
A Logic-in-Memory Architecture for Large-Scale-
Integration Technologies

A.M. Peskin, Brookhaven National Laboratory

A computing machine is described which is
structured around a distributed logic
storage device called the Processing
Memory. This machine, the Brookhaven
Logic-In-Memory Processor (BLIMP), is
meant only as a vehicle for simulating
and evaluating its concepts, rather than
for eventual fabrication. In particular,
it is shown that the architecture used is
very well suited to large-scale-integra-
tion (LSI) impl~mentation technologies.
It was first necessary to redefine the
various goals of logic design optimiza-
tion in the context of LSI implementation.
Then an elemental building block of the
Processing Memory is described as having
evolved from associative memory circuits.
It is shown that a computer such as
BLIMP which utilizes the Processing
Memory concept can meet the goals of
design optimization for LSI. Design
techniques for this project were
developed as they were required. Of
particular importance is a simulation
system called MODEL, which documents the
structure and analyzes the behavior of
the proposed system.

KEY WORDS AND PHRASES: Associative
Memory, Computer Architecture, Digital
Simulation, Logic-in-Memory.
CR CATEGORIES: 6.20, 6.34, 8.1.

*Work performed under the auspices of the
Atomic Energy Commission.

MOTIVATION

In addition to providing greater
speed and compactness in digital systems,
large-scale-integration integrated
circuit technology has redirected many of
the goals of the digital system designer.
In an era where hundreds of logic gates
can be placed on a single semiconductor
chip, design optimization must necessarily
take on new meanings. It is no longer
cogent to perform component counts alone
to assess cost, for example, because
external signal conductors are likely to
be a much more precious commodity than
semiconductor junctions or capacitance.
Similarly, a design which can be broken up
into a number of repeated modular circuits
of few different types is optimized in a
much more relevant fashion than a design
which is optimized in the more classic
sense of Boolean minimization. (I)

In the context of LSI, the impact on
digital processor design has been to im-
pose new goals and eliminate some of the
old ones. Modular partitioning of logic
into identical cells of as few types as
possible becomes more important than the
total number of cells. Partitioning, in
turn, must minimize the number of binary
arguments externally passed from one
module to another. In addition, in the
faster logic families, care must be taken
to ensure that interconnection length is
minimized, thus restricting intermodule
communication to "near neighbor" cells
only.

Under these constraints, design
complexity increases rapidly but in a
predictable way. The basic building
blocks or cells remain relatively simple
but the manner in which they are assigned
or adapted to problems requires the
designer to build an intricate set of
cross-referenced lists of information. In
its simplest case, this information is
merely a wire list but in more intricate
circuits, the lists imply all the levels
of nested modularity, and all the func-
tional dependencies in the system. The
problem of storing, processing, analyzing
and modifying this information is best
suited to computer-aided logic design
techniques. Thus, for large systems

12

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800193.805818&domain=pdf&date_stamp=1972-08-01

optimized for LSI, computer-aided-design
becomes not just desirable, but mandatory.

A general purpose computer, called
the Brookhaven Logic-In-Memory Processor
(BLIMP) is described. This machine is
imaginary in the respect that it will
never be built or even fully designed, but
is real in the sense that it serves as a
vehicle for the analysis of several fully
developed concepts. The architecture is
designed to attempt to optimize implemen-
tation with high speed LSI. The
requisite computer-aided desigh (CAD)
techniques for this project were develop-
ed in the form of a language called MODEL.
And methods were developed for performing
computerized dynamic simulation of the
design as a procedure for verifying the
underlying concepts of the system as well
as the details of the implemented design.

THE ARRAY

The most unique feature of the
Brookhaven Logic-In-Memory Processor is
that most of the data processing, includ-
ing many arithmetic operations, is per-
formed on the data words while they are
resident in a scratchpad storage buffer.
Each scratchpad storage location is
augmented with sufficient circuitry to
perform the logical combinations or
modifications without having to fetch the
word into a separate mainframe processing
element and then having to restore it.
Hence, the computer is termed a logic-
in-memory processor whose central
arithmetic and logical unit is the
scratchpad or processing memory (PM).

