A MUMPS-BASED RELATIONAL DATA BASE SYSTEM (MRDB)

Georges S. Nicolas and John W. Lewis

Department of Electrical Engineering and
Division of Laboratory Medicine
Washington University, St. Louis, Missouri 63130

A relational database management system has been implemented in the MUMPS language using a binary
tree structure for storage of relations. Several examples are given to illustrate the available
functions and commands. Some details of the data structure are given, and tradeoffs discussed. The
system was intended for teaching and research and no attempt was made to optimize performance.
Nevertheless, timing measurements are presented to show that the use of a MUMPS-like tree structure
for relational database system implementation can yield performance which varies with the size of the
operand relations in a manner similar to previously reported relational database implementations.

I. INTROOUCTION

Among the most significant current concepts in
data base technology is the relational model of
data base management. The theory has been dis-
cussed by Codd [1-3) and several other authors

4, 6, 8] . The advantages of the relational
model of data include simplicity, symmetry, data
independence, and semantic completeness. Several
implementations of the relational model have been
reported in the literature [4,8) The Data Ma-
nipulation Languages (DML) used in these implemen-
tations can be classified into six major groups:
(1) Algebraic, (2) Relational Calculus, (3) Map-
ping-oriented, (4) Element-by-element, (5) Natural
Tanguage, and (6) Graphic oriented. Because of
its relative ease of understanding and use, a re-
Tational algebra DML was chosen for the present
implementation. Although certain kinds of infor-
mation structures cannot readily be represented
as trees, it is shown here that the MUMPS* binary
tree structure is suitable for the implementation
of a relational database management system.

Within MUMPS, binary-tree structured files are re-
ferred to symbolically as multiply-subscripted ar-
rays, known as global arrays, or simply globals.
These globals (trees) are dynamic and sparse, i.e.
the only nodes which are created are those to
which a value is explicitly assigned or those
which must be created in order to provide a path
from the root to a node which has been assigned a
value. Any node may contain either numeric or
string data of variable types and Tengths. Some
MUMPS systems have facilities for preventing dead-
locks and insuring error free concurrent access to
the shared data base_represented by the appropri-
ate set of globals (5, 10]

The choice of MUMPS globals as the supporting
structure for the MRDB system was motivated princi-
pally by the availability of a MUMPS system, the
anticipated ease of implementation, and the inter-

*Massachusetts General Hospital Utility Multi-pro-
gramming System

est in such work among the growing community of
MUMPS users.

In the rest of the paper, we describe a prototype
relational system implemented in DEC MUMPS-11

51 , on a PDP-11 computer. Examples of opera-
tionswill be given,and timing measurements presented.

2. OQVERVIEW

It will be assumed in this paper that the reader is
familiar with the basic concepts of relational al-
gebra (References £1-43 should be helpful).

As viewed by the user, the database consists of a
collection of named relations in normal form. These
time-varying relations are ofassorted degrees;and as
time progresses, each n-ary relationmaybesubject to
transformation, extraction, deletion, insertion, and
alteration of some orall of its existing n-tuples.

For every data base there is a corresponding work -
space of variable size. This workspace is intended
to facilitate the user's manipulation of the data-
base by providing him with a temporary storage
space for an arbitrary number of transient or in-
termediate relations.

Both database and workspace grow and shrink dynamically
as needed. They interact with each other aswell as
with the user through a set of conmands, operators, and
special functions whichwill be described later.

The MRDB Management system has the réquired facilities
to insure a modest level of security and integrity
of the stored data. It can be used as a stand-alone
system or as a data management facility for the
MUMPS language, with a flexible interface. The user
interacts with the MRDB system through an algebra-
based DML which will be described next.

