
FOR COMMUNICATION ONLY

COMPUTING WITH
MULTIPLE MICROPROCESSORS

John V. Levy
Stanford University

THE ANALYSIS AND SCHEDULING OF DEVICES
HAVING ROTATIONAL DELAYS

Samuel Henry Fuller
Stanford University

Computer systems with multiple processors
are becoming more common for reasons of
reliability and modularity. The use of
asynchronous processors, however~ leads to
problems of complexity of control and of
programming. This work investigates the
application of multiple asynchronous pro-
cessors to the computing task at the low-
est level - that of interpreting single
machine-language instructions.
A particular computer configuration with
15 identical processors has been con-
structed using an interpretive simulator.
The processors are of relatively low com-
puting capacity. A common data bus con-
nects the processors with each other and
with the main memory. A restriction on th~
logical connections between processors al-
lows each one to communicate with no more
than 2 others, in a chain-like arrangement.
Three examples - 2 sort instructions and a
matrix multiply - were coded for this
machine and run using the simulator. By
varying the bus cycle time, it was con-
cluded that adequate suppor~ of up to 15
processors can be provided by a common bus
with cycle time equal to the processor
cycle time.
The amount of parallelism achieved was
significant but showed dependence on hard-
ware parameters and on t~e algorithm im-
plementations. Direct simulation the the
computer, with an execution trace of the
running system, has yielded some glimpses
of how restriction of bus capacity can
cause deterioration of the program ex-
ecution efficiency and amount of paral-
l~lism.

A simple economic model of a multiple pro-
cessor system is developed and applied to
the 3 examples. The result shows that the
minimum cost per throughout occurs with
4,11, and !5 processors, respectively, for
the 3 examples when the cost of a proces-
sor is i/i0 of the system cost.

A number of problems concerning the schedul-
ing, organization, and configuration of auxili-
ary storage units are analyzed in this disserta-
tion. Stochastic, combinatorial, or simulation
techniques are applied, depending on the assump-
tions and complexity of the particular problem.
For the relatively simple scheduling disciplines
of first-in-first-out (FIFO) and shortest-latency-
time-first (SLTF), stochastic models are used. The
starting addresses of I/0 requests to a file (non-
paging) drum are modeled as random variables that
are uniformly distributed about the circumference
of the drum; the lengths of I/0 requests are mod-
eled as random variables that are exponentially
distributed. This model of I/0 requests is based
upon measurements from an operational computer
system. The arrival times of I/0 requests are
first modeled as a Poisson process and then gen-
eralized to the case of a computer system with a
finite degree of multiprogramming. Well-known re-
suits in queueing theory are sufficient for some
models, but in other cases original approaches are
required. In particular, a new model of the SLTF
file drum is developed, is compared with previous
models of the SLTF file drum as well as a simula-
tion model, and is found to be a more accnreat mod-
el than previously available. Another practical
problem that is discussed is an I/0 channel serving
several, asynchronous paging drums. A new schedul-
ing discipline is presented to minimize the total
amount of rotational latency (and processing time)
for an aribtrary set of N I/0 requests and the al-
gorithm that is developed to implement this minimal-
total-processing-time (MTPT) scheduling discipline
has a computational complexity on the order of
NlogN. The MTPT scheduling algorithm was implement-
ed, and for more than three or four records, the
most time-consuming step is the initial sorting of
t~e records, a step also present in SLTF scheduling
algorithms.

448

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800192.805813&domain=pdf&date_stamp=1973-08-27

PERFORMANCE EVALUATION OF
MULTIPROGRAMMED TIME-SHARED COMPUTER SYSTEMS*

Akira S~ino
MIT

A comprehensive set of hierarchically organized
modular analytical models is developed for perform-
ance evaluation of multlprogralmned vlrtual-memory
tlme-shared computer systems. This hierarchy of
models includes a user behavior model, a secondary
memory model, a progrembehavior model, a processor
model, and a total system model. The thesis espe-
cially details on the last three models. The pro-
gram behavior model permits estimation of the fre-
quency of paging. The processor model evaluates the
throughput of a given multl-processor multi-memory
processing system under multiprcgramming. Finally,
the total system model derives response time dis-
tribution of an entire computer system under study.
Accuracy of performance prediction by these models
is examined by comparing the predicted performance
and the measured performance of the Multlcs system.
These analyses are then applied to the optimization
of computer systems and to the selection of the
best performing configuration for a given budget.
This framework of performance evaluation not only
guides human intuition in understanding actual per-
formance problems but presents reliable answers to
quantitative performance questions about throughput
and response time of actual computer systems.
* Available from M.I.T. Project MAC as MAC-TR-103.

