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A computing machine is described which is 
structured around a distributed logic 
storage device called the Processing 
Memory. This machine, the Brookhaven 
Logic-In-Memory Processor (BLIMP), is 
meant only as a vehicle for simulating 
and evaluating its concepts, rather than 
for eventual fabrication. In particular, 
it is shown that the architecture used is 
very well suited to large-scale-integra- 
tion (LSI) impl~mentation technologies. 
It was first necessary to redefine the 
various goals of logic design optimiza- 
tion in the context of LSI implementation. 
Then an elemental building block of the 
Processing Memory is described as having 
evolved from associative memory circuits. 
It is shown that a computer such as 
BLIMP which utilizes the Processing 
Memory concept can meet the goals of 
design optimization for LSI. Design 
techniques for this project were 
developed as they were required. Of 
particular importance is a simulation 
system called MODEL, which documents the 
structure and analyzes the behavior of 
the proposed system. 
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MOTIVATION 

In addition to providing greater 
speed and compactness in digital systems, 
large-scale-integration integrated 
circuit technology has redirected many of 
the goals of the digital system designer. 
In an era where hundreds of logic gates 
can be placed on a single semiconductor 
chip, design optimization must necessarily 
take on new meanings. It is no longer 
cogent to perform component counts alone 
to assess cost, for example, because 
external signal conductors are likely to 
be a much more precious commodity than 
semiconductor junctions or capacitance. 
Similarly, a design which can be broken up 
into a number of repeated modular circuits 
of few different types is optimized in a 
much more relevant fashion than a design 
which is optimized in the more classic 
sense of Boolean minimization. (I) 

In the context of LSI, the impact on 
digital processor design has been to im- 
pose new goals and eliminate some of the 
old ones. Modular partitioning of logic 
into identical cells of as few types as 
possible becomes more important than the 
total number of cells. Partitioning, in 
turn, must minimize the number of binary 
arguments externally passed from one 
module to another. In addition, in the 
faster logic families, care must be taken 
to ensure that interconnection length is 
minimized, thus restricting intermodule 
communication to "near neighbor" cells 
only. 

Under these constraints, design 
complexity increases rapidly but in a 
predictable way. The basic building 
blocks or cells remain relatively simple 
but the manner in which they are assigned 
or adapted to problems requires the 
designer to build an intricate set of 
cross-referenced lists of information. In 
its simplest case, this information is 
merely a wire list but in more intricate 
circuits, the lists imply all the levels 
of nested modularity, and all the func- 
tional dependencies in the system. The 
problem of storing, processing, analyzing 
and modifying this information is best 
suited to computer-aided logic design 
techniques. Thus, for large systems 
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optimized for LSI, computer-aided-design 
becomes not just desirable, but mandatory. 

A general purpose computer, called 
the Brookhaven Logic-In-Memory Processor 
(BLIMP) is described. This machine is 
imaginary in the respect that it will 
never be built or even fully designed, but 
is real in the sense that it serves as a 
vehicle for the analysis of several fully 
developed concepts. The architecture is 
designed to attempt to optimize implemen- 
tation with high speed LSI. The 
requisite computer-aided desigh (CAD) 
techniques for this project were develop- 
ed in the form of a language called MODEL. 
And methods were developed for performing 
computerized dynamic simulation of the 
design as a procedure for verifying the 
underlying concepts of the system as well 
as the details of the implemented design. 

THE ARRAY 

The most unique feature of the 
Brookhaven Logic-In-Memory Processor is 
that most of the data processing, includ- 
ing many arithmetic operations, is per- 
formed on the data words while they are 
resident in a scratchpad storage buffer. 
Each scratchpad storage location is 
augmented with sufficient circuitry to 
perform the logical combinations or 
modifications without having to fetch the 
word into a separate mainframe processing 
element and then having to restore it. 
Hence, the computer is termed a logic- 
in-memory processor whose central 
arithmetic and logical unit is the 
scratchpad or processing memory (PM). 

