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COMPUTING WITH 
MULTIPLE MICROPROCESSORS 

John V. Levy 
Stanford University 

THE ANALYSIS AND SCHEDULING OF DEVICES 
HAVING ROTATIONAL DELAYS 

Samuel Henry Fuller 
Stanford University 

Computer systems with multiple processors 
are becoming more common for reasons of 
reliability and modularity. The use of 
asynchronous processors, however~ leads to 
problems of complexity of control and of 
programming. This work investigates the 
application of multiple asynchronous pro- 
cessors to the computing task at the low- 
est level - that of interpreting single 
machine-language instructions. 
A particular computer configuration with 
15 identical processors has been con- 
structed using an interpretive simulator. 
The processors are of relatively low com- 
puting capacity. A common data bus con- 
nects the processors with each other and 
with the main memory. A restriction on th~ 
logical connections between processors al- 
lows each one to communicate with no more 
than 2 others, in a chain-like arrangement. 
Three examples - 2 sort instructions and a 
matrix multiply - were coded for this 
machine and run using the simulator. By 
varying the bus cycle time, it was con- 
cluded that adequate suppor~ of up to 15 
processors can be provided by a common bus 
with cycle time equal to the processor 
cycle time. 
The amount of parallelism achieved was 
significant but showed dependence on hard- 
ware parameters and on t~e algorithm im- 
plementations. Direct simulation the the 
computer, with an execution trace of the 
running system, has yielded some glimpses 
of how restriction of bus capacity can 
cause deterioration of the program ex- 
ecution efficiency and amount of paral- 
l~lism. 

A simple economic model of a multiple pro- 
cessor system is developed and applied to 
the 3 examples. The result shows that the 
minimum cost per throughout occurs with 
4,11, and !5 processors, respectively, for 
the 3 examples when the cost of a proces- 
sor is i/i0 of the system cost. 

A number of problems concerning the schedul- 
ing, organization, and configuration of auxili- 
ary storage units are analyzed in this disserta- 
tion. Stochastic, combinatorial, or simulation 
techniques are applied, depending on the assump- 
tions and complexity of the particular problem. 
For the relatively simple scheduling disciplines 
of first-in-first-out (FIFO) and shortest-latency- 
time-first (SLTF), stochastic models are used. The 
starting addresses of I/0 requests to a file (non- 
paging) drum are modeled as random variables that 
are uniformly distributed about the circumference 
of the drum; the lengths of I/0 requests are mod- 
eled as random variables that are exponentially 
distributed. This model of I/0 requests is based 
upon measurements from an operational computer 
system. The arrival times of I/0 requests are 
first modeled as a Poisson process and then gen- 
eralized to the case of a computer system with a 
finite degree of multiprogramming. Well-known re- 
suits in queueing theory are sufficient for some 
models, but in other cases original approaches are 
required. In particular, a new model of the SLTF 
file drum is developed, is compared with previous 
models of the SLTF file drum as well as a simula- 
tion model, and is found to be a more accnreat mod- 
el than previously available. Another practical 
problem that is discussed is an I/0 channel serving 
several, asynchronous paging drums. A new schedul- 
ing discipline is presented to minimize the total 
amount of rotational latency (and processing time) 
for an aribtrary set of N I/0 requests and the al- 
gorithm that is developed to implement this minimal- 
total-processing-time (MTPT) scheduling discipline 
has a computational complexity on the order of 
NlogN. The MTPT scheduling algorithm was implement- 
ed, and for more than three or four records, the 
most time-consuming step is the initial sorting of 
t~e records, a step also present in SLTF scheduling 
algorithms. 
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PERFORMANCE EVALUATION OF 
MULTIPROGRAMMED TIME-SHARED COMPUTER SYSTEMS* 

Akira S~ino 
MIT 

A comprehensive set of hierarchically organized 
modular analytical models is developed for perform- 
ance evaluation of multlprogralmned vlrtual-memory 
tlme-shared computer systems. This hierarchy of 
models includes a user behavior model, a secondary 
memory model, a progrembehavior model, a processor 
model, and a total system model. The thesis espe- 
cially details on the last three models. The pro- 
gram behavior model permits estimation of the fre- 
quency of paging. The processor model evaluates the 
throughput of a given multl-processor multi-memory 
processing system under multiprcgramming. Finally, 
the total system model derives response time dis- 
tribution of an entire computer system under study. 
Accuracy of performance prediction by these models 
is examined by comparing the predicted performance 
and the measured performance of the Multlcs system. 
These analyses are then applied to the optimization 
of computer systems and to the selection of the 
best performing configuration for a given budget. 
This framework of performance evaluation not only 
guides human intuition in understanding actual per- 
formance problems but presents reliable answers to 
quantitative performance questions about throughput 
and response time of actual computer systems. 
* Available from M.I.T. Project MAC as MAC-TR-103. 