THE EFFECT OF SELECTED VARIABLES ON THE
LEARNING OF SOME COMPUTER PROGRAMMING ELEMENTS

Sorel Reisman
The Ontario Institute for Studies in Education

The widespread use of computers in most aspects
of society has caused educators to introduce com-
puting into many levels of the curriculum. In
the absence of experience suggesting techniques
for structuring such courses, an intuitive ap-

proach is usually taken. A conflict which has
arisen because of this concerns the advantages
or disadvantages of teaching high level languages
before low level languages. This study attempted
to resolve this conflict. An additional objective
of the study was to investigate the effects of
providing learners with a) computer generated
reinforcement and b) differential error diagnos-
tics in their programming exercises.

Elements of high level and low level prograrmming
languages were selected to be illustrative of pro-
gramming languages taught in Ontario secondary
schools. Two programmed instruction (PI) manuals,
each representing one of the language levels, were
written and field-tested for this study. Two sets
of problems, one for each manual, were designed to
be administered in two interactive time-sharing
sessions.

The main study was carried out in two phases.
The first phase was conducted on 42 graduate stu-
dents and the second on 113 grade ten students.
The treatments to which each ~ was randomly as-
signed were a) high level/low level or low level/
high level; b) error code or error statement; and
c) reinforcement or no reinforcement. Depending
on the sequence which had been assigned, the first
PI booklet was administered to each S. Following
this, each S worked on programming problems admin-
istered via a time-sharing terminal where appro-
priate error and reinforcement diagnostics were
generated. A second PI manual was administered to

followed by a second time-sharing session. At
the completion of these sessions, a posttest was
administered to all Ss.

Performance data collected during the Ss' time-
sharing sessions, and various partial posttest
measures, were analysed with an analysis of covari-
ance. Some significant differences and strong
trends tended to support the hypothesis that the
low level/high level sequence results in better
overall performance than the reversed sequence.

A questionnaire distributed to all grade ten Ss
indicated that they preferred the low/high se-
quence and thought it to be less difficult than

the high/low sequence.

No significant differences or strong trends were
evident as a result of the error or reinforcement
treatments.

The results of sequence difference, while appear~
ing small in this study, seemed quite distinct.
This suggests that these differences either exist
and are of no practical value to the practitioner,
or that they might become more distinct in a full
term computing course.

The error and reinforcement treatments which did
not result in differentiating performance tend
to support the findings of other studies done in
interactive computing environments. That is,
programmers working on time-sharing terminals
appear to ignore programming manuals and computer-
generated assistance, and seem to try~ different
strategies when they make errors. This suggests
that the treatments used in this study might pro-
duce different results for learners using batch
computer systems.

449

Computational Experience With The Central Cutting Plane Algorithm

Jack Elzinga, Johns Hopkins University and
Thomas G. Moore, Johns Hopkins University

The Central Cutting Plane Algorithm is an
algorit.hm for solving the convex programming prob-
lem. Its convergence and other properties have
been established elsewhere [2,6]; here, we will
state, but not prove, the major theoretical results
concerning the algorithm. The purpose of this pre-
sentation is to report some preliminary computation
al experience with an experimental code of the
algorithm.

THE ALGORITHM

The Central Cutting Plane Algorithm (CCPA) is
designed to solve the following form of the convex
programming problem:

maximize c t x

s.t. gi(x) > 0 i=l m (NLP)

xeS~ E n .

where the constraint functions gi are assumed to
be continuously differentiable, concave functions,
S is a compact, convex set, and c is a fixed vector
in E n. The assumption of a linear objective func-
tion involves no loss of generality since a problem
where the objective function is a continuously
differentiable concave function, not necessarily
linear, may be transformed into a problem with the"
structure of (NLP).