3. The DML

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800191.805608&domain=pdf&date_stamp=1976-10-20

In its present state, the MRDB system operates ei-
ther on individual queries or on a sequence of
queries, as determined by the user and his appli-
cation. Each query is made out of a series of
commands and/or functions separated by the delimi-
ter semicolon (:). Within the command itself, ar-
guments are separated by the delimiter colon (:).
The dollar sign ($) is the first of four charac-
ters that make up every function's name. Func-
tions with arguments, and operators within com-
mands, have their arguments enclosed within paren-
theses. These arguments are relations' names and/
or the associated domains' names, separated by ej-
ther the delimiter (,) or the delimiter (.) as
will be described later. See fig. 1.

Host Language
Interface

FUNCTIONS

&
N

Workspace PUT

—

'

FUNCTIONS

abreviated by their first three letters in the DML
of the MRDB system.

Every operator operates on its arguments to pro-
duce a resultant relation, and then stores this re-
lation in the workspace under the associated name
Rj. Any one of the resultant relations may be used
as a part of the argument(s) of any subsequent op-
erators under the same GET command, or other fol-
lowing commands and/or functions. Table 1. brief-
1y summarizes the role played by the "OPR(ARG)" in
the GET command.

B. Some of the more commonly used functions in
database queries have been implemented in the
MRDB sytem.

These functions return their out-
puts to, or take their inputs
from, a set of preassigned global
arrays and/or variables, enabling
a MUMPS application program to
manipulate the given relations
directly if desired. The rela-
tions in the arguments of the

Database

FUNCTIONS

functions are assumed to be in
the workspace and/or the database

N,

P
P <

DISPLAY

Terminal

DELETE

Fig. 1 - A simplified view of Interactibns

Let the wa character represent the blank character,
and Rj represent any relation which exists in the

database and/or the workspace for j=1,2,3,... Let

Dji represent any domain's name in relation Rj for
i=1,2,3,... and let

86 TN,=,<.>,(=<,€ =), (=>,>5), (<>, ><)] .

A. The five major DML commands have the following
general forms:

CREATE «a R1:R2:R3:-~-

DELETE «a RT1:R2:R3:--~

DISPLAY «u R1:R2:R3:---

PUT «aR]:R2:R3:---

GETwR1waOPR(ARG) :R2aOPR(ARG) : R3 1 aOPR(ARG) : ---

a) The CREATE Command allows the user to enter,
from the terminal into the workspace, relations
under the names R1, R2,...

The DELETE command will delete the named rela-
tions from the workspace and/or the database,
if such relations exist.

The DISPLAY command, upon execution, will dis-
play on the terminal the named relations in the
respective order and in tabular form. Any of
these relations may be in either the workspace
or the database at the time of execution.

The PUT command will store the named relations
in the database. These relations are assumed
to exist currently in the workspace.

In the GET command, OPR and ARG stand for oper-
ator and argument(s)‘respective]y. The opera-
tors are those defined by Codd {3] , and are

b)

c)

e)

325

at execution time. Table 2 gives
a brief description of the cur-
rently existing functions. Fi-
nally, we mention that those com-
mands and functions which involve
the alteration of data in the
database will be prevented from
being carried out by unauthorized
users. In turn, authorized users
are prevented from carrying out
operations which would violate
any of the system integrity con-
straints (see the appendix for examples).

4. IMPLEMENTATION

Each relational database is represented by a MUMPS
global as shown in fig. 3. It is seen that the
tabular form of a relation (fig. 2) is mapped into
a sub-tree. In addition to the above structure,
relations resuiting from certain operations could
be stored so that each tuple in the given relation
would be directly addressable by means of a hash-
ing function which transformed the tuple number
(global index) into a unique relative address on
the disk. This randomly addressable structure
would be a useful adjunct to the normal tuple stor
age scheme in speeding up some of the relational
operators.

No ordering among tuples, or amcng data jtems in a
domain, is assumed.

