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Abstract:

Most computer systems have separate
central (CPU) and input-output (IOP)
processors to permit simultaneous
computation and input-output (I/0). It
is conventional in such systems to avoid
any loss of I/O data by granting the IOP
priority over the CPU for memory
service. Although this priority
discipline is simple to implement it may
result in a maximum degradation of CPU
performance. In this discussion an
analysis of the IOP priority discipline
is given together with an analysis of
other priority disciplines which require
the buffering of 1I0OP requests and
results are given showing that only a
small amount of buffering is required to
produce a noticeable improvement in CPU
performance.

Index Terms: cru, input-output,
processor, memory system, contention,
I1/0 interference, priority discipline.

Introduction

In most computer systems input-output
(I/0) 1is not handled directly by the
central processing unit (CPU) but rather
by separate hardware which is referred
to by various names (channel, 1I/0
controller, etc.), but is termed here an
input-output processor (IOP). With such
a structure it 1is possible for I/0 to
take place concurrently with
computation; but because the CPU and the
IOP contend with one another for main
memory (MM) cycles, the performance of
either the CPU, the IOP, or both may be
degraded with respect to their
performance if operating alone.

Because I/0 traffic often consists
of transfers between MM and electro-
mechanical peripheral devices which do
not have- a random access character,
there is a relatively large time penalty
associated with a lost I/0 datum. For
this reason it is conventional to grant
the IOP priority over the CPU for MM

service. This priority discipline
ensures that no I/0 data are lost due to
CPU utilization of MM and is relatively
simple to implement. Of fsetting the
advantage of simplicity, however, is the
disadvantage that for a given average
1/0 transfer rate, the CPU may suffer a
maximum performance degradation. With
the addition of hardware providing
buffer (or queue) space for IOP requests
and implementing different priority
rules it is possible to ensure both that
no I/0 data are 1lost and that CPU
performance degradation is minimized.

This is possible due to the
different nature of CPU and I0P
requests. 1 When the CPU accesses MM it
generally waits until after that
request is serviced before issuing its
next request. Any delays in servicing
its requests due to IOP utilization of
MM simply cause the CPU to wait. On
the other hand, IOP requests to MM come
at a rate determined by the
characteristics of the 1I/0 devices
served by the 1IO0P. The amount of time
elapsing between the issuance of an IOP
request and its servicing often does not
(in a local sense) affect the
performance of the IOP given that all
its requests are eventually serviced.

Whether or not the time elapsing between
the issuance and servicing of an IOP
request is important depends on several
factors. These include whether the
transfer is an I/0 read (transfer from
MM to the 1/0 device) or write (transfer
from the I/0 device to MM), whether the
I/0 device has a random access
character, and to what extent the 1I/0
device itself is buffered. Since it is
often the case that a majority of I/O
traffic is I/0 writes and I/0 devices
are buffered, the above conceptual-
ization of the TIOP 1is probably a
reasonable one.

J-

"CPUs with certain features such as
"look-ahead" may have several out-
standing MM requests at a given time.
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It is the purpose of this discussion
to analyze the effects of I/0 on CPU
performance for the conventional IOP
priority discipline and for other
priority disciplines which involve the
buffering of IOP requests. A one CPU,
one IOP system 1is considered together
with some special assumptions about its
behavior.

Because any realistic evaluation of
computer system performance must take
into account degradation of CPU
performance by I/0, there have been a
number of previocus investigations of the
topic. Shemer and Gupta [1] analyzed
the performance of a one CPU system
(with "look-ahead") for the conventional
I0OP priority discipline. Skinner and
Asher [2] analyzed multiple CPU systems
for the same priority discipline. By
another method, this author [3] analyzed
the performance of a multiple CPU system
for both the IOP priority discipline and
another priority discipline involving
one level of IOP buffering. Pirtle [4}
studied by simulation several different
priority and buffering schemes including
ones where certain 1/0 devices (displays
for example) could suffer a limited loss
of data. Pirtle's paper is recommended
as a good introduction to the issues of
I/0 handling in computer systems.

