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This paper gives an informal exposit ion of the 

re lat ionship between mathematics and computer 

science generated by the constructive viewpoint 

of Erret t  Bishop. Brouwer's ins ight  on the lack 

of computational content in classical mathematics 

is discussed f i r s t .  Then Bishop's constructivism 

is presented as a natural completion on the pro- 

gram started by Brouwer to develop a more rea l i s -  

t i c  foundation for  mathematics. F ina l ly ,  the 

cor re la t ion between formal constructive mathemat- 

ics and computer languages is i l l u s t r a t e d  and 

examined. 
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Both mathematics and computer science are 

undergoing vigorous development. However, i f  

there is any in teract ion between these two 

sciences, i t  is more on an incidental  basis than 

on any systematic one. This is not a healthy 

s i tuat ion and I hope to i l l u s t r a t e  a genuine 

a l te rnat ive  to th is status quo. I hope to show 

that i f  mathematics is approached from the con- 

s t ruct ive viewpoint of Erret t  Bishop, then i t  is 

recognized that the development of computer 

science, at least the software, is essent ia l ly  a 

mathematical one. On the other hand, a study of  

computer languages can be used to del ineate the 

scope of constructive mathematics. To explain 

the constructive viewpoint, i t  appears best to 

contrast i t  with the classical viewpoint ( f i r s t  

enunciated by Plato ( I ) )  that current ly domi- 

nates mathematical th inking. 

Consider the set of a l l  integers Z. Now the 

classical mathematician or the Platonis t  pre- 

supposes that the ent i re  i n f i n i t e  set Z pre-exists 

in some immutable world of ideas and that our 

knowledge or ignorance of Z in no way affects i ts  

existence. In a sense, the t o t a l i t y  of integers 

transcends our own existence. There is a most 

beaut i fu l  statement of th is a t t i tude by the 

Br i t ish  mathematician G. H. Hardy (2; p. 63): 

"I bel ieve that mathematical r e a l i t y  l ies outside 

us, that our function is to discover or observe 

i t ,  and the theorems that we prove, and which we 

describe grandi loquently as our ' c reat ions ' ,  are 

simply our notes of  our observations. This view 

has been held, in one form or another, by many 

philosophers of  high reputation from Plato onwards, 

and I shal l  use the language which is natural to a 

man who holds i t . "  The language that Hardy refers 

to is ,  of  course, the language of  A r i s to te l i an  

log ic .  And Hardy is absolutely correct when he 

said that A r i s to te l ian  log ic  is natural to the 

classical viewpoint of  mathematics. The clearest 

example of this claim is the Ar i s to te l ian  p r inc i -  

ple of the excluded middle: for  any mathematical 

statement S, e i ther  S is true or S is fa lse.  

Clear ly,  i f  a l l  mathematical ideas, along with the 

integers, pre-exis t  in some nebulous world, then 

the i r  t ruth values must also have been predeter- 

mined, one way or the other. The pr inc ip le  is 

most often used in the form of double negation: 

for  any mathematical statement S, S is true i f  and 

only i f  not(not S) is true. To show that  a con- 

tinuous function f : [ O , l ]  + [ 0 , I ]  has a f ixed 

point ,  i t  suff ices to show that the assumption 

that such a function f does not have a f ixed point 

leads to a contradict ion.  There is no need to 
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even determine the f ixed point to w i th in  I /2 .  So, 

from the classical  viewpoint,  mathematics, at 

least in p r inc ip le ,  need not have anything to do 

with computations. I ts  sole task is to specify 

the t ru th  values of certain statements in the 

metaphysical world of ideas. ( I t  goes wi thout  

saying that th is  is very detrimental to the com- 

puter s c i en t i s t . )  