THE EFFECT OF SELECTED VARIABLES ON THE 
LEARNING OF SOME COMPUTER PROGRAMMING ELEMENTS 

Sorel Reisman 
The Ontario Institute for Studies in Education 

The widespread use of computers in most aspects 
of society has caused educators to introduce com- 
puting into many levels of the curriculum. In 
the absence of experience suggesting techniques 
for structuring such courses, an intuitive ap- 

proach is usually taken. A conflict which has 
arisen because of this concerns the advantages 
or disadvantages of teaching high level languages 
before low level languages. This study attempted 
to resolve this conflict. An additional objective 
of the study was to investigate the effects of 
providing learners with a) computer generated 
reinforcement and b) differential error diagnos- 
tics in their programming exercises. 

Elements of high level and low level prograrmming 
languages were selected to be illustrative of pro- 
gramming languages taught in Ontario secondary 
schools. Two programmed instruction (PI) manuals, 
each representing one of the language levels, were 
written and field-tested for this study. Two sets 
of problems, one for each manual, were designed to 
be administered in two interactive time-sharing 
sessions. 

The main study was carried out in two phases. 
The first phase was conducted on 42 graduate stu- 
dents and the second on 113 grade ten students. 
The treatments to which each ~ was randomly as- 
signed were a) high level/low level or low level/ 
high level; b) error code or error statement; and 
c) reinforcement or no reinforcement. Depending 
on the sequence which had been assigned, the first 
PI booklet was administered to each S. Following 
this, each S worked on programming problems admin- 
istered via a time-sharing terminal where appro- 
priate error and reinforcement diagnostics were 
generated. A second PI manual was administered to 

followed by a second time-sharing session. At 
the completion of these sessions, a posttest was 
administered to all Ss. 

Performance data collected during the Ss' time- 
sharing sessions, and various partial posttest 
measures, were analysed with an analysis of covari- 
ance. Some significant differences and strong 
trends tended to support the hypothesis that the 
low level/high level sequence results in better 
overall performance than the reversed sequence. 

A questionnaire distributed to all grade ten Ss 
indicated that they preferred the low/high se- 
quence and thought it to be less difficult than 

the high/low sequence. 

No significant differences or strong trends were 
evident as a result of the error or reinforcement 
treatments. 

The results of sequence difference, while appear~ 
ing small in this study, seemed quite distinct. 
This suggests that these differences either exist 
and are of no practical value to the practitioner, 
or that they might become more distinct in a full 
term computing course. 

The error and reinforcement treatments which did 
not result in differentiating performance tend 
to support the findings of other studies done in 
interactive computing environments. That is, 
programmers working on time-sharing terminals 
appear to ignore programming manuals and computer- 
generated assistance, and seem to try~ different 
strategies when they make errors. This suggests 
that the treatments used in this study might pro- 
duce different results for learners using batch 
computer systems. 
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Computational Experience With The Central Cutting Plane Algorithm 

Jack Elzinga, Johns Hopkins University and 
Thomas G. Moore, Johns Hopkins University 

The Central Cutting Plane Algorithm is an 
algorit.hm for solving the convex programming prob- 
lem. Its convergence and other properties have 
been established elsewhere [2,6]; here, we will 
state, but not prove, the major theoretical results 
concerning the algorithm. The purpose of this pre- 
sentation is to report some preliminary computation 
al experience with an experimental code of the 
algorithm. 

THE ALGORITHM 

The Central Cutting Plane Algorithm (CCPA) is 
designed to solve the following form of the convex 
programming problem: 

maximize c t x 

s.t. gi(x) > 0 i=l ..... m (NLP) 

xeS~ E n . 

where the constraint functions gi are assumed to 
be continuously differentiable, concave functions, 
S is a compact, convex set, and c is a fixed vector 
in E n. The assumption of a linear objective func- 
tion involves no loss of generality since a problem 
where the objective function is a continuously 
differentiable concave function, not necessarily 
linear, may be transformed into a problem with the" 
structure of (NLP). 