The Model

The general structure of the system
considered is given in Figure 1. The
CPU and the IOP are connected to MM
through a storage control unit (SCU).
The SCU contains one buffer or queue
position for a CPU request, one or more
queue positions for IOP requests, and
priority resolution hardware which
determines whether a CPU or an 1IOP
request receives MM service.

The operation of the system is
assumed to be synchronized to the cyclic
operation of MM as indicated in Figure
2. The MM access and cycle time is t_.
Processor requests (both CPU and IOE)
are assumed to arrive at the beginning
of an MM cycle.

is termed queued if it

A processor
A==
receiving MM

is either waiting for or
service. The CPU is modelled by
assuming that when it 1is not queued
there is a stationary probability «

that it requests each MM cycle. This ik
equivalent to assuming a geometric
distribution for CPU processing time.
Suppose T_ is a random variable equal to
the CPU ‘processing time between the
satisfaction of its current MM request
and the issuance of the next. Then the

(point) density function for 'I‘p is:

fTP (kt)=ﬂp(1—np)k, k=0, 1, ..., 1)
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and the expected value of T t is:

p’ P’
o

tp= L ke fp (ktpy)
k=0

(2)

Equation (2) may be rewritten to express
Tpin terms of tp:

tm (3)

Two distinct models are assumed for
the 1IOP. Most I/0 devices are
characterized by a constant 1/0 transfer
rate determined by their physical
properties. If there is but a single
I/0 device or a majority of the I/0
traffic comes from a single device, then
the "regular" model for the IOP is
appropriate. In this case the IOP is

assumed to issue an MM request once
every ¢ cycles (with ¢ an integer
greater than one). If there are a

number of concurrently active 1I/0
devices each contributing significantly

to the aggregate I/0 traffic, then the
IOP requests to MM take on more of a
random character. For this case the

model of the IOP is appro-
In this case there is assumed
to be a probability m that the 1IO0P
requests each MM cycle. he probability

T is equal to the ratio of the total
avgrage I/0 rate R to the rate at which
MM cycles are available l/tm, thus:

"random"
priate.

T, = R_t_. (4)

If an S cycle sequence of MM cycles is
considered and I is a random variable
equal to the number of MM cycles
requested by the IOP, then the density
function of I is clearly:

£200 = (Sim K-n )57k, (5)
Thus it can be seen that the random
model for the IOP is equivalent to a

stochastic process with
The binominal process is

binomial
parameter L

the discrete analog of the Poisson
process.
Several different priority

disciplines are considered for the SCU.
The first, of course, is the conven-
tional IOP priority discipline for both
regular and random I/0. Secondly, a CPU
priority discipline is considered for
both regular and random I/0 where an
infinite number of IOP request queue



positions are provided. Lastly, a more
realistic variable priority discipline
is considered. For random I1/0 a fixed,
arbitrary number of IOP buffer positions

are available. Until all of these
positions are filled the CPU has

priority; otherwise the 1IOP has
priority. For regular I/0 the same

variable priority scheme is considered,
however analytic difficulties force only
the case of a single queue position to
be examined.

In the following analysis the
average CPU processing rate R_ and the
average number of queued IOP" requests

E[n] will be determined as a function of
"o, "o, and t_ for the various priority
disciplines. In order to av01d the
issue of CPU instruction formats, is
measured in terms of MM reference§ by
the CPU per unit time.