The idea of including in each PM
data word the capability for arithmetic
and accumulation is, by the standards of
conventional computers, quite extrava- '
gant. But again, this is extravagance
as measured by an archaic yardstick,
namely component count. In terms of the
goals of LSI optimization, a single
augmented memory element may be propa-
gated into an i by j array of identical
elements to form a two-dimensional
matrix. The PM then consists of "j"
words, each of "i" bits in length.
Most of the element interconnections are
made with "nearest neighbors", and the
ratio of external connections to internal
nets is smaU. The large amount of
duplication of function in each word of
the PM can be used to good advantage to
provide increased parallelism of opera-
tion for processing vector instructions.
In terms of the new criteria, then, the
PM can be thought of as a highly opti-,
mized design.

The development of the circuitry of
each PM element can be described in terms
of the evolution of a memory element from
one having only conventionally addressed
read and write capability, to an element
augmented to exhibit associative or
content addressable reference capability,
and onward to its final form as an LIM

array element. This process is
exemplified in Figure i.

Figure la depicts the logical equiva-
lent of a conventional memory element, Mij,
consisting of a flip-flop and associated
address and timed gating circuits. The
address line is unidirectional and the
data line is bidirectional.

In Figure ib, the associative
property has been added to Mij by attach-
ing an "exclusive or" function of Mij and
the Data line i and their complements,
under control of the ASSOC line. The
Address line is now bidirectional. If the
ASSOC line is active and a match occurs
between the value of the Data i and Mij,
Address j will be activated at the memory
element as the partial result for that
element. The Address line can be forced
active by raising the Mask i line which
has the effect of removing Mij from
contention in the associative process,
that is, rendering bit i as a "don't
care".(2)

In Figure ic, two new outputs, Si and
Ci have been generated and these are the
elemental sum and carry of Data i and Mij
under the control of line ADD. The Mask i
line now assumes the added role of carry
propagation. Thus with a proportionally
small increase in the number of logic
gates, each word of an associative memory
can be fashioned into a conventional
binary adder.

Figure id shows the elemental
circuitry in its complete form. The
addition of a feedback gate on the Si line
creates one bit of an Acculnulator register
under the control of the ACCUM line. A
five input and-or circuit allows the adder
to be used for numerous other functions
under program control. One's complement,
left and right shifts and push-up or
push-down stacking turn the array into a
general purpose processor. Two new
busses are brought into Mij under control
of selective gating. One of these, Si,
is the same net as output Si. Tk is
called the transpose bus and is used for
vector operations. The merged data line
may be temporarily stored under control of
the LATCH line, and it will be shown that
this feature decreases the total number of
PM interconnections by a significant
factor.

The Mij element design implies the
creation of five types of information
busses in addition to the control inputs
and logic outputs. The Data bus is used
for the conventional fetching or storing
of information as well as associative
reference input words. The Sum bus con-
tains arithmetic results. The Mask/Carry
bus is used to control the masking of
operands during an associate and, during
arithmetic operations, propagates carry
or borrow information. The Address bus,
of course, contains word selection infor-
mation.

To provide true parallelism of
operation, a separate set of these busses

13

Address J [

WRITE

READ

DATA i

FIGURE la

14

ADDRESS J

WRITE

DATA i

2

A S S O C .

MASK i

FIGURE ib

15

ADDRESS j

WRITE
J READ

DATA i

C~

ASSOC.

Ci-I + MASK i

ADD

FIGURE ic

16

ADDRESS j I
WRI'TE

READ

Ch

ORi

ANDi

LATCH j (np)

DATA

Si

ASSOC.

Ci-I+MAS

AND

ADD {'

Tk WD TEST

COMPLEMENT

(i-l)j

SHIFT-L

(i+i) j

SHIFT-R

i(J-l)

PUSH-UP

i(J+l)

PUSH-D~

ACCUM

FIGURE id

si

ci

17

would be required for each set of
operands. The number of busses for the
entire processing memory then, would
reach the hundreds, and the packaging of
such a system would become quite wasteful
if not impossible. To alleviate this
situation and yet leave the basic concept
intact, the PM is divided up into a
number of sectors, with "p" words per
sector. The value of p will be shown to
be the central parameter of this
architecture. There is a separate
Data, Sum, and Carry/Mask bus for each
sector of the PM, and the busses of each
sector are independent of those of the
other sectors. Intersector information
exchange will take place on the Transpose
bus.