The general implementation technique of MUMPS glob-
als is to map logical information at a given sub-
script level of a given array into groups of fixed
size blocks chained together linearly to contain
all the data values stored at that subscript level
and all the pointers which point to the headers of
the chained blocks at the next lower subscript
level. Logically, the global looks like an n-ary
tree, but the physical implementation is that of a
binary tree, with one real pointer from a parent
node to the first descendent. In the following, a

Table 1 - Relational operators as used by the MRDB system

feature reduces the I/0

SYNTAX_OF OPR({ARG) CORRESPONDING MEANING

time (Nj), at the ex-

any order.
resultant relation.
JOIB(R1.D1i,R2.D2j)

. RESB(Rj.Dj1.Dj2)
DIV(R1.D11,D12,D13.---,
R2.D21.D22.D23...)

O~y
O N

Redundant tuples will be removed from

R1 is B-joined on domain D1i with R2 on domain D2j.
Relation Rj is @-restricted on domain Dj1 and Dj2.
Division of R1 on domains D11,D12,D13, --- by R2
on domains D21, D22, D23, --- If R1 is empty, the
resultant relation will be empty too.

T. CAR(RT,RZ) 1. The cartesian product of relations R1 and R2 pense of extra storage
2. UNI(R1,R2) 2. The union of retations Rl and R2 and more system overhead
3. INT(R1,R2) 3. The intersection of relations R1 and R2 (Ki*»Kj), by allowing
4. DIF(R1,R2) 4. The set difference of relation R2 from R1 only the necessary data
5. PRO(Rj.Dj1.Dj2.Dj3.---)|5. Projection of Rj over Dji's. Dji's could be in (required domains) to be

transferred between the
disk and main memory.

In the rest of this sec-
tion the performance of
type 1 and type 2 struc-
tures for some relation-
al operations will be

simple timing analysis for some relational opera-
tions will be carried out.

Given three memory buffers, bi, bz, and b,, each
capable of storing one disk block, assume“that the
highest global level (level 1 of fig. 3) is small
enough to be stored in main memory. Let Ti,Di,Ki
for i=1,2,... be the number of tuples, the number
of ‘domains, and the average number of data items
of relation Ri that can be stored in one disk block
Let Nj be the number of disk blocks to be accessed
in order to execute a command, an operator or a
function; and let that Nj(j=1,2) be our measure of
the speed of response to queries, i.e. the smaller
the Nj, the faster the response to the given query.
Almost all MUMPS applications systems are disk-
bound, and thus Nj is a realistic measure of system

briefly compared.

Consider first the DISPLAY and CREATE commands.
Since these commands require the transfer of a
whole relation to and from the memory buffers,

the minimum possible values of Nj are Nj=DiTi/Ki and
Na=DiTi/Ki* for type 1 and type 2 respectively.

EMP:f NAME |SALARY-[MANAGER } CODE
John 20,000 JJones J25
aeorges| 3,000] Thomas }G16 Since we con-
ee 7,260 JSusie L.22 sidered Tevel
B 1 of fig 3 to
Fig. 2 - A tabular formofrelation BMP be in main

memory, we
find that deletion of a whole relation (by the
DELETE command) requires no disk access, i.e. N,=0.
This is very fast, because all that is required is

speed.

deletion of

Table 2 - The MRDB system special functions

FUNCTIONS SYNTAX

MEANING

a. $MAX(Rj.D3j1) Returns maximum value in domain Dji of Rj.

b. $MAS(Rj.Dji) Returns longest data item in domain Dji of Rj.

c. $MIN(Rj.Dji) Returns minimum value in domain Dji of Rj.

d. $MIS(Rj.Dji) Returns shortest datum in domain Dji of Rj

e. $CNT(Rj.Dji) Returns the number of distinct data items in
domain Dji of relation Rj.

f. $TOT(Rj.Dji) Returns the sum of data items in Dji of Rj.

g. $AVR(Rj.Dji) The average value of data items in Dji of Rj.

h. $ORA(Rj.Dji) Orders the tuples of Rj in ascending order
on domain Dji.

i. $ORD(Rj.Dji) Same as $ORA but in descending order.

J. $CNW(R1,R2) Changes the name of a workspace R2 to R1.

k. $CND(R1,R2) Changes the name of a database R2 to RI1.