Analysis
No I/O: In order to establish a
base 1line for CPU performance, R is

determined in the absence of I/O0. ince
there is a probability = that each MM
cycle is used by the CPU‘%nd MM cycles
are available at rate 1/m, the average
CPU rate is simply:

R, = 'p . {6)
tm

I0OP priority-random I/0: With this
priority discipline whenever there are
both an IOP and a CPU request queued for
the same MM cycle, the IOP request is
serviced. For random I/O there is a
probability m that each MM cycle is
requested by tfe IOP. Hence when the
CPU requests MM there is a probability
1- = that the CPU request is serviced
immediately or in other words in one MM
cycle. For the CPU request to be
serviced in two MM cycles the first MM
cycle must have been requested by the
IOP and the second not requested; the
probability of this event is m (1-

T ). In general for the CPU request to
be“serviced in k MM cycles there must be
(k-1) MM cycles requested by the IOP
followed by one not requested. 1If T_ is
a random variable equal to the ime
elapsing between the issuance of a CPU
request and 1its completed service, the
density function for To is:

k-1

fr, kty) = T, (1-15); k = 1,2,... . (7)

The expected value of Te’ te’

ty = T kepfqp (kty)

k=1 -(8)
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its previous

Since the average CPU processing time
between the satisfaction of MM request
and the issuance of the next is t the
average time between MM referencgé for
the CPU is:

-
° P
=1 +"o“é - T tm - (9)
“P(l'TB)
Rp is just 1/t, hence:
Tpta- “o'n ) o
R, = Z_ 1 +n°wp -7
m
Clearly as @ > @, R~> m /t and as
Ts*l: Rp~ 8 Which cgrregponds with an
intuitive notion of how the system
should be behaving. For random I/0 it
is convenient to define E[n] as the
average number of IOP requests queued

just after the beginning of an arbitrary
MM cycle.

that
I0P,
0P

Since there is a probability Ul
each MM cycle is requested by the
the average number of queued
requests is just:

Efn] = (11)

At times it may be of interest to
know the average time elapsing between
the issuance of an IOP request and its
completed service. For the case of
random I/0 this may be obtained rather
simply. A result first given by Little
[5] shows that under rather general
conditions this elapsed time is given by
the ratio of the average queue length to
the average arrival rate to the queue.
For random 1/0 this ratio 1is E[nl/
(no/tm).Applying this to the result just

derived, an elapsed time of t_ results
which of course is just what would be
expected for the I0P priority
discipline.

CPU priority-random I/0: With this

priority discipline whenever there are
CPU and IOP requests queued for the same
MM cycle, the CPU request is serviced.
Because the I0P, unlike the CpPU,

continues to issue MM requests even when

requests have not been



cPu
B

Scu MM

L

Iop

FIG.1 SYSTEM STRUCTURE

MM CYCLE CYCLE
m-| m

=
—
-4

ALL PROCESSOR REQUESTS
FOR MM CYCLE m ASSUMED
TO ARRIVE AT THIS POINT

FiG. 2 SYSTEM OPERATION

queued IOP
conceivably become
arbitrarily large. Because the CPU
always has priority, the CPU processing
rate is just that given by (6):

serviced, the number of

requests can

R = TTE ’ (12)
P t
m
and the quantities of interest to

determine are the maximum rate of I/0
permissible and the value of E[nl.

Let us characterize the state of the
system by S(k) where k is the number of
IOP requests queued just after the
beginning of an arbitrary MM cycle.
Suppose the system was 1in state 5(i)
just after the beginning of the last MM
cycle and consider the probability Pi'
that the system is in state S(j) jusg
after the beginning of the current MM
cycle. Suppose i is greater than zero.
If j=i-1 then there must have been
neither a CPU request for the last MM
cycle or an IOP request for the current
MM cycle. If j=i there must have been
either a CPU request for the last MM
cycle and no IOP request for the current
MM cycle or no CPU request for the last
cycle and an IOP request for the current
cycle. If j=i+1 there must have been
both a CPU request for the last MM cycle
and an IOP request for the current MM
cycle. Summarizing the above and
assigning the appropriate probabilities
to the events given yields:
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(l-ﬁp)(l—nolqui‘l

np(l-no) + no(l—wp),j=1 , i>o0.