The idea of including in each PM 
data word the capability for arithmetic 
and accumulation is, by the standards of 
conventional computers, quite extrava- ' 
gant. But again, this is extravagance 
as measured by an archaic yardstick, 
namely component count. In terms of the 
goals of LSI optimization, a single 
augmented memory element may be propa- 
gated into an i by j array of identical 
elements to form a two-dimensional 
matrix. The PM then consists of "j" 
words, each of "i" bits in length. 
Most of the element interconnections are 
made with "nearest neighbors", and the 
ratio of external connections to internal 
nets is smaU. The large amount of 
duplication of function in each word of 
the PM can be used to good advantage to 
provide increased parallelism of opera- 
tion for processing vector instructions. 
In terms of the new criteria, then, the 
PM can be thought of as a highly opti-, 
mized design. 

The development of the circuitry of 
each PM element can be described in terms 
of the evolution of a memory element from 
one having only conventionally addressed 
read and write capability, to an element 
augmented to exhibit associative or 
content addressable reference capability, 
and onward to its final form as an LIM 

array element. This process is 
exemplified in Figure i. 

Figure la depicts the logical equiva- 
lent of a conventional memory element, Mij, 
consisting of a flip-flop and associated 
address and timed gating circuits. The 
address line is unidirectional and the 
data line is bidirectional. 

In Figure ib, the associative 
property has been added to Mij by attach- 
ing an "exclusive or" function of Mij and 
the Data line i and their complements, 
under control of the ASSOC line. The 
Address line is now bidirectional. If the 
ASSOC line is active and a match occurs 
between the value of the Data i and Mij, 
Address j will be activated at the memory 
element as the partial result for that 
element. The Address line can be forced 
active by raising the Mask i line which 
has the effect of removing Mij from 
contention in the associative process, 
that is, rendering bit i as a "don't 
care".(2) 

In Figure ic, two new outputs, Si and 
Ci have been generated and these are the 
elemental sum and carry of Data i and Mij 
under the control of line ADD. The Mask i 
line now assumes the added role of carry 
propagation. Thus with a proportionally 
small increase in the number of logic 
gates, each word of an associative memory 
can be fashioned into a conventional 
binary adder. 

Figure id shows the elemental 
circuitry in its complete form. The 
addition of a feedback gate on the Si line 
creates one bit of an Acculnulator register 
under the control of the ACCUM line. A 
five input and-or circuit allows the adder 
to be used for numerous other functions 
under program control. One's complement, 
left and right shifts and push-up or 
push-down stacking turn the array into a 
general purpose processor. Two new 
busses are brought into Mij under control 
of selective gating. One of these, Si, 
is the same net as output Si. Tk is 
called the transpose bus and is used for 
vector operations. The merged data line 
may be temporarily stored under control of 
the LATCH line, and it will be shown that 
this feature decreases the total number of 
PM interconnections by a significant 
factor. 

The Mij element design implies the 
creation of five types of information 
busses in addition to the control inputs 
and logic outputs. The Data bus is used 
for the conventional fetching or storing 
of information as well as associative 
reference input words. The Sum bus con- 
tains arithmetic results. The Mask/Carry 
bus is used to control the masking of 
operands during an associate and, during 
arithmetic operations, propagates carry 
or borrow information. The Address bus, 
of course, contains word selection infor- 
mation. 

To provide true parallelism of 
operation, a separate set of these busses 
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would be required for each set of 
operands. The number of busses for the 
entire processing memory then, would 
reach the hundreds, and the packaging of 
such a system would become quite wasteful 
if not impossible. To alleviate this 
situation and yet leave the basic concept 
intact, the PM is divided up into a 
number of sectors, with "p" words per 
sector. The value of p will be shown to 
be the central parameter of this 
architecture. There is a separate 
Data, Sum, and Carry/Mask bus for each 
sector of the PM, and the busses of each 
sector are independent of those of the 
other sectors. Intersector information 
exchange will take place on the Transpose 
bus. 