Sharing of busses among the words of
a single sector is accomplished through
time division multiplexing of the busses
with time slices for a given word assign-
ed in accordance with the value of the
lower order bits of the PM word address.
It is most judicious, therefore, that p
be a binary power. It is the time
sharing of the busses that creates the
need for the LATCH line of Figure id.
Data for each word location can be
sampled in a phased manner and held in
the input flip-flop, creating the effect
of the data being present on the bus for
as long as it is required.

The central parameter p can be
chosen by analyzing the relationships of
certain other properties of the PM. We
can define the following:
i) t; the propagation time from the

output of one word to the input
of another over a bus. This
number reflects primarily the
setting speed of the latching
flip-flops.

2) s; The scalar processing cycle time
of the PM. This is essentially
the add time.

3) q; The projected ratio of vector
instructions per instruction,
based upon some knowledge of the
job and instruction mix.

A certain processing balance may be said
to be achieved if the time of scalar
instruction processing is rendered equal
to the time required for complete pro-
cessing of vector instructions, as this
situation will maximize the utilization
ratio of much of the control circuitry.
Then the central parameter, p, can be
computed from this relationship.

s
P - tq

This computation is subject to the
admonition that for design convenience,
p be a binary power. The value of p is
used several places in the design
process. It represents the number of
words per sector and, as such, it also
implies the smallest usable vector size,
and the number of time slices needed for
each bus. In terms of loading and un-

loading the PM from a larger, slower,
main storage, the value of p represents
the minimum degree of interleaving
necessary to match main storage to the PM
speed. Furthermore, if we define n as the
number of sectors needed, then (p) (n)=m,
the number of words in the processing
memory. Experience garnered by others in
systems where contiguous fields of
operands are prefetched indicates that n
need be at least 4 but more probably 8 in
most multiprogrammed environments. (3)

Representative numerical values can
be chosen for other parameters as well.
Assuming an implementation in high speed
TTL or medium speed ECL, s can be assumed
to be 50 nanoseconds, and t can be set at
12 nanoseconds. The value of q may not
exceed .5 for even the most highly
parallel problems. The value of the
central parameter, then, would be close to
eight. This in turn indicates that a
main storage cycle of 400 nanoseconds is
sufficient to keep the PM active. Maxi-
mum effective instruction processing rates
would approach 20 million scalar instruc-
tions per second, or 80 million vector
elements per second in these technologies.

Of course, the above analysis, to be
exhaustive, would have to take many more
factors into account. Such considerations
as instruction power, operating system
philosophy, and job stream control should
be considered, and these factors make the
system design job much more complex. But
the above analysis provides a method of
determining hardware balance within a
given technology for this particular
architecture.

LOADING THE PROCESSING MEMORY

It is obvious that the ultimate
improvement in performance derived from
the PM concept is highly dependent upon
the probability of finding the needed data
already in the PM. If the data can be
found resident in the PM before processing
a large percentage of the time, then the
overhead incurred in unloading and reload-
ing the memory is minimized. For this
reason, a study was made of scratchpad
loading strategies and their effect on
scratchpad storage latency as it affects
the performance of BLIMP.

Two strategies were investigated.
These appear to be the general case of
almost all reasonable particular
strategies currently used or proposed.
The performance of each was simulated
using numbers representing actual
reference address sequences obtained from
a variety of computers' object codes. The
strategies were analyzed comparatively for
several different buffer sizes. The
number of hits (that is, the number of
times the reference address was found to
be in the scratchpad) and the reference
time, including overhead, were recorded
and comparatively analyzed.