Pij =

wonp, j=i+1 (13a)

Since the number of queued IOP requests
cannot change by more than one for each
MM cycle:

pij = 0,]j-1]>1 (13b)
Finally:

Poo = 1—ﬂo and (13c)

p01 = 1|'°, (13d)
since it is only required that an IOP

request be not made or made respectively
for the current MM cycle.

It is assumed that the system is in
equilibrium such that there exist
equilibrium probabilities p(k) for the
states S(k). (For a discussion of
equilibrium in queuing systems see [6].)
The usual equation relating the
equilibrium probabilities is:

pli) =3 pyyp(i). (14)

i=0

Now let us introduce the following

notation:

a, = (l—ﬂo)(l-ﬂp) (15a)
a, = ﬂdﬂp {(15b)
a; = no(l-np) + np(l-no) (15¢c)
= l-ao-az.
Substituting (13) and (15) into (14)

gives the following set of equations:



p(j)=ayp(j+1) + (l-ag-ay)p(j) (16a)

+a,p(i-1), j>1,

p(l)=ayp(2) + (l-ag-ay)p (1) (16b) -
+ P (0)
p(0)=(l-1g)p(0) + aop(l). (16¢c)

Equation (1l6a) is a second order
difference equation in p(j) and may be
solved in the wusual manner [7] by
assuming a solution of the form:

p(i) = ad, 3 =1,2,..., (17)
with A a constant.

Substituting (17) in (l16a) gives the
characteristic equation:

= 2.
0=aya (a9+a2) o+ a,

il

(ag a-a,) (a-1) (18)

For equilibrium to exist there must be a
root o of (18) such that B < a < 1.
Hence:

a=.22 <1 (19a)

or:

T pTo (19b)
<1

(1—ﬂ°) (1—ﬂp)

which may be written:

L <1'ﬁp- (19¢)

Equation (19¢c) is simply the reasonable
result that the sum of the probabilities
that the CPU and the IOP request each MM
cycle cannot exceed one. The value of
p(0) ,can be obtained from (16b) or
(16c) “; here (l6c) is employed:

agP(1)

To

]

p(0)

aoA

az
To 2

o]

= AT,. (20)

The value of A is determined by the
requirement that the probabilities p(k)
sum to one:

o
1 =% p()
k=0

L YCRR

=1
=A(m. + _o ) 21)
1-0
‘or
1-a
B (1-0)T_+0 (22)
P

E[n] is obtained from the expression
for p(k):

Efnl= L Xp(K)
k=0

@ k
AT ka

k=1

o 1
1-a o+m, (1=a) ‘ (23)

From this it is seen clearly that as
a+0, E[n]+0 and as a+l, E[nJs=.

Variable priority - random I/0 with
fixed IOP queue space: For this
priority discipline the rule is im-
plemented that until the IOP queue is
filled the CPU has priority and other-
wise the IOP has priority. This 1is
handled as an extension of the previous
analysis and the same notation will
apply here. Suppose there are £ (2 > 2)
queue positions. Then the system can be
in states S(k), k=8, 1, 2, ... %. If
p(R) is the probability of being in state
S(2) , then the CPU will run at a rate
specified by (6), np/tm, a fraction 1l-p
(Q)of the time and” at rate zero a
fraction p(%) of the time. Thus the
average CPU rate is:

,
R, = (-pDE (24)

t
m

2There is one redundant equation in the
set specified by (16).



The transition probabilities p;; are:
similar to those given in the presious
ca)ie except obvioluslﬂy p.-=g for i>2w or
j and -1y= 1- nd p = .
%‘he lattgr“%w%) ariseobecauseut':he cel is
blocked when the system is in state
S(2). Substituting these p;; 1in (14)
gives the following set of equjatlons:

p(i) = agp(3+1) + (l-aj-ay) p(i) + a,p(3-1),
1<j<8-1, (25a)
p(R) = Tp(2) + a, pl-1) (25b)

p(%-1) = (1-m)) p(2) + (l-ag-aj) p (2=1)
+ a, p(2-2) (25¢)

p(l) = aop(2) + (l—ao—a2) p(l) + T p(0) (254)

p(0) = (1-T,) p(0) + a, p(l). (25e)
The equations (25 a, d, e) are the same
as those given by (16) for the same
arguments of p( ). Hence p(j), @ < 3j
<% must be of the same form as given by
(17) and (19a) above. (The constant A
is different of course.) The
probability p(R) can be expressed in
terms of p( & -1) by using either (25b)
or (25¢). Using (25b):

a
p (L) '--1 p(2~1)