1. $NOC(Rj) Returns the number of domains of Rj.

m. $NOR(Rj) Returns the current number of tuples of Rj.

n. $LOD(Rj) Extracts Rj from database/workspace and return
it to a designated global as in Fig. 3 when
the MRDB is used as a sub-system to MUMPS.

0. $STR(Rj) Works in the opposite way of $LOD(Rj).

p. $FDD Returns a formatted 1ist of currently available
relations in the database with their associated
domains.

q. $FDW Does the same thing for workspace .as in $FDD.

Many current relational database implementations

treat the tuple as being the smallest retrievable
unit of data in a stored relation.
tures will be referred to below as type 2. Let

Ni/Np g ((Di+
These struc- IT we assume

a single pointer.

It should be mentioned that, in theory,
the PUT Command should require no more
than a single pointer change, and thus
Ny=0. However, because of the way glob-
a1s are implemented in the present DEC
MUMPS-11 system, the PUT Command re-
quires the reconstruction of an entire
sub-tree.

Finally, we show, through simple formu-
las, the amount of time needed to carry
out some of the functions from table 2
and the PRO, J0I8, and RESE operators.

4.1 Functions

For a type 1 implementation it takes
[Di/2ki] ([x] means the smallest in-
teger M2x) blocks to locate the given
domain and [Ti/Ki] blocks to transfer
all data items in the selected domain.

N, [(pi+2xi)/2ki]

For type 2 implementations, it takes
No &2 [DiTi/Ki*[blocks to carry out the
tﬁe unction. " =p
2Ki)/2Ki) (Ki*/DiTi)

Ki* = &Ki (1€ & £2) and Di << 2Ti

= Nj/N2 &2 &/Di which says that response with a

Ki* be the average number of data items of a rela-
tion Ri that could be stored in one disk block for
a type 2 implementation.

In addition to retrieving data by tuples, the MRDB
system implementation (referred to below as typel)
offers the capability of accessing relations by do-
mains and/or data items selectively. This extra

type 1 structure will be Di/2 to Di times faster
than with a type 2 structure.

4.2 Projection (PRO)

To carry out the projection operation, all that is
necessary is to cut the Tinks leading to the de-
scendent nodes {of the appropriate domains) from

326

‘Lovrll
L) () &)
L _ X Z
Level 2 -

I

—— — ——— . —— f—— .

2D

' block /'
| chain |
'1:”)

Vij refers to data item in tuple i and domain }
for 1 = 1,2, --- pand § = 1,2, ==k

the parent node (the operand relation). This re-
quires retrieval of the appropriate blocks, era-
sure of the pointers, and storage back on the disk
Thus, the value of Ny is in the range

2€N ‘fD1/K1 +1 depending on the number of pro-
Jectld domains and their locations. This is very
fast in comparison with other 1mp1ementat1ons[

4.3 Join (J018)

Let S be the number of tuples of the result re-

]at1on
<oy /ZK}'I + [op/26,] + [(T1/K;)(To/Kp)] + 5
In 1he typical case, TidDi, we can ignore the

first two terms, since they will be negligible
compared with the values of the last two tepms.
It is eas11y seen that N,= D]T]DgTz/K}*Kg]

B Ni/Np = (TyTp+KiKaS)K1*Ro"/D1D2K1 K2 172
If we assume 11 81Ky and Kp* =®&K2, then
Ni/N2 = 1/P = 0(10(2 T1T2+K1 K2$§/D1 D2TyT2

This says that as long as

K1KaS<(D1D2 -H182)T1To/1K2 is true, the Join
operation with a type 1 structure is P times fas-
ter than with a type 2 structure.

As a simple example, let Dy=10, Dz=12, T1=200,
T2=150, K1=14, K1*=20, K2= é Ko*=14, and $=70.

We see that the Jo1n operation is about 38 times
faster when using a type 1 structure.