The Central Cutting Plane Algorithm is as
follows (Let I = {i I 1 ~ i ~ m), and
F = {~Jgi(x)~ 0 ¥i~I, x~S}) :

o Ste~ 0. Select x ~S. If x°~F, f°=ctx°.
If rOOF, let fo=_~.. Let zO=wO=x O, jo=# for ieI,
8 be a fixed scalar, 0 < 8< i, and k=0. l

Step i. Let (x k+l, k+l) be the solution to the
mathematical programming problem, SPk:

max

st cx- lloll~ fk

gi(y~+V%(y~c~-y~ - llV%(y~0 y~, i~
l

x~S.

If ~k=0, stop. Otherwise, go to Step 2.

Step 2 i) If xk+l~F, let z k+l be any point such
that cz k=l ~ cx k+l. Determine w k+l = pzk+l+(l-P)w k

for 0 ~ p<l, such that gr(W k+l) < 0 for some r¢~.

ii) If x k+l ~ F and z k ~F, let w k+l = x k+l.

Determine r ~I such that gr (wk+l) < 0.

iii) If x k+l ~F, and zk£~, determine z~k+l~F
such that c~ +I ~ cz k. Determine z k+l and w k+l
such that zk+l~F, zk+l=~z k+l + (l-T)x k+l, and

~ (wk+l) < 0~Jfor some reI, and
+i= p~k+l + (l_P)xk+l, 0<p~T < I.

Ste~ 3. If there exists any point (s) w p such that
p ~ k~ wPeJ~, i~I, and

i) the constraint gi (wp)+vgi (wp) (x-wP)-llVg i (wp~ ~0

is not binding in SPk, and

ii) o k < 8 o p
then let jk_jk._ .- wP . After this process has been
carried ou~, ~et jk+l=jk for all i~I, i~r.

l l

Step 4. Let fk+l-czk+l,- and let jk+ir =J~lwk+l}'r

Set k=k+l and repeat from Step i.

The subproblem SP has the property that x k+l
will be the center, an~ o k+l the radius, of the
largest hypersphere which can be inscribed inside
the polyhedron {xlcx~fk,g i(y)+?gi(y) (x-y)~0,
YycJ~,i~I } with the further restriction that x k+l
must lie in S. Thus x k+l is the "center" of a
polyhedral approximation to the solution set of
NLP. Hence, the name of the algorithm, the Central
Cutting Plane Algorithm. If xk+l£F, then fk+l~
cx k+l, and if xk+l~F, then gi (wk+l) + Vgi (wk+l)
(xk+l-w k+l) ~ 0. Since ok+~0 for all k, x k+l is

effectively cut off by these additional constraints
forming SP. _ from SP k. (Cuts of the form gi (y) +
gi (Y)(Y-X)~+~ will be termed "constraint cuts",
while cuts of the form cx > fk will be termed
"objective cuts. ")

Step 2 allows a great deal of flexibility in
the determination of z k+l, w k+l, and ~k+l. With
one additional assumption concerning S, namely,
that there exists a point ~eS such that gi(~)>0
for all icI, it can be shown that all accumulation
points of the sequence {zk}~ . are optimal
solutions to NLP, regardles~=~f the specific : ~
method of computing z k+l, w k+l, ~k+l to satisfy
the conditions of Step 2.

451

Thepurpose of Step :3 is to keep the number
of constraints in SP k small. Every time a new
w k+l is determined, another constraint is added to

the subproblem. The rule given in Step 3 for
dropping constraints preserves the convergence
properties of the algorithm.

In practice the set 13 will be a bounded
polyhedron described by linear constraints, so SP k
will be a linear programming problem. The sub-
problems are then solved by solving the dual of
SPk; then the addition of new constraints to SP k
corresponds to adding new columns to the dual
problem.

The flexibility in Step 2 allows for various
techniques to accelerate the algorithm. The
following scheme represents no acceleration: if
xk+icF, let z k+l = x k+l, p=0; if xk+l~F, z k+l =

~k+l z k, w k+l = x k+l in iii). We will report on

a number of experimental acceleration techniques.