The Central Cutting Plane Algorithm is as 
follows (Let I = {i I 1 ~ i ~ m), and 
F = {~Jgi(x)~ 0 ¥i~I, x~S}) : 

o Ste~ 0. Select x ~S. If x°~F, f°=ctx°. 
If rOOF, let fo=_~.. Let zO=wO=x O, jo=# for ieI, 
8 be a fixed scalar, 0 < 8< i, and k=0. l 

Step i. Let (x k+l, k+l) be the solution to the 
mathematical programming problem, SPk: 

max 

st cx- lloll~ fk 

gi(y~+V%(y~c~-y~ - llV%(y~0 y~, i~ 
l 

x~S. 

If ~k=0, stop. Otherwise, go to Step 2. 

Step 2 i) If xk+l~F, let z k+l be any point such 
that cz k=l ~ cx k+l. Determine w k+l = pzk+l+(l-P)w k 

for 0 ~ p<l, such that gr(W k+l) < 0 for some r¢~. 

ii) If x k+l ~ F and z k ~F, let w k+l = x k+l. 

Determine r ~I such that gr (wk+l) < 0. 

iii) If x k+l ~F, and zk£~, determine z~k+l~F 
such that c~ +I ~ cz k. Determine z k+l and w k+l 
such that zk+l~F, zk+l=~z k+l + (l-T)x k+l, and 

~ (wk+l) < 0~Jfor some reI, and 
+i= p~k+l + (l_P)xk+l, 0<p~T < I. 

Ste~ 3. If there exists any point (s) w p such that 
p ~ k~ wPeJ~, i~I, and 

i) the constraint gi (wp)+vgi (wp) (x-wP)-llVg i ( wp~ ~0 

is not binding in SPk, and 

ii) o k < 8 o p 
then let jk_jk._ .- wP . After this process has been 
carried ou~, ~et jk+l=jk for all i~I, i~r. 

l l 

Step 4. Let fk+l-czk+l,- and let jk+ir =J~lwk+l}'r 

Set k=k+l and repeat from Step i. 

The subproblem SP has the property that x k+l 
will be the center, an~ o k+l the radius, of the 
largest hypersphere which can be inscribed inside 
the polyhedron {xlcx~fk,g i(y)+?gi(y) (x-y)~0, 
YycJ~,i~I } with the further restriction that x k+l 
must lie in S. Thus x k+l is the "center" of a 
polyhedral approximation to the solution set of 
NLP. Hence, the name of the algorithm, the Central 
Cutting Plane Algorithm. If xk+l£F, then fk+l~ 
cx k+l, and if xk+l~F, then gi (wk+l) + Vgi (wk+l) 
(xk+l-w k+l) ~ 0. Since ok+~0 for all k, x k+l is 

effectively cut off by these additional constraints 
forming SP. _ from SP k. (Cuts of the form gi (y) + 
gi (Y)(Y-X)~+~ will be termed "constraint cuts", 
while cuts of the form cx > fk will be termed 
"objective cuts. ") 

Step 2 allows a great deal of flexibility in 
the determination of z k+l, w k+l, and ~k+l. With 
one additional assumption concerning S, namely, 
that there exists a point ~eS such that gi(~)>0 
for all icI, it can be shown that all accumulation 
points of the sequence {zk}~ . are optimal 
solutions to NLP, regardles~=~f the specific : ~ 
method of computing z k+l, w k+l, ~k+l to satisfy 
the conditions of Step 2. 
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Thepurpose of Step :3 is to keep the number 
of constraints in SP k small. Every time a new 
w k+l is determined, another constraint is added to 

the subproblem. The rule given in Step 3 for 
dropping constraints preserves the convergence 
properties of the algorithm. 

In practice the set 13 will be a bounded 
polyhedron described by linear constraints, so SP k 
will be a linear programming problem. The sub- 
problems are then solved by solving the dual of 
SPk; then the addition of new constraints to SP k 
corresponds to adding new columns to the dual 
problem. 