4.4 Restriction (RES8)

It can be shown here that N]s[m/zki'h[zmki +S
using the same reasoning as in section 4.3, we can

neglect the first term in the prev1ous formula.
For type 2, we have N2 = [T1D1/K1]

A block chain consists of one or more disk
blocks 1inked by continuation pointers.

9

Fig. 3 - RDB Structure in MUMPS Global form

=»N3/N2 = 1/P = (2Ti+KiS)&/TiDi; which says that,
as long as K1S<:(D1 2)Ti/e¢ , the Restriction opera-
tor when using a type 1 structure is faster by P
times than when using a type 2 structure.

For example, for the values Ti=400, Ki=10, $=60,
Di=10, and & =1.5, we get PN2.

4.5 Measurements

Finally, table 3 displays a comparison between the
measured and predicted relative speeds for certain
operations. Note that the time units have been nor-
malized in order to show the change in speed with
changes in the size of the relations.

Table 3.a - Functions operating on relations with a
fixed number of tuples

number of domains] 1 2 3 4 5 6 7 8
measured time 1 1 1.121.371.37 1.5 1.6 175
predicted time T 1 1T 1.2 1.251.4 1.5 1.58

Table 3.b - Functions operating on relations of a
fixed degree

number of tuples}5.10 -15 20 2530 35 40
measured time 1 1.33 1.551.77 2 255 277 333
predicted time [1 1.3 15 18 2 23 26 315

Table 3.c - PRO operation on a relation of degree 9
with 30 tuples
number of projected domainsyl 2 3 4 5 6 78
measured time 146146 1.31)5 136 107 1 1
predicted time 14 14 135136101 105 11

327

Table 3.d - RES8 operation on relations with vary-
ing degrees and a fixed number of

tuples.
number of domains|2 3 4 5 6 7 8 9
measured time T 125 137 162 187 2 225 225
predicted time 1 12 13516 1822 23 235

5. CONCLUSIONS

An algebra based, relational database management
system implemented with hierarchical (binary tree)
files has been presented. The available opera-
tions have been discussed, and the retrieval/up-
date facilities demonstrated through a set of sim-
ple examples. The implementation has been briefly
discussed, and some experimental measurements com-
pared to predicted values for speed of response.

The system is adequate for educational purposes,
and capable of yielding useful data on file struc-
ture performance. Further use of the system pre-
sented here for the investigation of file struc-
tures in relational database management systems is
planned. In particular, the present MRDB system
will be used to test a parameterized theoretical
model of DBMS performance.

APPENDIX

In order to familiarize the reader with the MRDB
system, we are going to work out in this appendix
a few simple exampies. Each example will consist
of a request, worded in English, and a correspond-
ing solution, expressed by the DML queries. Each
solution will be underlined.

First, assume that we have information stored a-
bout suppliers, parts, and projects as expressed
by the follawing four relations [4]

S{S#,SNAME ,CITY,STATUS)
P(P#,PNAME ,COLOR,WEIGHT)
J(J#,INAME ,CITY)
SPJ(S#,P#,J#,QTY)

where a tuple in relation S gives information a-
bout a supplier with a given unique ID, his name,
location, and status. A tuple in relation P tells
us the part number, name, color, and weight. A
tuple in relation J tells us the project number,
its name, and Tocation. Finally, the significance
of an SPJ tuple is that the specified supplier (S#)
supplies the specified part (P#) to the specified
project (J#) in the specified quantity (QTY).

The examples follow (refer to fig. 4 for relations
C1, €2, c3, C4, C5 and C6).

R1: Display full details of all projects. Add some
new tuples, update the J relation, then store
it in the data base.

S1: DISPLAY «aJ;CREATE wa NEW;GETwmt J s
UNI(J,NEW) ;PUTead

R2: Get full details of all projects in London,
then display full details of all projects that
are not in London.

S2: CREATE waC1;GETws INwaJOIN(J.CITY,C1.A):OUTu
DIF{J,IN);DISPLAYwOUT

R3: Get S# values for suppliers who suppty project
JI., then the supplier with the shortest name.