Acceleration Technique I

If the center, x k+l, found by the subproblem
is feasible, no other technique is employed to
accelerate the algorithm. The addition of an
objective cut (that is, changing the right hand
side of the objective cut, or, in t:he dual problem,
changing the cost associated with tlhat column) may

require no pivots in the linear program; thus this
improvement in fk is gained with little computa-
tional effort.

If the center, x k+l, is infeasible, then a

bisecting search is carried out on the line segment
between x k+l and z k. That is, the point ~(xk+l+z k)

is evaluated to determine whether or not it is

feasible. If it is infeasible, then it is used
instead of x k+l as the most recently found infeasi-
ble point; if feasible, it replaces zkas the most
recently found feasible point. The result of this
is that a feasible and an infeasible point are
still determined, but the distance between them is
half the distance between the starting feasible
and infeasible points. This procedure can be
repeated a certain number of times with the final
feasible point, z k+l, and the final infeasible
point, w k+l, being used to generate the new
objective cut and constraint cut. The number of
bisecting steps used was in/m] + i, where ix]
indicates the largest integer less than or equal
to x. The reason for this rule is that the value
of this acceleration step is dependent on the num-
ber of constraints. The most likely numbers of
function evaluations required to determine whether
the new midpoint of the segment is feasible or not
are 1 or ml; if it is infeasible, it is likely to
be infeasible to the same constraint as the infea-
sible point determining the end-point of the seg-
ment and can thus be identified wit[h one function
evaluation by evaluating this constraint first; if
it is feasible, all ml constraints may have to be
evaluated to determine this. Thus, the value of
the bisecting step with respect to its cost in
terms of computational effort is i~versely related
to the number of nonlinear constraints in NLP.

Acceleration Technique II

A second acceleration technique was used on

some of the test problems. This technique consists
of three consecutive line searches if the center
x k+l is infeasible; as in the other acceleration
technique, no additional action is taken if x k+l
was feasible. The first search direction ia
determined by projecting the direction from z k to
x k+l onto the hyperplane CX=czk,i.e. d=(zk-x k+l)
- [(zk-xk+l) t c~cll2]c. Then the function sin

[Sigi(x), i m], where e i are approximate scale
factors for the functions, is maximized along
this line. The next direction is in thedirection
c, moving as far as po-sible without leaving the
feasible set. This determines fk+l. Since ~k+l
is close to the boundary, a small step in the
direction of x k+l then yields an infeasible point
for w k+l. The purpose of the first step is to
get away from the constraints; the purpose of the
second is to find a better feasible point; the
purpose of the third is to find an infeasible
point close to the boundary from which to generate
the constraint cut. Since it is not necessary to
find the exact maximum of the function in the
first step, nor is it necessary to exactly deter-
mine the boundary in the second or third step,
only a few evaluations need be performed in each
of the three steps. When the linear constraints
describing S play an active role, this accelera-
tion technique must be modified, in an obvious
fashion, by employing projection operations onto
the active linear constraints.

Acceleration Technique III

This technique involves a line search along a
segment of what is termed the "central ray" of the
polyhedral approximation to the optimal solution
set. The central ray is constructed (and defined)
by taking the optimal solution of a subproblem
and performing the following: first, all inactive
constraints (cuts) are discarded. Then, the objec-
tive function value determining the objective cut is
allowed to vary from - to + . The locus of all
centers resulting from this perturbation is the
central ray. By this construction, the central ray
is seen to be the ray passing through the center of
the polyhedron and the point obtained if the objec-
tive function were maximized over the polyhedron
described.

A generator for the central ray by the active
cuts is available from the optimal basis inyerse in
the dual problem. The line search for the boundary
is then carried out between the center and the
upper or lower bound contour depending whether the
center was feasible or infeasible.

It may appear that the insertion into CCPA of the
line searches described in the acceleration tech-
niques robs the algorithm of one of its attractive
features. It should be emphasized once again how-
ever that the convergence of the algorithm does not
depend on the exactness of the line searches (in
fact, employing no line searches at all results in
a convergent algorithm); therefore, the type of
acceleration technique employed and the effort
expended on it are decisions that can be made on
numerical or heuristic considerations.