Sharing of busses among the words of 
a single sector is accomplished through 
time division multiplexing of the busses 
with time slices for a given word assign- 
ed in accordance with the value of the 
lower order bits of the PM word address. 
It is most judicious, therefore, that p 
be a binary power. It is the time 
sharing of the busses that creates the 
need for the LATCH line of Figure id. 
Data for each word location can be 
sampled in a phased manner and held in 
the input flip-flop, creating the effect 
of the data being present on the bus for 
as long as it is required. 

The central parameter p can be 
chosen by analyzing the relationships of 
certain other properties of the PM. We 
can define the following: 
i) t; the propagation time from the 

output of one word to the input 
of another over a bus. This 
number reflects primarily the 
setting speed of the latching 
flip-flops. 

2) s; The scalar processing cycle time 
of the PM. This is essentially 
the add time. 

3) q; The projected ratio of vector 
instructions per instruction, 
based upon some knowledge of the 
job and instruction mix. 

A certain processing balance may be said 
to be achieved if the time of scalar 
instruction processing is rendered equal 
to the time required for complete pro- 
cessing of vector instructions, as this 
situation will maximize the utilization 
ratio of much of the control circuitry. 
Then the central parameter, p, can be 
computed from this relationship. 

s 
P - tq 

This computation is subject to the 
admonition that for design convenience, 
p be a binary power. The value of p is 
used several places in the design 
process. It represents the number of 
words per sector and, as such, it also 
implies the smallest usable vector size, 
and the number of time slices needed for 
each bus. In terms of loading and un- 

loading the PM from a larger, slower, 
main storage, the value of p represents 
the minimum degree of interleaving 
necessary to match main storage to the PM 
speed. Furthermore, if we define n as the 
number of sectors needed, then (p) (n)=m, 
the number of words in the processing 
memory. Experience garnered by others in 
systems where contiguous fields of 
operands are prefetched indicates that n 
need be at least 4 but more probably 8 in 
most multiprogrammed environments. (3) 

Representative numerical values can 
be chosen for other parameters as well. 
Assuming an implementation in high speed 
TTL or medium speed ECL, s can be assumed 
to be 50 nanoseconds, and t can be set at 
12 nanoseconds. The value of q may not 
exceed .5 for even the most highly 
parallel problems. The value of the 
central parameter, then, would be close to 
eight. This in turn indicates that a 
main storage cycle of 400 nanoseconds is 
sufficient to keep the PM active. Maxi- 
mum effective instruction processing rates 
would approach 20 million scalar instruc- 
tions per second, or 80 million vector 
elements per second in these technologies. 

Of course, the above analysis, to be 
exhaustive, would have to take many more 
factors into account. Such considerations 
as instruction power, operating system 
philosophy, and job stream control should 
be considered, and these factors make the 
system design job much more complex. But 
the above analysis provides a method of 
determining hardware balance within a 
given technology for this particular 
architecture. 

LOADING THE PROCESSING MEMORY 

It is obvious that the ultimate 
improvement in performance derived from 
the PM concept is highly dependent upon 
the probability of finding the needed data 
already in the PM. If the data can be 
found resident in the PM before processing 
a large percentage of the time, then the 
overhead incurred in unloading and reload- 
ing the memory is minimized. For this 
reason, a study was made of scratchpad 
loading strategies and their effect on 
scratchpad storage latency as it affects 
the performance of BLIMP. 

Two strategies were investigated. 
These appear to be the general case of 
almost all reasonable particular 
strategies currently used or proposed. 
The performance of each was simulated 
using numbers representing actual 
reference address sequences obtained from 
a variety of computers' object codes. The 
strategies were analyzed comparatively for 
several different buffer sizes. The 
number of hits (that is, the number of 
times the reference address was found to 
be in the scratchpad) and the reference 
time, including overhead, were recorded 
and comparatively analyzed. 

