) just after the 
arrival of the last IOP request. For 
this to occur there must have been at 
least one of the c MM cycles m through 
m+c-i free of an IOP request. Hence 

C 

P = i-~ (47) 
O0 p 

If the system was in S(1) just after the 
arrival of the last IOP request and in 
S(0) just after the current IOP request, 
then cycle m was used to service the CPU 
and at least one of the c-i MM cycles 
m+l through m+c-i must have been free of 
a CPU request. Thus: 

Plo i- IT C-I = (48) 
P 

The equation relating the equilib- 
rium probabilities is: 

p(O) = PooP(O) + PloP(l). (49) 

Substituting (46), (47), and (48) in 
(49) gives: 

(l_~pC c-l) (l-p(O)) (50) p(O) - i p(O) + (l-ITp 
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Figures 10, Ii, and 12 are for 
regular I/O again with tp equal to 0.25 
t , 1.5 thm, and 9 t respectively. 
A~though _.._ plots aremdrawn as smooth 
curves, they are of course meaningful 
only at those I/O rates marked with c=10 
through c=2. In comparison with the 
plots for random I/O, it can be seen 
that for a given t and I/O rate the CPU 
rate for the IOP ~riority discipline is 
higher for regular I/O than for random. 
This is a well known queuing theory 
result and is most noticeable for t 
equal to 1.5 t and 9 t . Because o~ 
the way it is ~efined, Efn] for regular 
I/O is not directly comparable with E[n] 
for random I/O. The variable priority 
discpline even with single IOP queue 
position is noticeably better than the 
IOP discipline particularly for tp equal 
to 0.25 t m and 1.5 t m. 

The applicability to real systems of 
the analysis and results of this 
discussion of course depends on how well 
the basic model reflects the operation 
of those systems. An increasingly 
prevalent feature in computer systems is 
the so called "cache" memory [8]. From 
the standpoint of the current discussion 
the importance of the cache is that it 
is often a single memory with a cycle 
and access time equal to the processor 
cycle time and having a synchronous 
interface with the processor. If the 
IOP also interfaces with the cache, the 
operation of such a system is well 
represented by the model. The analysis 
presented here together with some 
extensions has been used rather 
successfully to predict the performance 
of computers with cache memories. 

lOP R e g u l a r  ~ ;r 

t (l'"~c) 
m 

lOP Random 
~oTe 

_e% (1 - l ~ o S . % )  % 

CPU R e g u l a r  

Z 
m 

I 
. ~  where  ~ i s  a o l u t i o n  o f  
" O H  

,~ - (~-~-p-~p) ' :  o ~ ~ ~ t 

CPU Random 

¢ 
m 

I-~ " ~rp(l-~) 

%% 
" ( 1 - % )  ( 1 - % )  

where  

V a r i a b l e  
(One l e v e l )  R e g u l a r  

c - I  5 .  T 
~ P ( l -  P 
I: m © . c - l .  c '-% % 

) l 

V a r i a b l e  Random 
(~ l e v e l )  

( l  - (.~.~-~.) l ~  ~,5 
':- ( 1 - ~ 5  " ~'e ( l ' ~ )  + ~ " 

T a b l e  1 .  Summary o f  R e s u l t s  

i 

where  1-~  " ~ P / r p ( l - ~ )  l .(xE 

~ = lrplro 0 -<cz < 1 

(1-~ 'p)  (1-~" o) 

37 



0.6 

=0.4 
a _  
(..I, 

PU 

ILE 

$=3 Jl 
2L. 

IOP 

I I I, I 1 I I 
0.5 

I -0 RATE R 0 

FIG. 6 RESULTS FOR lp = 0,25 I m (RANDOM) 
i 

0.4 

0.3 

CPU 

CPU 

3LE 

|=3 

VARIABLE 

,i,... 

l..a.J 

~0.2 

t ~ L  

2~ 

0.I IOP 

).0 0.5 
I-O RATE R o 

FIG. 7 RESULTS FOR tp = 1.5 I m (RANDOM) 

38 





0.81 " CPU 

0 2 t ~ " ZOP, 

• l VARIABLE 

£-0 RATE R o 

FIG. I0 RESULTS FOR tp=0.25 I m (REGULAR) 

4 

2"  

=:= 
I - -  ,¢¢ 

0:0.; 
Q .  

0.4 C P U  

0.3-- 

O. 

~ V A R I A B L E  

O.C 

'lOP 

VARIABLE 

! c:lO c=5 c=3 ¢:2 

I 0.2 0.3 0.4 0.5 0.6 
I-O RATE R o 

FIG. II RESULTS FOR tp= 1.5 t m (REGULAR) 

- 4  

%-, 
- -  IL,,.= 

0.I0 

0.08 - 

" 0.06 -- 

0.04 

0.02 -- 
c=lO 

O.OOI , I 
0.0 0.1 

 cPu VARIABLE 
ZIOP 

CPU, £OP, 
VARIABLE 

c:5 c=3 c:2 
I i I , { i 

0.2 0.3 0.4 0.5 0.6 
I-O RATE R 0 

FIG. 12 RESULTS FOR tp = 9 t m (REGULAR) 

07 

References 

[1] 

[2] 

J. Shemer and S. Gupta, "A 
Simplified Analysis of Processor 
'Look Ahead' and Simultaneous 
Operation of a Multimodule Main 
Memory", IEEE Trans. E.C., Vol. 
c-18, Jan. 1969, pp. 64-71. 

C. Skinner and J. Asher, "Effect of 
Storage Contention on System 
Performance", IBM Systems Journal, 
vol. 8, No. 4, [969, pp. 319-333. 

[3] W. Strecker, "An Analysis of the 
Instruction Execution Rate in 
Certain Computer Structures", Ph.D. 
thesis, Carnegie-Mellon University, 
1970, ch. 6. 

[4] 

[5] 

M. Pirtle, "Interconnection of 
Processors and Memory", AFIPS Proc. 
FJCC 1967, Thompson Book Co., 
Washington, pp. 621-633. 

J. Little, "A Proof of the Queueing 
Formula: L= W" Opns, Res., vol 
9, Mar. 1961, pp. 383-387. 

[6] D. Cox, and W. Smith, Queues, 
Methuen and Co., London, 1961. 

[7] S. Goldberg, Introduction to 
Difference Equations, Wiley, New 
York, 19581 

[8] C. Conti, "Concepts for Buffer 
Storage", IEEE Comp. Group News, 
vol. 2, Mar. 1969, pp. 9-13. 

4O 