_m
o

o arom ) (32, (26)
= A1) G-

o]

The factor A is determined by the usual
requirement:

%
1= ¥ plk)
=0
2-1 '
=amm + 5 &+ (1-m )al)
h P P
k=1
a 2
= m . 1-a%), (27)
Al P + =a ) ( )
Hence:
1 1-g
= . 8
A=t T+ 5 (28)

E{n] can now be determined:

2
Elnl= % kp(k)
x=0

-1 1}
=a 5 kK4 2(1—1;p)a . (29a)
k=1

After considerable reduction this

becomes :

3
- L m+(o-1)T
Eln] = a 2% ot TPV o

(1-)? 1-a

Substituting for A, the following
results:

o 1 2ot
Blnl= oy 7{To7a -~ oot - (29¢)
P
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FIG.3 SYSTEM OPERATION WITH REGULAR I/0

This expression should be compared with
(23) for the CPU priority case. As
g+ the average gqueue size for the
variable priority case approaches the
average queue size for the CPU priority
case as would be expected intuitively.

IOP Priority - regular I/0: Now the
various priority disciplines will be
examined for regular 1/0. Recall that
regular 1/0 is characterized by an IOP
request once every ¢ MM cycles. A
diagram of this is given in Figure 3.
The IOP requests MM cycles m, m+c,
m+2c, and so forth. Now consider the ¢
cycle sequence of MM cycles m through
m+c-1. Since the IOP has priority, a
CPU request for cycle m is serviced
during cycle m+l. The probability cycle
m+l services a CPU request is the
probability the CPU requested either
cycle m or cycle m+l (but not both sinc
that is impossible) and is thus 2 T .
n.%. The probability that any specified
ofie of the remaining c¢-2 cycles of the
sequence is used by the CPU is Tp.
Thus the average number of cycles used
durin the c cycle sequence is (27
-m, )+ (c-2) To and the average &ru

pis:

rate



2T =T 2 + (c=2)7
R =_P P P
P ct
m
ﬂP TrP
= P >
.y (1 S ),€ 1. (30)
m
As c¢c>» (the I/0 rate goes to zero) the
expression for R given by (30)
approaches (6) which gives Rp for the no

I/0 case.

For regular I/0 it 1is convenient to
define E[n] as the average number of IOP
requests queued just after the arrivel

of an IOP request. Then for the IOP
priority case, clearly:
Eln] = 1. (31)

The average elapsed time between the
issuance of an IOP request and its
completed service cannot be obtained so

simply for regular I/O as for random
I/0. Little's result [5] requires that
the average number of queued IOP

requests be known where the average is
taken over all MM cycles - not just over
those which receive IOP requests. Since
the average number of queued IOP
requests where the average is taken over
MM cycles which receive IOP requests is
obviously higher than where the average
is taken over all MM cycles, the ratio
Efni/(1/ct ) = cEInlt_ gives an upper
bound on the average ef%psed IOP waiting
time for the regular I/0 case.

CPU Priority - regular I/0: Since
the CPU always has priority, the average
CPU rate will be just that given by (6):

m
- P
Rp-E; ' (32)
and again the analysis focuses on the
determination of E[n] and the maximum

permissable I/0 rate.

CYCLE CYCLE CYCLE
m-| m m+!