COMPUTATIONAL RESULTS

Bracken and McCormick [i] relate the following

452

nonlinear programming problem:
n

min 4Z~ cJx j
J=~n n

s.t. Z a~=x.-1.645(. Z_v. .x~)~b i
j=l ±J 3 3=I i] J

n

j~l xj : 1

i=l, . . . ,m

(1)

(2)

(3)

X. k 0, j=l.,,,.m. (4)
]

The purpose of the problem is to determine the
optimal feed mixture for livestock. The variable
xj represents the fraction of feed j to be included
in the mixture, c. is the cost per unit of feed j,
a.. is the averag~ amount of some attribute i (e.g.
prl~tein content) per unit of feed j, v.. is the
variance of the amount of attribute i ~r unit of
the mixture. If the level of attribute i is inde-
pendently normally distributed for each feed, then
(5.2) represents the constraint that the mixture
should have a 95% probability of attaining the
desired level of attribute i. Thus the problem is
to minimize the cost of the mixture while maintain-
ing a 95% probability for attaining the desired
level for each attribute.

The constraint function in (5.2) is concave.
Therefore, this is a convex programming problem.
The problem is a good problem for testing purposes.
Problems of any size can be generated by generating
appropriate a..'s, v..'s, and b.'s. The square

m i]
root makes function e~aluations non~trlvlal.

In order to test the efficiency of the
algorithm, data were generated for problems of
varying sizes. The parameters were chosen randomly

according to the following scheme: a.. was uniformly
distributed over [0, 20], v.. over [~3, 7], c. over
[0, 10], and b: was determilngd by the formul~

bi=bi - (bi-~)i~(1/.95)(i~, where bi was the value

j~i 1 of aijx. - 1.645(~ v..x2) % evaluated at xj= n
= J j=± 13 3

(vij) ~ for all j, and 5 i = m~n[aij - 1.645] and r

was a random variable uniformly distributed over
[0, I]. In this way, the point x. = i for all j

3 n was ~easible to every constraint, but there was
also a 95% probability that each constraint cut off
at least one extreme point of the polyhedron des-
cribed by (3) and (4).

Since the computation time required to solve
a problem is dependent on the computer used, the
problems generated were also solved using the SUMT
algorithm (Fiacco and McCormick [3]) to provide a
measure of the difficulty of the problems. The
1964 version was used. Some experimenting was
done on trial problems to determine a good set of
options and parameter values for the SUMT algorithm
on this class of problems. The initial value of r
was determined by the formula
r = [(Vf (x°)tH -I (x °) Vf (x °))/(VB (x°)tH "I (x °)

VB(x°))] where B(x) = i Zl_ i/gi(x), H is the hessian

of B, f is the objective function and "~ is the ntun-
ber of constraints. This appeared to give better

results than the standard r=l. The ratio of
decrease for r was i, and second order extra-pola-
tion moves were employed. A good subproblern
stopping rule was to stop when the inner product
of the searchdirection with the gradient of the
subproblem function was less than I0 -I times the
tolerance desired to stop the entire algorithm
(i.e. the difference between the upper and lower
bounds on the optimal objective function value).

Additionally~ the CCPA code was modified to
per~er~ the cutting plane algorithm of Kelley [5]
(KCPA~. The algor±thm was stopped when a sub-
problem solution fell within the tolerance of the
best upper bound determined by SUMT and CCPA.
Knowledge of such a bound is advantageous to KCPA
since it generates only upper bounds itself.

Special consideration had to be given to the
constraint (3) since neither algorithm was designed
for equality constraints. For SUMT, the variable
x n was replaced everywhere by 1 - n~1 x and the

n~ j=~ 3
constraint 1 - ~=~ xj ~ 0 replaced Xn ~ 0. For CCPA

n
and KCPA, (3) was replaced by j=~ xj ~ 1 and

- j~xj ~-i.

In Figure i, the solution times are shown for
SUMT, KCPA, and two versions of CCPA, the faster
times belonging to an accelerated version (accele-
ration technique I), and the slower times belonging
to a version without any acceleration technique.
Problems of various sizes were solved to determine
the effect of problem size on computation time.
The algorithms were terminated when the difference
between the upper and lower bounds on the objective
function was .001. (In CCPA, fk is the lower bound,

and an upper bound can be easily calculated from
the subproblem: cz *~ fk+l + ~k+I/uk ' where u k is
the dual variable corresponding to the objective
cut constraint in SPk.) The time is computation
time only (i.e. inpu~ and output times are not in-
cluded). The problems were solved on an IBM 7094.
As evidenced from these computational results, the
Central Cutting Plane Algorithm appears to be quite
efficient.