Strategy I is the most commonly used

18

scratchpad loading strategy. It is the
strategy employed b v the IBM 360/85 and
195 cache storage. (3) It requires that if
a referenced address is not contained in
the cache, the buffer locations currently
residing are restored to those addresses
in main storage and a new set of con-
tiguous data words, beginning with the
location currently of interest, is loaded
from main memory into the cache.
Strategy II, which at first glance may
appear less appealing, calls for replace-
ment of only that word which is of current
interest. The word is placed in an
address which is the modulo address of
its main storage location, modulus the
buffer size. For example, if a word at
main storage location 25710 were called
for, it would be stored in location 1 of
a 256 word buffer. As with Strategy I,
the data which is replaced in the scratch-
pad is returned to main storage.

In the simulation, buffer sizes of
64, 256, 1024 and 4096 words were used for
each strategy. In calculating the time
overhead, a main storage interleaving
factor of 4 was assumed. Most programs
simulated required 10,000 to 20,000
memory references from approximately
8,000 main storage locations. A figure
of merit was calculated as follows:

5.0(h) - 1
x = e

Here h is the number of hits and r is the
number of simulated time units incurred
for storage reference, x=l indicates a
break-even point; that the scratchpad
technique neither enhanced nor detracted
from the performance. Some results are
plotted in Figure 2.

The results of this sketchy simula-
tion experiment are by no means con-
clusive, but certain interesting points
can be made. The relative performance of
the two strategies was found to depend
not only on the size relationship of the
buffer and program but also to some
extent on the correlation coefficient
of the reference address sequence, with
more highly correlated sequences tending
to favor Strategy I. The effect of
having multiple buffers in either
strategy increases the performance of
that strategy, and, as one might expect,
the greater the number of buffers, the
more similar the performance character-
istics of the two schemes. In general,
it appears that smaller machines would
benefit most from a scratchpad adhering
to Strategy II, while larger ones would
perform better with Strategy I.

In terms of BLIMP, where the
architectural behavior may be varied
through a microprogram, each strategy
would have its place. Strategy I would
be employed for highly correlated or
vector operations, and Strategy II would
be used for a list, logical and other
less correlated operations. All this is
of course dependent upon the ability to

have a priori knowledge (perhaps from
compile time analysis) of the execution
time behavior of the data.

THE BLIMP PROCESSOR

It is difficult to analyze the opera-
tion or assess the value of the Processing
Memory described, except in conjunction
with the other components of a computer
system. For such a purpose, a fiction-
alized system is proposed which contains
all the elements necessary to implement a
general purpose computer that utilizes the
logic-in-memory approach. The other units,
however, need only be specified and
designed to the level of detail necessary
to analyze the PM and its architecture and
simulate the salient interactions. Hence,
it is not the purpose of the BLIMP to be-
come an actual computer, which has freed
investigators from the tedious tasks of
designing the more commonplace modules
completely. Rather, the BLIMP outlines an
apprach to the utilization of such storages
as the central processing element of a
high performance LSI machine.

The block diagram of the system is
shown in Figure 3. In this machine, the
PM size is 64x64 bits with a central para-
meter of 8. The memory is imbued with
transfer and processing rates discussed
previously; the add speed and block trans-
fer bandwidth is 50 nanoseconds, and thus
the "p" element vector processing time is
i00 nanoseconds.

There are several floating point
processes which do not seem amenable to
the logic-in-memory approach. For this
reason a scalar Floating Point Unit has
been attached to the PM, to perform
normalization and the more complex
operations such as division and root
calculations. The speed of the binary
multiply may also be increased by the use
of dedicated shift circuitry external to
the PM, but this was not considered
essential to the BLIMP design.

Also connected to the PM Data bus is
the Instruction Decode Unit. It is the
purpose of this unit to fetch instruction
words out of the PM and initiate the
appropriate action to execute the
instruction. The Instruction Decode Unit
is connected to the I/O Processor to
initiate I/O transfers and pass arguments
necessary for I/O processing. It is also
connected to the Multiloader, a device
which initiates eight word transfers
between the PM and Main Storage. In the
event that an instruction cannot be
executed entirely from information or
operands currently resident in the PM, a
transfer will take place to bring in the
necessary blocks and return the least
recently used block back to Main Storage.
Similarly, if the IDU determines that the
next instruction to be executed is not in
the PM, a transfer will be initiated to
bring in the new instruction stream. In
this respect, the PM load algorithms are

19

FIGURE 2

5 -

I.--

I L l

LL.