The flexibility in Step 2 allows for various 
techniques to accelerate the algorithm. The 
following scheme represents no acceleration: if 
xk+icF, let z k+l = x k+l, p=0; if xk+l~F, z k+l = 

~k+l z k, w k+l = x k+l in iii). We will report on 

a number of experimental acceleration techniques. 

Acceleration Technique I 

If the center, x k+l, found by the subproblem 
is feasible, no other technique is employed to 
accelerate the algorithm. The addition of an 
objective cut (that is, changing the right hand 
side of the objective cut, or, in t:he dual problem, 
changing the cost associated with tlhat column) may 

require no pivots in the linear program; thus this 
improvement in fk is gained with little computa- 
tional effort. 

If the center, x k+l, is infeasible, then a 

bisecting search is carried out on the line segment 
between x k+l and z k. That is, the point ~(xk+l+z k) 

is evaluated to determine whether or not it is 

feasible. If it is infeasible, then it is used 
instead of x k+l as the most recently found infeasi- 
ble point; if feasible, it replaces zkas the most 
recently found feasible point. The result of this 
is that a feasible and an infeasible point are 
still determined, but the distance between them is 
half the distance between the starting feasible 
and infeasible points. This procedure can be 
repeated a certain number of times with the final 
feasible point, z k+l, and the final infeasible 
point, w k+l, being used to generate the new 
objective cut and constraint cut. The number of 
bisecting steps used was in/m] + i, where ix] 
indicates the largest integer less than or equal 
to x. The reason for this rule is that the value 
of this acceleration step is dependent on the num- 
ber of constraints. The most likely numbers of 
function evaluations required to determine whether 
the new midpoint of the segment is feasible or not 
are 1 or ml; if it is infeasible, it is likely to 
be infeasible to the same constraint as the infea- 
sible point determining the end-point of the seg- 
ment and can thus be identified wit[h one function 
evaluation by evaluating this constraint first; if 
it is feasible, all ml constraints may have to be 
evaluated to determine this. Thus, the value of 
the bisecting step with respect to its cost in 
terms of computational effort is i~versely related 
to the number of nonlinear constraints in NLP. 

Acceleration Technique II 

A second acceleration technique was used on 

some of the test problems. This technique consists 
of three consecutive line searches if the center 
x k+l is infeasible; as in the other acceleration 
technique, no additional action is taken if x k+l 
was feasible. The first search direction ia 
determined by projecting the direction from z k to 
x k+l onto the hyperplane CX=czk,i.e. d=(zk-x k+l) 
- [(zk-xk+l) t c~cll2]c. Then the function sin 

[Sigi(x), i .... m], where e i are approximate scale 
factors for the functions, is maximized along 
this line. The next direction is in thedirection 
c, moving as far as po-sible without leaving the 
feasible set. This determines fk+l. Since ~k+l 
is close to the boundary, a small step in the 
direction of x k+l then yields an infeasible point 
for w k+l. The purpose of the first step is to 
get away from the constraints; the purpose of the 
second is to find a better feasible point; the 
purpose of the third is to find an infeasible 
point close to the boundary from which to generate 
the constraint cut. Since it is not necessary to 
find the exact maximum of the function in the 
first step, nor is it necessary to exactly deter- 
mine the boundary in the second or third step, 
only a few evaluations need be performed in each 
of the three steps. When the linear constraints 
describing S play an active role, this accelera- 
tion technique must be modified, in an obvious 
fashion, by employing projection operations onto 
the active linear constraints. 

Acceleration Technique III 

This technique involves a line search along a 
segment of what is termed the "central ray" of the 
polyhedral approximation to the optimal solution 
set. The central ray is constructed (and defined) 
by taking the optimal solution of a subproblem 
and performing the following: first, all inactive 
constraints (cuts) are discarded. Then, the objec- 
tive function value determining the objective cut is 
allowed to vary from - to + . The locus of all 
centers resulting from this perturbation is the 
central ray. By this construction, the central ray 
is seen to be the ray passing through the center of 
the polyhedron and the point obtained if the objec- 
tive function were maximized over the polyhedron 
described. 

A generator for the central ray by the active 
cuts is available from the optimal basis inyerse in 
the dual problem. The line search for the boundary 
is then carried out between the center and the 
upper or lower bound contour depending whether the 
center was feasible or infeasible. 