Certainly one of the strong features of the
cuttingplane algorithms are their ability to han-
dle linear constraints routinely. Although at
first glance these test problems appear to have
very few linear constraints, in fact there are
quite a few -- each of the non-negativity con-
straints is handled very routinely by the CCPA and
KCPA since they solve linear programming subprob-
lems. This factor is responsible in part for the
encouraging computational results. Since one would
expect a certain number of linear constraints to
appear in most nonlinear programming applications,
the Central Cutting Plane Algorithm seems particu-
larly attractive.

In order to remove this linearity from the
test problems, the constraints (3) and (4) were
replaced by n

Z i) ~ I . ~5~ j~l (xj -

Thus the solution was restricted to lie within a

453

ball of radius 1 around the point (l,1,...,l).
Test problems were generated in the same manner as
before except that the b i were determined so that
(i,i i), father than (1/n i/n), was the
starting feasible point. The function

Z ~ xj - 1.645 " j=1 aij . (j~ vj xj 2)

was evaluated at (l,l,...,1) and either (i + i//n,
.... 1 + I//n) or (i - i/~i 13- 1//n) depending
on the sign of the evaluation at (1,1,...,1). Then
a random fraction, uniformly distributed on ~, i],
times the difference in these evaluations was sub-
tracted from the evaluation at (i,i,...,i) to
determine b., thus ensurinq that at].east some

• l °
polnts feaslble to (5) were not feasible to any
constraint generated. The aij's were randomly
selected from [0, 20] and the cj's from [0, i0],
as before. The v. 's were randomly selected from
[0, 50n]. 13

The problem was solved exactly as formulated
using SUMT. For CCPA the non-negativity con-
straints were included, plus the constraints

n n
• ~ -n - /D. These j_~ xj ~.n - /nn and - j=~ x 3

constraints had no effect on the solution since
the ball described by (5) lay within these con-
straints. However, they provided a compact set S
for CCPA, and also bounded the solution away from
(0,0,...,0) where the gradients were undefined.

The computation times for these problems are
shown in Figure 2. The computations were termina-
ted when the difference between the upper and lower
bounds on the objective function was less than .001
times the value of the objective function at
(i,i.,,,.i). The acceleration technique used in
CCPA was the second technique discussed in this

chapter. A few problems with 40 variables were
attempted, but were determined to rec~ire too much
computation time (over 5 minutes, at least for
problems with only a few constraints) to be feas-
ible for study. Note that the times for SUMT are
approximately half of that recorded for problems of
comparable size in Figure l; essentially this is
due to the dropping of the non-negativity con-
straints, which effectively reduces the number of
constraints by half.

The Central Cutting Plane Algorithm, although
performing acceptably, did not solve this class of
problems with the speed exhibited earlier. This is
due to the difficulty in approximatir~ nonlinear
curv-s by linear approximations. Note that the
computation time decreased with an increase in the
number of constraints. This was because with a
large number of constraints the optimum was more

likely to occur at a sharply defined vertex of the
feasible region, where several nonlinear constraints
intersected; with fewer constraints, the optimum
was more likely to lie on a smoother boundary of
the feasible region. The linear approximations
generated by CCPA are much better at approximating
a sharp vertex than at approximating a smooth
curved surface.

The chemical equilibrium problem, which
minimizes the Gibbs free energy subject to material
balances, is a convex programming problem with
linear equality constraints and non-negativity

constraints. We have solved the problem given by
Bracken and McCormick [i], which, after formulating
an equivalent problem with a linear objective,
results in a problem with ii variables, 1 nonlinear
constraint, 3 linear equalities and non-negativity
constraints on all variables. The problem is
complicated by the non-differentiability of the
~ree energy function at zero. This difficulty is
handled by treating the non-negativity constraints
as nonlinear constraints; then finding the center
of a polyhedron defined in part by these non-
negativity constraints constrains all solutions
away from the troublesome zero values. A .solution
optimal within the tolerance 0.001 was obtained
in 28 seconds by CCPA; the computation time was
dropped to 18 seconds using the central ray
accelerator (CCPA-III). Acceleration technique
I did not perform well on this problem, creeping
slowly along the nonlinear constraint until some
numerical difficulties occurred (In fact, this
phenomonon led us to devise acceleration techniques
II and III which also seek better feasible-
infeasible pa~ns, but restrict that search to the
"middle" of the polyhedral approximation). These
times compare favorably with other reported
solution times [4] on more modern machines.
Direct comparison is not possible since tolerances
and stopping rules are not repo~ted.