O

I, Li 2
n~

LI,.

4 -

C O M P A R A T I V E P E R F O R M A N C E OF
T W O BUFFER L O A D I N G S T R A T A G I E S

STRATEGY

~UNBUFFERED .JMACHINE

o I I I I
10 6 4 2 5 6 I K 4 K

C U M U L A T I V E CORREL. COEFF. "" .71

BUFFER SIZE

20

I /O ROCESSOR ~_~

llill
CHANNELS

MAIN STORAGE

STORAGE CONTROL
UNIT

MULTILOADER

PROCESSING

MEMORY

i~o~ ~o~j

FIGURE 3

BLIMP CONFIGURATION

J.

CONNECTI05

MATRIX

INSTRUC-
TION

DECODE
UNIT

,JJ

21

very similar to the Cache concept used by
IBM, and to the load Strategy I described
in the section, Loading the Processing
Memory. The IDU, then, must itself have
a small associative storage to determine
if a given Main Storage address to be
referenced has an image residing in the
pM.(4,5)

When the IDU determines that all
data processing is ready to take place
inside the PM, it passes the instruction
information to the Connection Matrix
whose purpose is to manipulate the control
lines for the various PM words including
the time-division-multiplexed timing and
gating pulses. The smallest allowable
distinct operand is sixteen bits long, so
only four independent sets of control
lines per word are required. The maximum
number of lines from the Connection Matrix
to a 64x64 PM of the design of Figure Id
is over 2,000, but since not all opera-
tions are subject to byte manipulation
requirements, and certain combinations
are mutually exclusive, this number can
be reduced somewhat. The Connection
Matrix, under control of the Instruction
Decode Unit, provides all the gate and
inhibit controls necessary to forge the
"plasma" of interconnects surrounding
each PM word into the appropriate
specialized functional unit to execute
the instruction.

The Storage Control Unit is a high
bandwidth data exchange device which
handles storage requests from either the
Multiloader or the I/O Processor to Main
Storage, which is specified as a 400
nanosecond, eight-way interleaved con-
ventional array. Each eight-word
storage cycle is honored through a d-c
interlocked, ready-response hardware
protocol to allow for the inclusion of
slower buffered storages or facilities
in the configuration. None of the unit
specifications mentioned go beyond the
current state of the art and are in fact,
exceeded in some commercially available
computers. (6)

The design outlined above implies
the nature of this machine's instruction
set. The complete list of instructions
appears in Table i. Most of the opera-
tions are self-explanatory. Since the
BLIMP is designed for simulation and
analysis only, a simplifying extravagance
has been used in the instruction format.
The instruction word size is given as
64 bits long and all operands are
directly addressable. All instructions
have two 24-bit address operands plus
an "op code" portion. In any future
implementation, several different modes
of addressing must be provided, thus
considerably enriching the instruction
repertory.

The instruction set of Table 1 is
certainly quite minimal, but several
of the less conventional entries require
some explanation. Foremost among these
are the Vector DEFINE instructions. Each

word in both main storage and the PM has
two tag bits prefixed to them which are
interpreted by the internal logic as
"continue" indicators for element strings.
Thus a vector (or an I/O buffer) is define/
by specifying its upper and lower address
limits and one or the other of the tag
bits in each word after the first are set.
Similarly, a stack may be defined; in this
case, both tag bits are set for each
continuation word. The PUSH-UP and
PUSH-DN transfer functions are only
defined for element fields which are
defined as stacks. A vector, buffer or
stack may be specified by any of the
addresses included in its range.

22

Table i.