S3: CREATE «4(C2;GET wal waJOI=(SPJ.J#,C2.A):W =

. PRO(W.S#); $MIS(S.SNAME)

R4: Display a formatted Tist of all currently exist-
ing relations, then get S# values for suppliers
who supply project J1 with part P1.

S4: $FDD;$FDW;GETs MatPRO(SPJ.S#.P#.0#):6
DIV(M.P#.J#,€3.P#.J#)

R5: Get P# values for parts supplied to any progct
in London.

$5: GETwKwJOIN(J.CITY,C1.A):CITY s
JOIN(K.J#,SPJ.J#) :RasPRO(CITY.P#)

R6: Display P# values for parts supplied to all

S6:
R7:

S7:

R8:

S8:
R9:

S9:

projects in London.
GETs K—PRO(K.J#) :D wPRO(SPJ.P#.J#) 1 W4
DIV(D.J#,K.J#) ; DISPLAY W4
Display the J# values for projects supplied with
at Teast all parts supplied by supplier S1, then
change the name of relation S to SSS.
1 GETesWTaJOIN(SPJ.S#,C5.A) :W2aPRO(W1.P#): D
PRO(D.J#.P#) .
2 GET wuW4uDIV(D.P#,W2.P#) ;DISPLAY wu
W43 $CND(SSS,S)
Get S# values for suppliers who supply the same
part to all projects.
GETwt MaPRO(SPJ . S#.P#.J#) :AcsPRO(J. J#) :Bma
DIV(M.J#,A.J#) :BusPRO{B.S#)
Destroy some of the unneeded relations, thenget
S# values for suppliers who supply both projects
J1 and J2.
‘DELETE W4 :W5:5S5S ; GETwat QTY vt
PRO(SPJ.S#.J#):QTYDIV(QTY.J#,C6.J#)

F]{A) ; cz@%; C3(P# J#); C4(A); C5(A); C6(J#
=)

London PT1 J1 Red S

J1
J2

Fig. 4 - Supplementary Relations.

REFERENCES

[1] Codd, E.F., A Relational Model of Data for Large

Shared Data Banks, Communication of the ACM, vol.
13, no. 6, June, 1970.

(2} Codd, E.F., Normalized Data Base Structure: A

Brief Tutorial, proc. of the ACM-SIGFIDET Work-
shop on Data Description, Access and Control,1971.

{3l Codd, E.F., Relational Completeness of Data Base

Sublanguages, Data Base Systems, Courant Computer
Science Symposia Series, vol.6, Prentice-Hall,
Englewood Cliffs, N.J., 1972.

Date, C.J., An Introduction to Data Base Systems,
Addison-Wesley, Reading, Massachusetts, 1975.

[8) bigital Equipment Corp., MUMPS-11 Programmer's

Guide, DEC-11 MMPGA-C-D, Maynard, Mass., Nov.1974

[§)He1d, Gerald Davis, Storage Structure for Rela-

tional Data Base Management Systems, Electronics
Research Laboratory memorandum no. ERL-M533, the
University of California, Berkeley, August, 1975.

[j]Knuth, D.E., The Art of Computer Programming: vol.

3, Sorting and Searching, Addison-Wesley, Reading,
Mass., 1973.

g) Pecherer, Robert., Efficient Retrieval in Rela-
tional Data Base Systems, Electronics Research
Laboratory memorandum no. ERL-M547, the Universi-
ty of California, Berkeley, October, 1975.

ﬁﬂRotwitt,Theodore et.al.,Storage Optimization of

(d

328

the Tree Structured Files Representing Describtor
Sets, proc.of the ACM-SIGFIDET Workshop on Data
Description, Access and Control, 1971.
Wasserman,A.I.et.al., MUMPS Globals and their Im-
plementations, Available from the National Bureau
of Standards, Room A-247, Building 225, Washing-
ton, D.C. 20234