<+

Let us characterize the state of the
system by S(k), k=1, 2, ... , where k
is the number of gqueued IOP requests
measured just after the arrival of an
IOP request. Refer to Figure 4. (Note
the difference in definition here from
that used for the random I/0O analysis.
There the state was defined for all MM
cycles; here it is defined only for MM
cycles which receive IOP requests.)
Suppose there were i IOP requests queued
just after the arrival of the last IOP
request and consider the probability Pi4
that there are j IOP requests queué
just after the arrival of the next IOP
request. Referring again to Figure 4,
suppose there are r IOP requests
serviced during cycles m through mt+c-1.
Then there are i-r+l1 IOP requests queued

after the beginning of cycle m+c.
Setting i-r+l equal to j, r is equal to
i+l-j. If 3 > 1, then for i+l-j

requests to have been
the ¢ cycle sequence, the CPU must have
requested c-(i+l1-j) MM cycles and not
requested i+l-j. Singe the i+l1-j cycles
can be chosen in ( ) ways, can
be written:

serviced during

i+1-j Pij

i+1-3 - (i+1-3)
m

= (41-5) (-Tp) p . 321 (33)

P,.
ij

be in
exist

The system is assumed to
equilibrium such that there
equilibrium probabilities p(k) for the
states S(k). The equation relating the
equilibrium probabilities is:

oo
p(3) = pijp(i). (34)

i=1

It should be noted at this point that
there is no expression given for Piy-
The expression for p. is much mo}e
complex than that fof P4 > 1.
However, the set of equ%tions (34)
contains one redundant equation. In the
present analysis the equation for p(l)
is not used and hence Pi1 is not needed.

I0P REQUEST

STATE (i) +i
10P REQUESTS
QUEUED

CYCLE CYCLE
mtc-I| , Mmtc
- 4 ’i\ +
~N

STATE (j):j
IOP REQUESTS
QUEUED

IOP REQUEST

F16.4 STATE DETERMINATION FOR REGULAR 1/0
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Let us again assume a solution of the
form:
k
p(k) = aa™, k=1, 2, ..., (35)
where A is a constant. Substituting
(33) and (35) in (34) gives:
. had i
AGJ= z piJ Ao
i=1 (36)

00

: - - {1 - i
A E(§p) (om )iy oG

P j>l.

Agferlgultiplying both sides of (36) by
A o , the following results:

@©

= : c - i+l-j c-{(i+1~3)
6T I Caemgtomemy) p 7.
Since j > 1 the binomial theorem can be
applied to the right side of (37)
giving:
o= (a-om_ + m)° (38)
p p
th

The latter is a ¢ order polynomial in
a which has one root a =1. For
equilibrium to exist there must be a
root o such that @ < o <1,

The relationship between ¢ and T
such that there is a root o, g < déi,
can by established by considering Figure
5. Here f,(a) = a and f,(a)=(a-am, +m, c,

are plotted against o , The plot og f

can take either the form of the loweg
broken line {where there is a roota, 0 <
a<1) or of the upper broken 1line (where
there is no root o , 8< a < 1), For the

plot of f, to have the form of the lower
broken 1i clearl
oken fie clearly dfz(l) >1. Since:
d o
daf c=1
2= c(aar_ +7 ) 1-7
5a ot ( p) (39)

this requirement becomes:

c(1-T ) > 1 (40)
p
or:
Ao o<1l (41)
¢ p

34

Informally, the latter relation states
that the sum of the fraction of MM
cycles used by the CPU and the fraction
of MM cyles used by the IOP cannot
exceed one.

Given that 1w and c are such that
(81) holds, A in Y35) can be found from
the usual requirement:

«©
1= 35 plk)
k=1
o
= A z ak
k=1 -
(42)
N a
= A .r:a.
Hence:
1-a
A-‘]r (43)
and thus:
plk) = (1-0yok-1 (44)
From this E[n] can be obtained:
©0
Elnl = § kptk)
k=1
=(1—-a) ;:ok(lk-l
k=]
T 1w . (45)

It can be seen from this relation that
as a > @ (reflecting the no I/0 case),

E[nl *1, and as o ~+ 1 (reflecting the
complete utilization of all the MM
cycles), E[n] » «

Variable Priority - regqular I/0:

Unlike the random 1/0 case, there does
not appear to be a convenient general
solution for variable priority for
regular I/0. In order to indicate the
type of analysis required, a discussion
for the case of the single IOP dqueue
position follows.