Strategy I is the most commonly used 
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scratchpad loading strategy. It is the 
strategy employed b v the IBM 360/85 and 
195 cache storage. (3) It requires that if 
a referenced address is not contained in 
the cache, the buffer locations currently 
residing are restored to those addresses 
in main storage and a new set of con- 
tiguous data words, beginning with the 
location currently of interest, is loaded 
from main memory into the cache. 
Strategy II, which at first glance may 
appear less appealing, calls for replace- 
ment of only that word which is of current 
interest. The word is placed in an 
address which is the modulo address of 
its main storage location, modulus the 
buffer size. For example, if a word at 
main storage location 25710 were called 
for, it would be stored in location 1 of 
a 256 word buffer. As with Strategy I, 
the data which is replaced in the scratch- 
pad is returned to main storage. 

In the simulation, buffer sizes of 
64, 256, 1024 and 4096 words were used for 
each strategy. In calculating the time 
overhead, a main storage interleaving 
factor of 4 was assumed. Most programs 
simulated required 10,000 to 20,000 
memory references from approximately 
8,000 main storage locations. A figure 
of merit was calculated as follows: 

5.0(h) - 1 
x = e 

Here h is the number of hits and r is the 
number of simulated time units incurred 
for storage reference, x=l indicates a 
break-even point; that the scratchpad 
technique neither enhanced nor detracted 
from the performance. Some results are 
plotted in Figure 2. 

The results of this sketchy simula- 
tion experiment are by no means con- 
clusive, but certain interesting points 
can be made. The relative performance of 
the two strategies was found to depend 
not only on the size relationship of the 
buffer and program but also to some 
extent on the correlation coefficient 
of the reference address sequence, with 
more highly correlated sequences tending 
to favor Strategy I. The effect of 
having multiple buffers in either 
strategy increases the performance of 
that strategy, and, as one might expect, 
the greater the number of buffers, the 
more similar the performance character- 
istics of the two schemes. In general, 
it appears that smaller machines would 
benefit most from a scratchpad adhering 
to Strategy II, while larger ones would 
perform better with Strategy I. 

In terms of BLIMP, where the 
architectural behavior may be varied 
through a microprogram, each strategy 
would have its place. Strategy I would 
be employed for highly correlated or 
vector operations, and Strategy II would 
be used for a list, logical and other 
less correlated operations. All this is 
of course dependent upon the ability to 

have a priori knowledge (perhaps from 
compile time analysis) of the execution 
time behavior of the data. 

THE BLIMP PROCESSOR 

It is difficult to analyze the opera- 
tion or assess the value of the Processing 
Memory described, except in conjunction 
with the other components of a computer 
system. For such a purpose, a fiction- 
alized system is proposed which contains 
all the elements necessary to implement a 
general purpose computer that utilizes the 
logic-in-memory approach. The other units, 
however, need only be specified and 
designed to the level of detail necessary 
to analyze the PM and its architecture and 
simulate the salient interactions. Hence, 
it is not the purpose of the BLIMP to be- 
come an actual computer, which has freed 
investigators from the tedious tasks of 
designing the more commonplace modules 
completely. Rather, the BLIMP outlines an 
apprach to the utilization of such storages 
as the central processing element of a 
high performance LSI machine. 

The block diagram of the system is 
shown in Figure 3. In this machine, the 
PM size is 64x64 bits with a central para- 
meter of 8. The memory is imbued with 
transfer and processing rates discussed 
previously; the add speed and block trans- 
fer bandwidth is 50 nanoseconds, and thus 
the "p" element vector processing time is 
i00 nanoseconds. 

There are several floating point 
processes which do not seem amenable to 
the logic-in-memory approach. For this 
reason a scalar Floating Point Unit has 
been attached to the PM, to perform 
normalization and the more complex 
operations such as division and root 
calculations. The speed of the binary 
multiply may also be increased by the use 
of dedicated shift circuitry external to 
the PM, but this was not considered 
essential to the BLIMP design. 