It may appear that the insertion into CCPA of the 
line searches described in the acceleration tech- 
niques robs the algorithm of one of its attractive 
features. It should be emphasized once again how- 
ever that the convergence of the algorithm does not 
depend on the exactness of the line searches (in 
fact, employing no line searches at all results in 
a convergent algorithm); therefore, the type of 
acceleration technique employed and the effort 
expended on it are decisions that can be made on 
numerical or heuristic considerations. 

COMPUTATIONAL RESULTS 

Bracken and McCormick [i] relate the following 
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nonlinear programming problem: 
n 

min 4Z~ cJx j 
J=~n n 

s.t. Z a~=x.-1.645(. Z_v. .x~)~b i 
j=l ±J 3 3=I i] J 

n 

j~l xj : 1 

i=l, . . . ,m 

(1) 

(2) 

(3) 

X. k 0, j=l.,,,.m. (4) 
] 

The purpose of the problem is to determine the 
optimal feed mixture for livestock. The variable 
xj represents the fraction of feed j to be included 
in the mixture, c. is the cost per unit of feed j, 
a.. is the averag~ amount of some attribute i (e.g. 
prl~tein content) per unit of feed j, v.. is the 
variance of the amount of attribute i ~r unit of 
the mixture. If the level of attribute i is inde- 
pendently normally distributed for each feed, then 
(5.2) represents the constraint that the mixture 
should have a 95% probability of attaining the 
desired level of attribute i. Thus the problem is 
to minimize the cost of the mixture while maintain- 
ing a 95% probability for attaining the desired 
level for each attribute. 

The constraint function in (5.2) is concave. 
Therefore, this is a convex programming problem. 
The problem is a good problem for testing purposes. 
Problems of any size can be generated by generating 
appropriate a..'s, v..'s, and b.'s. The square 

m i ] 
root makes function e~aluations non~trlvlal. 

In order to test the efficiency of the 
algorithm, data were generated for problems of 
varying sizes. The parameters were chosen randomly 

according to the following scheme: a.. was uniformly 
distributed over [0, 20], v.. over [~3, 7], c. over 
[0, 10], and b: was determilngd by the formul~ 

bi=bi - (bi-~)i~(1/.95)(i~, where bi was the value 

j~i 1 of aijx. - 1.645( ~ v..x2) % evaluated at xj= n 
= J j=± 13 3 

(vij) ~ for all j, and 5 i = m~n[aij - 1.645 ] and r 

was a random variable uniformly distributed over 
[0, I]. In this way, the point x. = i for all j 

3 n was ~easible to every constraint, but there was 
also a 95% probability that each constraint cut off 
at least one extreme point of the polyhedron des- 
cribed by (3) and (4). 

Since the computation time required to solve 
a problem is dependent on the computer used, the 
problems generated were also solved using the SUMT 
algorithm (Fiacco and McCormick [3] ) to provide a 
measure of the difficulty of the problems. The 
1964 version was used. Some experimenting was 
done on trial problems to determine a good set of 
options and parameter values for the SUMT algorithm 
on this class of problems. The initial value of r 
was determined by the formula 
r = [ (Vf (x°)tH -I (x °) Vf (x °) )/(VB (x°)tH "I (x °) 

VB(x°))] where B(x) = i Zl_ i/gi(x), H is the hessian 

of B, f is the objective function and "~ is the ntun- 
ber of constraints. This appeared to give better 

results than the standard r=l. The ratio of 
decrease for r was i, and second order extra-pola- 
tion moves were employed. A good subproblern 
stopping rule was to stop when the inner product 
of the searchdirection with the gradient of the 
subproblem function was less than I0 -I times the 
tolerance desired to stop the entire algorithm 
(i.e. the difference between the upper and lower 
bounds on the optimal objective function value). 

Additionally~ the CCPA code was modified to 
per~er~ the cutting plane algorithm of Kelley [5] 
(KCPA~. The algor±thm was stopped when a sub- 
problem solution fell within the tolerance of the 
best upper bound determined by SUMT and CCPA. 
Knowledge of such a bound is advantageous to KCPA 
since it generates only upper bounds itself. 

Special consideration had to be given to the 
constraint (3) since neither algorithm was designed 
for equality constraints. For SUMT, the variable 
x n was replaced everywhere by 1 - n~1 x and the 

n~ j=~ 3 
constraint 1 - ~=~ xj ~ 0 replaced Xn ~ 0. For CCPA 

n 
and KCPA, (3) was replaced by j=~ xj ~ 1 and 

- j~xj ~-i. 