Transfer
Instructions

POP

PUSH

MOVE

Binary
Arithmetic

Instructions

BLIMP Instructions

Operands

A,B

A,B

A,B

ADD (A) + (B) = (A)

SUBTRACT (A) - (B)= (A)

SHIFT L A,B

SHIFT R A,B

COMPLEMENT A

TWOS COMP. A

MULTIPLY (A) × (B)=A

DIVIDE (A) ~ (B)=A

INCREMENT A

DECREMENT A

Floating
Point

Instructions

ADD F

SUBTRACT F

MULTIPLY F

DIVIDE F

Logical
Instructions

AND

OR

EXCLOR

ASSOC. & COUNT

ASSOC. & STACK

SET MASK

Vector
Instructions

(A) + (B) = (A)

(A) - (S) = (A)

(A) × (B)= (A)

(A) ~ (B) = (A)

Comments

Word from vector B stored into location A

Word from location A stored into vector B

Shift word A into number of places specified by count in B

One's complement

Two's complement

(A)-(B)=(A)

(A) + (B) = (A)

((A)+(B)) ((A)" (B))=(A)

A,B Address by content of A, searching through vector B, put match
count in A

A,B Address by content of A, searching through vector B, stack
addresses in vector starting at address A.

A Use contents of A.

DEFINE BUFFER A,B

DEFINE VECTOR A,B

DEFINE STACK A,B

TRANSPOSE (A)T=(B)

COFACTOR (A) C+ (B)

MULTIPLY V (A)× (B)=(A)

ADD V (A) + (B) = (A)

SUBTRACT V (A) - (B) = (A)

DETERMINANT IAi=(B)
DIVIDE V (A)~(B)=(A)

A is lower address limit

B is upper address limit

(A i)~(B i)=(Ai) for all i

23

Control
Instructions Operands Comments

HALT

NOOP

INT. ENTABLE A

INT. CLEAR A

VECTOR STATUS A,B

ERROR STATUS

SKIP EQ A,B

SKIP Z A

SKIP L A,B

SKIP G A,B

GO TO

A Contains interrupt mask

Checks vector (B) for element overruns,
errors, etc., puts status words in A.

Skip if (A)=(B)

Skip if (A)=0

Skip if (A)>(B)

Skip if (A)<(B)

arithmetic

THE MODEL LANGUAGE

The intent of the MODEL language is
to provide a simulation system which
allows one to analyze the static structure
and dynamic behavior of a digital system.
This is the simulator used to study the
LIM array in the BLIMP architecture.
There are several unusual characteristics
of this simulation system that uniquely
qualify it for the job.

Two such features are its macro and
functional unit specifications. As pre-
viously stated, it was not considered
necessary to design all BLIMP sub-
systems in identical levels of detail;
in many cases, a'functional unit is
described only in terms of its external
characteristics. Yet, because these
units may interact in critical paths of
the BLIMP, it is essential that the
impact of these units is felt in the
simulation. The FUNC statement in the
MODEL language makes this possible.

Even for those subsystems whose
internal design is specified in detail,
the FUNC statement is useful if that
subsystem is to be utilized in more
than one place in the total system.
The statement allows the designer to
assign a designation to the unit, and
that designation may be a dimensioned
name. This is a particularly con-
venient option because one of the
primary goals of LSI implementation
is the partitioning of systems into
repeated arrays of modules.

It is also convenient to be able
to refer to commonly used sequences
of dynamic operations (called Action
statements) by a single name or macro
instruction. The statement MACRO enables
a user to define such sequences. The
individual Action statements then
represent activities at the internal
clock level, and MACROs may be assigned
to defined machine instructions as well
as sequences of instructions.

The input and output formats in the
simulation system are those with which a
logic designer would be familiar. A

complete list of statements appears in
Table 2. Outputs take the form of
multiple oscilloscope traces for added
familiarity. To increase the versatility
of MODEL and allow it to run on most
large-scale scientific computers, the base
language is Fortran.