Also connected to the PM Data bus is 
the Instruction Decode Unit. It is the 
purpose of this unit to fetch instruction 
words out of the PM and initiate the 
appropriate action to execute the 
instruction. The Instruction Decode Unit 
is connected to the I/O Processor to 
initiate I/O transfers and pass arguments 
necessary for I/O processing. It is also 
connected to the Multiloader, a device 
which initiates eight word transfers 
between the PM and Main Storage. In the 
event that an instruction cannot be 
executed entirely from information or 
operands currently resident in the PM, a 
transfer will take place to bring in the 
necessary blocks and return the least 
recently used block back to Main Storage. 
Similarly, if the IDU determines that the 
next instruction to be executed is not in 
the PM, a transfer will be initiated to 
bring in the new instruction stream. In 
this respect, the PM load algorithms are 
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very similar to the Cache concept used by 
IBM, and to the load Strategy I described 
in the section, Loading the Processing 
Memory. The IDU, then, must itself have 
a small associative storage to determine 
if a given Main Storage address to be 
referenced has an image residing in the 
pM.(4,5) 

When the IDU determines that all 
data processing is ready to take place 
inside the PM, it passes the instruction 
information to the Connection Matrix 
whose purpose is to manipulate the control 
lines for the various PM words including 
the time-division-multiplexed timing and 
gating pulses. The smallest allowable 
distinct operand is sixteen bits long, so 
only four independent sets of control 
lines per word are required. The maximum 
number of lines from the Connection Matrix 
to a 64x64 PM of the design of Figure Id 
is over 2,000, but since not all opera- 
tions are subject to byte manipulation 
requirements, and certain combinations 
are mutually exclusive, this number can 
be reduced somewhat. The Connection 
Matrix, under control of the Instruction 
Decode Unit, provides all the gate and 
inhibit controls necessary to forge the 
"plasma" of interconnects surrounding 
each PM word into the appropriate 
specialized functional unit to execute 
the instruction. 

The Storage Control Unit is a high 
bandwidth data exchange device which 
handles storage requests from either the 
Multiloader or the I/O Processor to Main 
Storage, which is specified as a 400 
nanosecond, eight-way interleaved con- 
ventional array. Each eight-word 
storage cycle is honored through a d-c 
interlocked, ready-response hardware 
protocol to allow for the inclusion of 
slower buffered storages or facilities 
in the configuration. None of the unit 
specifications mentioned go beyond the 
current state of the art and are in fact, 
exceeded in some commercially available 
computers. (6) 

The design outlined above implies 
the nature of this machine's instruction 
set. The complete list of instructions 
appears in Table i. Most of the opera- 
tions are self-explanatory. Since the 
BLIMP is designed for simulation and 
analysis only, a simplifying extravagance 
has been used in the instruction format. 
The instruction word size is given as 
64 bits long and all operands are 
directly addressable. All instructions 
have two 24-bit address operands plus 
an "op code" portion. In any future 
implementation, several different modes 
of addressing must be provided, thus 
considerably enriching the instruction 
repertory. 

The instruction set of Table 1 is 
certainly quite minimal, but several 
of the less conventional entries require 
some explanation. Foremost among these 
are the Vector DEFINE instructions. Each 

word in both main storage and the PM has 
two tag bits prefixed to them which are 
interpreted by the internal logic as 
"continue" indicators for element strings. 
Thus a vector (or an I/O buffer) is define/ 
by specifying its upper and lower address 
limits and one or the other of the tag 
bits in each word after the first are set. 
Similarly, a stack may be defined; in this 
case, both tag bits are set for each 
continuation word. The PUSH-UP and 
PUSH-DN transfer functions are only 
defined for element fields which are 
defined as stacks. A vector, buffer or 
stack may be specified by any of the 
addresses included in its range. 
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Table i. 