In Figure i, the solution times are shown for 
SUMT, KCPA, and two versions of CCPA, the faster 
times belonging to an accelerated version (accele- 
ration technique I), and the slower times belonging 
to a version without any acceleration technique. 
Problems of various sizes were solved to determine 
the effect of problem size on computation time. 
The algorithms were terminated when the difference 
between the upper and lower bounds on the objective 
function was .001. (In CCPA, fk is the lower bound, 

and an upper bound can be easily calculated from 
the subproblem: cz *~ fk+l + ~k+I/uk ' where u k is 
the dual variable corresponding to the objective 
cut constraint in SPk.) The time is computation 
time only (i.e. inpu~ and output times are not in- 
cluded). The problems were solved on an IBM 7094. 
As evidenced from these computational results, the 
Central Cutting Plane Algorithm appears to be quite 
efficient. 

Certainly one of the strong features of the 
cuttingplane algorithms are their ability to han- 
dle linear constraints routinely. Although at 
first glance these test problems appear to have 
very few linear constraints, in fact there are 
quite a few -- each of the non-negativity con- 
straints is handled very routinely by the CCPA and 
KCPA since they solve linear programming subprob- 
lems. This factor is responsible in part for the 
encouraging computational results. Since one would 
expect a certain number of linear constraints to 
appear in most nonlinear programming applications, 
the Central Cutting Plane Algorithm seems particu- 
larly attractive. 

In order to remove this linearity from the 
test problems, the constraints (3) and (4) were 
replaced by n 

Z i) ~ I .  ~5~ j~l (xj - 

Thus the solution was restricted to lie within a 
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ball of radius 1 around the point (l,1,...,l). 
Test problems were generated in the same manner as 
before except that the b i were determined so that 
(i,i ..... i), father than (1/n ..... i/n), was the 
starting feasible point. The function 

Z ~ xj - 1.645 " j=1 aij . (j~ vj xj 2) 

was evaluated at (l,l,...,1) and either (i + i//n, 
.... 1 + I//n) or (i - i/~i ..... 13- 1//n) depending 
on the sign of the evaluation at (1,1,...,1). Then 
a random fraction, uniformly distributed on ~, i], 
times the difference in these evaluations was sub- 
tracted from the evaluation at (i,i,...,i) to 
determine b., thus ensurinq that at ].east some 

• l ° 
polnts feaslble to (5) were not feasible to any 
constraint generated. The aij's were randomly 
selected from [0, 20] and the cj's from [0, i0], 
as before. The v. 's were randomly selected from 
[0, 50n]. 13 

The problem was solved exactly as formulated 
using SUMT. For CCPA the non-negativity con- 
straints were included, plus the constraints 

n n 
• ~ -n - /D. These j_~ xj ~.n - /nn and - j=~ x 3 

constraints had no effect on the solution since 
the ball described by (5) lay within these con- 
straints. However, they provided a compact set S 
for CCPA, and also bounded the solution away from 
(0,0,...,0) where the gradients were undefined. 

The computation times for these problems are 
shown in Figure 2. The computations were termina- 
ted when the difference between the upper and lower 
bounds on the objective function was less than .001 
times the value of the objective function at 
(i,i.,,,.i). The acceleration technique used in 
CCPA was the second technique discussed in this 

chapter. A few problems with 40 variables were 
attempted, but were determined to rec~ire too much 
computation time (over 5 minutes, at least for 
problems with only a few constraints) to be feas- 
ible for study. Note that the times for SUMT are 
approximately half of that recorded for problems of 
comparable size in Figure l; essentially this is 
due to the dropping of the non-negativity con- 
straints, which effectively reduces the number of 
constraints by half. 

The Central Cutting Plane Algorithm, although 
performing acceptably, did not solve this class of 
problems with the speed exhibited earlier. This is 
due to the difficulty in approximatir~ nonlinear 
curv-s by linear approximations. Note that the 
computation time decreased with an increase in the 
number of constraints. This was because with a 
large number of constraints the optimum was more 

likely to occur at a sharply defined vertex of the 
feasible region, where several nonlinear constraints 
intersected; with fewer constraints, the optimum 
was more likely to lie on a smoother boundary of 
the feasible region. The linear approximations 
generated by CCPA are much better at approximating 
a sharp vertex than at approximating a smooth 
curved surface. 