Referring to Figure 3, consider the
¢ cycle sequence of MM cycles m through

m+c-1. For MM cycles m through m+c-2
the CPU has priority. If the 10P
request (which arrived at the beginning

of cycle m) has not received service by
the end of cycle m+c-2, then the IOP
request has priority for cycle mtc-l.
At the beginning of an MM cycle which
receives an IOP request the system can
be in one of two states. The state 8(0)
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FIG. 5 GRAPH TO DETERMINE RELATION
BETWEEN ¢ AND Ty
is characterized by the CPU being able c
to request that MM cycle. The state Poo = l—ﬂp (47)

S(1) is characterized by the CPU being
gqueued as a result of its having
requested the previous MM cycle but not
getting it as a result of the 1IOP
exercising priority. When the system is
in state S(l1) the CPU necessarily gets
the current MM cycle.

It is assumed that the system is in
equilibrium and there exist equilibrium

probabilities p(@) and p(l) for the
states S(P) and S(1). Necessarily:
p{l) = 1-p(0). (46)

Now let us consider the probability Py
that the system is in S(8) just afteg
the arrival of the current IOP request
given that it was in S(#) just after the
arrival of the last IOP request. For
this to occur there must have been at
least one of the ¢ MM cycles m through
m+c-1 free of an IOP request. Hence

35

If the system was in S(1l) just after the
arrival of the last IOP request and in
S(@#) just after the current IOP request,
then cycle m was used to service the CPU
and at least one of the c-1 MM cycles
m+l through m+c-1 must have been free of

a CPU request. Thus:
b = 1 1;""1 (48)
The equation relating the equilib-
rium probabilities is:
p(0) = poop(o) + plop(l). (49)
Substituting (46), (47), and (48) 1in

(49) gives:

p(0) - (1—np°i p(0) + (1-np°'1) (1-p(0)) (50)



or: Summary of Results

bmbc‘l All of the formulas derived are
p(0) = . (51) summarized in Table 1.
17 O Loy ©
14
Examples and Discussion
Then from (46):
e The expressions for R_ and E[n]
Y derived previously have be evaluated
p(l) = —r—g . (52) for certain sets of values for m _, Tar
1‘"p Ty and 2 . The purpose of this is fo give
some insight into the CPU performance
improvements that can be realized by
Each time the system enters S(1) the CPU using other than an IOP priority

is blocked for one cycle out of a ¢
cycle sequence. Since the average rate
at which the unblocked CPU executes is

T p/tm, Rp for this case is:
,
R == 1
p  tn (l-p(l)E- )
c-1
Tp Tp Tp
20—y
=t -7 Tam S (53)
m P P

This expression should be compared with

(32) for the IOP priority case. It is
eagy, to _, show that the factor
wpc 1/(1-3 % cjis less than one so RB

is higherpfor the variable priority cas

than for the IOP priority case. Because
c > 2 and 8 < ®W_< 1, the
following are true:
~1
(1-m ) (1= T)> 0 (54)
P P
and
7 &l <. (55)
P P
Thus:
1 c-1
- - > =T 56)
U.NP)U.W ) b b (
or:
c-1 c-1
- m (57)
1 Tfp + p >»n-p
and so:
pc-l (58)
- C-I ™ c
l‘% + o

The number of IOP requests queued just
after the arrival of an IOP request 1S
clearly one for this case:

E[n] = 1. {59)
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discipline.