Table 2. MODEL Statements

Device Definition Statements:

NAME(I,J)/TYPE/INPUTS/OUTPUTS/DELAY
(Types are: JK,RS,AND,OR,INV,NAND,NOR, and
TIE)

NAME(I,J)/FUNCTION/INPUTS/OUTPUTS

Connection Statements:

FROMTO/Name,Output No./Name, Input No.
BUS/Name(i,J), Output K/Name (M,N),
Output L/I=A,B/J=C,D/M=E,F/N=G,H

Monitoring Statements:

SCOPE/Output list
SNAP/output list

Control Statements:

END FUNCTION
END MACRO

Action Statements:

START
STOP
MACRO
IF
GOTO
GENSIG/VAR/Input/Duration
WAIT
Q=
T=
QUOTE

Referring to Table 2, it is seen that
there are sixteen statements currently
defined for MODEL which are divided into
six major categories. Device Definition
statements allow the user to specify any
of the several common logic building
blocks currently available such as JK-type
flip-flops or nand gates. One must also

24

specify the number and types of inputs and
outputs available or utilized, and the
nominal circuit delay. New or more
complicated building blocks are specified
by the FUNCTION statement. Device inter-
connections are stated explicitly for ease
of wire sorting operations. They are
effected by either the FROMTO or BUS
statements, the latter being used for
convenience when array interconnects lend
themselves to automatic handling.

There is actually only one "event"
in the simulation and that is initiated
by the GENSIG Action statement. The
other Action statements provide only for
program control. Execution of GENSIG
modifies a logic level which generally
starts a chain reaction of sequential
instabilities, hopefully a predictable
one, which leads to the desired result.

Program output is generated in
response to one or more of the
Monitoring statements. SNAP elicits a
binary snapshot of the desired outputs
at a specified point in time. SCOPE
gives a time-history of those outputs.

FUTURE INVESTIGATIONS

It is already clear that logic-in-
memory processors are particularly well
suited to LSI, but various improvements
in both design and technique appear
worthy of investigation. For instance,
in such a highly parallel system as
BLIMP, it is anticipated that a single
instruction stream is not sufficient to
keep the various partitions of the
system at a high utilization level. An
Instruction Decode Unit is needed which
is capable of sustaining two or more
instruction streams, each eminating from
an independent task. Plots of unit
utilization versus the number of streams
for different central parameter values
are expected to yield quite definitive
information about the optimization of
design.

The method of encoding the binary
arithmetic function in the LIM was
chosen for simplicity and the fact that
it illustrates the evolution of the LIM
from an associative memory. There are
several other methods of performing
binary arithmetic which may, in the final
analysis, be more suited to a logic-in-
memory machine. Both "bit-serial,
element-parallel" methods and highly
parallel recoded methods will be
investigated. (7, 8)

With the simulation techniques
afforded by such systems as MODEL, it
seems no longer necessary to build
machines in order to test out machine
design concepts. But because a physical
realization resulting in a usable proto-
type has not been accomplished, there is
no sure way of verifying these concepts
in an operating environment. However,
MODEL can be used to extract information
about instruction execution speeds and

inter-instruction parallelism and inter-
ference. There appears to be no reason
why a compiler cannot be written for a
proposed processor which results in
machine level instructions which in turn
can be translated to MACRO statements for
MODEL processing. In this way, "benchmark
timing" and perhaps even some elementary
processed results can be obtained, thus
verifying the machine design and measuring
its performance.

REFERENCES

i. Stone, Harold S., "A Logic in Memory
Computer", IEEE Transactions on Computers,
January 1970.

2. Peskin, Arnold M., "Associative
Capabilities for Mass Storage Through
Array Organization", Proceedings of the
1970 FJCC.

3. "IBM System/360 Model 195 Functional
Characteristics", IBM Systems Reference
Library, A22-6943-O, 1969.

4. Ibid.

5. Aspinall, Kinnitment, Edwards,
"Associative Memories in Large Computer
Systems", Proceedings of the 1968 IFIPS
Congress.

6. "Control Data 7600 Computer System
Reference Manual", Control Data Corpora-
tion, 1970.

7. Robertson, James S., "A Deterministic
Procedure for the Design of Carry-Save
Adders and Borrow-Save Subtracters",
University of Illinois Report, 1967.

8. Gilmore, Paul A., "Matrix Computation
on an Associative Processor", Goodyear
Aerospace Corporation Report, 1971.

25