The chemical equilibrium problem, which 
minimizes the Gibbs free energy subject to material 
balances, is a convex programming problem with 
linear equality constraints and non-negativity 

constraints. We have solved the problem given by 
Bracken and McCormick [i], which, after formulating 
an equivalent problem with a linear objective, 
results in a problem with ii variables, 1 nonlinear 
constraint, 3 linear equalities and non-negativity 
constraints on all variables. The problem is 
complicated by the non-differentiability of the 
~ree energy function at zero. This difficulty is 
handled by treating the non-negativity constraints 
as nonlinear constraints; then finding the center 
of a polyhedron defined in part by these non- 
negativity constraints constrains all solutions 
away from the troublesome zero values. A .solution 
optimal within the tolerance 0.001 was obtained 
in 28 seconds by CCPA; the computation time was 
dropped to 18 seconds using the central ray 
accelerator (CCPA-III). Acceleration technique 
I did not perform well on this problem, creeping 
slowly along the nonlinear constraint until some 
numerical difficulties occurred (In fact, this 
phenomonon led us to devise acceleration techniques 
II and III which also seek better feasible- 
infeasible pa~ns, but restrict that search to the 
"middle" of the polyhedral approximation). These 
times compare favorably with other reported 
solution times [4] on more modern machines. 
Direct comparison is not possible since tolerances 
and stopping rules are not repo~ted. 

The close similarity between the chemical 
equilibrium problem and the geometric prograrmuing 
dual problem suggests that the latter might profit- 
ably be attacked by CCPA. Part of CCPA's attrac- 
tiveness for use on the geometric programming dual 
stems from the natural way it handles the problem 
of non-differentiability. 

DISCUSSION 

~h@ implementation presented here has the 

attractive feature that no changes need to be made 
to the linear programming code. The CCPA code for 
which the computational results were reported used 
the SIMPLX code written by George Diderrich of the 
University of Wisconsin Computing Center and modi- 
fied by A1 Kacala of The Johns Hopkins University 
Computing Center for use on the IBM 7094. 

Certainly a more efficient code could be de- 
signed for the CCPA. Not only might the algorithm 
be improved by the design of other acceleration 
techniques, but even the code reported on here 
could be improved by prograrmning a specialized 
linear programming code for the Central Cutting 
Plane Algorithm. For example, in using the CCPA, 
it is known in many cases which coltunn is the 
prime candidate to enter the basis (the new cut), 
and so savings could be made in pricing out the 
columns. Also, features could be incorporated to 
allow dropping the non-negativity restriction on 
the dual variables. 

Nevertheless, it is encouraging to have the 
assurance that the addition of a few subroutines 
to an efficient linear programming code can yield, 
particularly when linearities are present in the 
nonlinear problem, an efficient code for the convex 
programming problem. 
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NONLINEAR 

VARIABLES CONSTRAINTS SUMT KCPA CCPA CCPA-I 

5 5 4.2 0.6 0.6 0.5 

i0 5, 8.9 0.6 0.6 0.6 

10 10 14 .2  1 . 1  1 . 6  1 . 5  

i 0  2(i) 26 .3  3 . 6  3 . 0  3 . 0  

20 10 45.0 6.4 4.5 3.7 

20 20 77.2 8.6 6.8 6.2 

20 40 130.0 26.3 15.8 14.1 

40 40 450* 52.0 45.3 35.9 

60 60 411.5 269.1 128.2 

*problem terminated before completion 

Figure I. Computation Time (IBM 7094) in Seconds for the Feed Problem. 

NONLINEAR 

VARIABLES CONSTRAINTS SUMT KCPA CCPA-II 

5 2 0.9 3.9 0.9 

5 4 1.9 3.4 2.1 

5 5 2.2 3.5 1.3 

5 I0 4.2 2.2 

i0 4 2.9 9.8 

i0 7 5.2 9.3 

i0 I0 7.3 8.4 

i0 20 13.3 7.9 

20 7 12 . 1 128 . 1 

20 14 22.2 85.2 

20 20 33.4 93.6 

20 40 66.2 77.3 

Figure 2. Ccm~putation Time (IBM 7094) in Seconds for 

the Modified Feed Problem 
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