The 'results of the evaluations are
displayed graphically in Figures 6
through 12. " The graphs take the form of
a sumultaneous plot of the CPU rate R
(expressed as a fraction of 1/t,) an
E{n] against the I/O rate (expressed as
a fraction of 1/t_ and thus equal to
g). The paramet i is not shown
éxplicitly but rather t) since it is a
more readily interpre%ed measure of
basic CPU speed ( 7 is given in terms
of t_ by equation (fﬂ). Furthermore t
is given a normalized form bein
expressed in terms of tm'

Figures 6, 7, and 8 are for random
I/0 with t_ equal to @8.25 t_, 1.5 t and
9 th resd%ctively. For 'the wvarlable
priority %, the number of IOP buffer
positions, is equal to three. For the
CPU priority discipline, the CPU rate is
of course constant out to the point of
the maximum permissable I/0 rate. At
very low and very high I/0O rates the IOP

and the variable priority disciplines
yield comparable CPU rates, but at
intermediate I/0 rates the wvariable

priority discipline leads to noticeably
better CPU performance. For the CPU
priority discipline E{n] increases very
rapidly as the point of maximum
permissable I/0 rate is approached while
for the variable priority discipline
E[n] increases to the IOP gqueue size as
the I/0 rate goes to one. Figure 9 is
for random I/O0 with t_ = 1.5 t . The
CPU rate is plotted agéﬁnst the {70 rate
for different values of (Efn] is not
plotted) . A rather significant im-
provement is noted in going from the IOP
priority discipline to the variable
priority discipline with 2=3. A lesser
improvement is noted in going from £ =3
to L=8, The effect of larger % is to
hold the CPU rate up to its maximum
value for higher I/0 rates but once a

certain I/0 rate but once a certain I1/0
rate is reached (about 8.6 in this case)

the CPU rate falls off abruptly. An

encouraging finding here is that only a

moderate number of IOP queue positions

are needed to realize most of the

performance improvement attainable by
the variable priority discipline.



Figures 19, 11, and 12 are for
regular I/0 again with t_ equal to @.25
t , 1.5 t , and 9 t prespectively-
ATthough tHe plots are™drawn as smooth
curves, they are of course meaningful
only at those I/0 rates marked with c=10
through c¢=2. In comparison with the
plots for random I/0, it can be seen
that for a given t_ and I/0 rate the CPU
rate for the IOP [?riority discipline is
higher for regular I/0 than for random.
This is a well known queuing theory
result and is most noticeable for ¢t
equal to 1.5 t_ and 9 t_. Because o?
the way it is gefined, ETn] for regular
I/0 is not directly comparable with E([n]
for random 1/0. The variable priority
discpline even with single IOP queue
position is noticeably better than the

The applicability to real systems of
the analysis and results of this
discussion of course depends on how well
the basic model reflects the operation
of those systems. An increasingly
prevalent feature in computer systems is
the so called "cache" memory [8]. From
the standpoint of the current discussion
the importance of the cache is that it
is often a single memory with a cycle
and access time equal to the processor
cycle time and having a synchronous
interface with the processor. If the
I0P also interfaces with the cache, the
operation of such a system is well
represented by the model. The analysis
presented here together with some
extensions has been used rather
successfully to predict the performance

IOP discipline particularly for tp equal of computers with cache memories.
to ¢.25 t_ and 1.5 t_.
m m
- ~d
Iop Regular T m
L2 .-
t a c) 1
m
1opP Random ) T
' g (- lﬂr; -T Yo
m op o
1
CPU R la T
egular 1_r2 T where @ 18 solution of
*a
@ - (ampwp)c o<a<1
CPU Random e
" T 1« aﬂrp(l-a) where
‘a
m 'H‘o
L] 0<a<1
(1-1Tp)(1-1r0)
Variable L3 T L} ‘
(One level) Regular Lta-2 —B ) 1
t c c
m +r
p
variable Random T a - u‘"p) 1o oh a r o where
1 . . - . -
(£ level) t (1-a‘) u'p(l-a) +a 1a crﬂrp(l-a) 1ot
o 0<a<1

Table 1.

a=
(T Y (7))

Summary of Results
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