Transfer 
Instructions 

POP 

PUSH 

MOVE 

Binary 
Arithmetic 

Instructions 

BLIMP Instructions 

Operands 

A,B 

A,B 

A,B 

ADD (A) + (B) = (A) 

SUBTRACT (A) - (B)= (A) 

SHIFT L A,B 

SHIFT R A,B 

COMPLEMENT A 

TWOS COMP. A 

MULTIPLY (A) × (B)=A 

DIVIDE (A) ~ (B)=A 

INCREMENT A 

DECREMENT A 

Floating 
Point 

Instructions 

ADD F 

SUBTRACT F 

MULTIPLY F 

DIVIDE F 

Logical 
Instructions 

AND 

OR 

EXCLOR 

ASSOC. & COUNT 

ASSOC. & STACK 

SET MASK 

Vector 
Instructions 

(A) + (B) = (A) 

(A) - (S) = (A) 

(A) × (B)= (A) 

(A) ~ (B) = (A) 

Comments 

Word from vector B stored into location A 

Word from location A stored into vector B 

Shift word A into number of places specified by count in B 

One's complement 

Two's complement 

(A)-(B)=(A) 

(A) + (B) = (A) 

((A)+(B)) ((A)" (B))=(A) 

A,B Address by content of A, searching through vector B, put match 
count in A 

A,B Address by content of A, searching through vector B, stack 
addresses in vector starting at address A. 

A Use contents of A. 

DEFINE BUFFER A,B 

DEFINE VECTOR A,B 

DEFINE STACK A,B 

TRANSPOSE (A)T=(B) 

COFACTOR (A) C+ (B) 

MULTIPLY V (A)× (B)=(A) 

ADD V (A) + (B) = (A) 

SUBTRACT V (A) - (B) = (A) 

DETERMINANT IAi=(B) 
DIVIDE V (A)~(B)=(A) 

A is lower address limit 

B is upper address limit 

(A i)~(B i)=(Ai) for all i 
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Control 
Instructions Operands Comments 

HALT 

NOOP 

INT. ENTABLE A 

INT. CLEAR A 

VECTOR STATUS A,B 

ERROR STATUS 

SKIP EQ A,B 

SKIP Z A 

SKIP L A,B 

SKIP G A,B 

GO TO 

A Contains interrupt mask 

Checks vector (B) for element overruns, 
errors, etc., puts status words in A. 

Skip if (A)=(B) 

Skip if (A)=0 

Skip if (A)>(B) 

Skip if (A)<(B) 

arithmetic 

THE MODEL LANGUAGE 

The intent of the MODEL language is 
to provide a simulation system which 
allows one to analyze the static structure 
and dynamic behavior of a digital system. 
This is the simulator used to study the 
LIM array in the BLIMP architecture. 
There are several unusual characteristics 
of this simulation system that uniquely 
qualify it for the job. 

Two such features are its macro and 
functional unit specifications. As pre- 
viously stated, it was not considered 
necessary to design all BLIMP sub- 
systems in identical levels of detail; 
in many cases, a'functional unit is 
described only in terms of its external 
characteristics. Yet, because these 
units may interact in critical paths of 
the BLIMP, it is essential that the 
impact of these units is felt in the 
simulation. The FUNC statement in the 
MODEL language makes this possible. 

Even for those subsystems whose 
internal design is specified in detail, 
the FUNC statement is useful if that 
subsystem is to be utilized in more 
than one place in the total system. 
The statement allows the designer to 
assign a designation to the unit, and 
that designation may be a dimensioned 
name. This is a particularly con- 
venient option because one of the 
primary goals of LSI implementation 
is the partitioning of systems into 
repeated arrays of modules. 

It is also convenient to be able 
to refer to commonly used sequences 
of dynamic operations (called Action 
statements) by a single name or macro 
instruction. The statement MACRO enables 
a user to define such sequences. The 
individual Action statements then 
represent activities at the internal 
clock level, and MACROs may be assigned 
to defined machine instructions as well 
as sequences of instructions. 