The close similarity between the chemical
equilibrium problem and the geometric prograrmuing
dual problem suggests that the latter might profit-
ably be attacked by CCPA. Part of CCPA's attrac-
tiveness for use on the geometric programming dual
stems from the natural way it handles the problem
of non-differentiability.

DISCUSSION

~h@ implementation presented here has the

attractive feature that no changes need to be made
to the linear programming code. The CCPA code for
which the computational results were reported used
the SIMPLX code written by George Diderrich of the
University of Wisconsin Computing Center and modi-
fied by A1 Kacala of The Johns Hopkins University
Computing Center for use on the IBM 7094.

Certainly a more efficient code could be de-
signed for the CCPA. Not only might the algorithm
be improved by the design of other acceleration
techniques, but even the code reported on here
could be improved by prograrmning a specialized
linear programming code for the Central Cutting
Plane Algorithm. For example, in using the CCPA,
it is known in many cases which coltunn is the
prime candidate to enter the basis (the new cut),
and so savings could be made in pricing out the
columns. Also, features could be incorporated to
allow dropping the non-negativity restriction on
the dual variables.

Nevertheless, it is encouraging to have the
assurance that the addition of a few subroutines
to an efficient linear programming code can yield,
particularly when linearities are present in the
nonlinear problem, an efficient code for the convex
programming problem.

454

i.

2.

3.

4.

5.

6.

REFERENCES

Bracken, J., and G. P. McCormick, Selected
Applications of Nonlinear Programming, John
Wiley and Sons, Inc., New York, 1968.

Elzinga, Jack, and Thomas G. Moore, "The
Central Cutting Plane Algorithm," to appear.

Fiacco, A. V., and G. P. McCormick, "Computa-
tional Algorit~ for the Sequential Uncon-
strained Minimization Technique for Nonlin-
ear Programming," Management Science 10,
601-617 (1964).

Himmelblau, David M., Applied Nonlinear
Prc~.ran~nin@, McGraw-Hill Book Co., New York,
1972.

Kelley, J. E., Jr., "The Cutting-Plane Method
for Solving Convex Programs," Journal SIAM
8, 703-712 (1960).

Moore, Thomas G., "The Central Cutting Plane
Algorithm," (unpublished Ph.D. dissertation.
Department of Mathematical Sciences, The
Johns Hopkins University, 1973).

455

NONLINEAR

VARIABLES CONSTRAINTS SUMT KCPA CCPA CCPA-I

5 5 4.2 0.6 0.6 0.5

i0 5, 8.9 0.6 0.6 0.6

10 10 14 .2 1 . 1 1 . 6 1 . 5

i 0 2(i) 26 .3 3 . 6 3 . 0 3 . 0

20 10 45.0 6.4 4.5 3.7

20 20 77.2 8.6 6.8 6.2

20 40 130.0 26.3 15.8 14.1

40 40 450* 52.0 45.3 35.9

60 60 411.5 269.1 128.2

*problem terminated before completion

Figure I. Computation Time (IBM 7094) in Seconds for the Feed Problem.

NONLINEAR

VARIABLES CONSTRAINTS SUMT KCPA CCPA-II

5 2 0.9 3.9 0.9

5 4 1.9 3.4 2.1

5 5 2.2 3.5 1.3

5 I0 4.2 2.2

i0 4 2.9 9.8

i0 7 5.2 9.3

i0 I0 7.3 8.4

i0 20 13.3 7.9

20 7 12 . 1 128 . 1

20 14 22.2 85.2

20 20 33.4 93.6

20 40 66.2 77.3

Figure 2. Ccm~putation Time (IBM 7094) in Seconds for

the Modified Feed Problem

456