The input and output formats in the 
simulation system are those with which a 
logic designer would be familiar. A 

complete list of statements appears in 
Table 2. Outputs take the form of 
multiple oscilloscope traces for added 
familiarity. To increase the versatility 
of MODEL and allow it to run on most 
large-scale scientific computers, the base 
language is Fortran. 

Table 2. MODEL Statements 

Device Definition Statements: 

NAME(I,J)/TYPE/INPUTS/OUTPUTS/DELAY 
(Types are: JK,RS,AND,OR,INV,NAND,NOR, and 
TIE) 

NAME(I,J)/FUNCTION/INPUTS/OUTPUTS 

Connection Statements: 

FROMTO/Name,Output No./Name, Input No. 
BUS/Name(i,J), Output K/Name (M,N), 
Output L/I=A,B/J=C,D/M=E,F/N=G,H 

Monitoring Statements: 

SCOPE/Output list 
SNAP/output list 

Control Statements: 

END FUNCTION 
END MACRO 

Action Statements: 

START 
STOP 
MACRO 
IF 
GOTO 
GENSIG/VAR/Input/Duration 
WAIT 
Q= 
T= 
QUOTE 

Referring to Table 2, it is seen that 
there are sixteen statements currently 
defined for MODEL which are divided into 
six major categories. Device Definition 
statements allow the user to specify any 
of the several common logic building 
blocks currently available such as JK-type 
flip-flops or nand gates. One must also 
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specify the number and types of inputs and 
outputs available or utilized, and the 
nominal circuit delay. New or more 
complicated building blocks are specified 
by the FUNCTION statement. Device inter- 
connections are stated explicitly for ease 
of wire sorting operations. They are 
effected by either the FROMTO or BUS 
statements, the latter being used for 
convenience when array interconnects lend 
themselves to automatic handling. 

There is actually only one "event" 
in the simulation and that is initiated 
by the GENSIG Action statement. The 
other Action statements provide only for 
program control. Execution of GENSIG 
modifies a logic level which generally 
starts a chain reaction of sequential 
instabilities, hopefully a predictable 
one, which leads to the desired result. 

Program output is generated in 
response to one or more of the 
Monitoring statements. SNAP elicits a 
binary snapshot of the desired outputs 
at a specified point in time. SCOPE 
gives a time-history of those outputs. 

FUTURE INVESTIGATIONS 

It is already clear that logic-in- 
memory processors are particularly well 
suited to LSI, but various improvements 
in both design and technique appear 
worthy of investigation. For instance, 
in such a highly parallel system as 
BLIMP, it is anticipated that a single 
instruction stream is not sufficient to 
keep the various partitions of the 
system at a high utilization level. An 
Instruction Decode Unit is needed which 
is capable of sustaining two or more 
instruction streams, each eminating from 
an independent task. Plots of unit 
utilization versus the number of streams 
for different central parameter values 
are expected to yield quite definitive 
information about the optimization of 
design. 

The method of encoding the binary 
arithmetic function in the LIM was 
chosen for simplicity and the fact that 
it illustrates the evolution of the LIM 
from an associative memory. There are 
several other methods of performing 
binary arithmetic which may, in the final 
analysis, be more suited to a logic-in- 
memory machine. Both "bit-serial, 
element-parallel" methods and highly 
parallel recoded methods will be 
investigated. (7, 8) 

With the simulation techniques 
afforded by such systems as MODEL, it 
seems no longer necessary to build 
machines in order to test out machine 
design concepts. But because a physical 
realization resulting in a usable proto- 
type has not been accomplished, there is 
no sure way of verifying these concepts 
in an operating environment. However, 
MODEL can be used to extract information 
about instruction execution speeds and 

inter-instruction parallelism and inter- 
ference. There appears to be no reason 
why a compiler cannot be written for a 
proposed processor which results in 
machine level instructions which in turn 
can be translated to MACRO statements for 
MODEL processing. In this way, "benchmark 
timing" and perhaps even some elementary 
processed results can be obtained, thus 
verifying the machine design and measuring 
its performance. 
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