The Dutch mathematician Brouwer was one of 

the f i r s t  to ser iously object to the lack of com- 

putat ional meaning in the classical  viewpoint,  and 

named the pr inc ip le  of  the excluded middle as the 

main c u l p r i t  (3).  He considered f i r s t  a f i n i t e  

sequence X 1 . . . . .  X n of integers and observed that  

the p r inc ip le  of the excluded middle implies that 

e i ther  Vk(X k < O) or 3k(X k > 0). Brouwer did not 

quarrel with th is  appl icat ion of the p r inc ip le  of 

the excluded middle because i t  is always possible 

in a f i n i t e  number of  simple ar i thmet ical  opera- 

t ions to determine one of the two above al terna- 

t i ves .  However, Brouwer f e l t  the s i tua t ion  is 

dramatical ly d i f f e ren t  when we consider an 

i n f i n i t e  sequence {X I ,X 2 . . . .  } of integers,  which 

are generated by some algorithm. Then in general 

we have no f i n i t e  computational method to assert 

e i the r  Vk(X k < O) or 3k(X k > 0). A typ ica l  
X co example is the sequence { k}k=l defined by X k 0 

i f  2k is the sum of.two primes and X k = 1 other- 

wise. The case Vk(X k < O) is Goldbach's conjec- 

ture;  and at present, we have no proof of 

Goldbach's conjecture nor have we exhib i ted a 

counter-example. Hence the p r inc ip le  of  the ex- 

cluded middle, at least  when applied to i n f i n i t e  

sets, becomes more an af f i rmat ion of f a i t h  in that 

world of ideas than a basic p r inc ip le  of  numeri- 

cal computation. Brouwer thought th is  was such a 

b lo t  on mathematics that he set about himself  the 

task of removing the Platonic world of ideas as 

the basis of mathematical thought and cal led his 

program in tu i t i on ism.  To begin w i th ,  he simply 

denied the existence of the i n f i n i t e ,  relegat ing 

i t  to a figment of our imagination. (We should 

mention that th is  idea had already been proposed 

by Kronecker, Poincar~ and others.)  Brouwer 

declared that one can speak of  an i n f i n i t e  

sequence of integers only in the sense of a f i n i t e  

process that can be continued i n d e f i n i t e l y ,  capa- 

ble of  surpassing each f i n i t e  l i m i t .  He f e l t  that  

mathematics should be based on our i n t u i t i o n ,  

since i t  is only a human endeavor. 

Brouwer's c r i t i que  of c lassical  mathematics 

was grudgingly accepted by some of his contem- 

poraries. Even the staunchest defender of c lass i -  

cal mathematics y ie lded ground: David H i lber t  

s t ipu la ted that only f i n i t i s t i c  methods are 

admissible in meta-mathematics (4; p. 62). As to 

mathematics i t s e l f ,  H i lber t  intended to ex t r ica te  

i t  from the yoke of Brouwer's objections by an 

appeal to the formal consistency of the classical  

mathematical system. Due to Godel in tervent ion,  

we know now that H i lber t  did not achieve his 

object ive.  Nonetheless, few mathematicians became 

advocates of i n tu i t i on ism.  The reason is qui te 

simple. Despite his great cont r ibut ion in point-  

ing out the def ic iencies of c lassical  mathematics, 

Brouwer fa i l ed  to provide a v iable subst i tu te  fo r  

the classical  viewpoint. His in t roduct ion of such 

ideas as free choice sequences make i n t u i t i o n i s t i c  

mathematics no less ethereal (nor more computa- 

t i ona l )  than classical  mathematics. 

I t  remained fo r  the American mathematician 

Erret t  Bishop to complete the grand design of 

Brouwer, but from a d i f fe ren t  viewpoint;  namely, 

construct iv ism. Instead of basing mathematics on 

what is i n t u i t i v e l y  evident,  as Brouwer did, 

Bishop states as his basic cons t ruc t i v i s t  goal 

(5):  " . . .  that  mathematics concerns i t s e l f  with 

the precise descr ipt ion of f i n i t e l y  performable 

abstract operations. I t  is an empirical fact  that  

a l l  such operations reduce to operations with the 

integers . . . .  Thus by 'const ruct ive '  I shal l  

mean a mathematics that describes or predicts the 

resul ts of cer ta in f i n i t e l y  performable, a lbe i t  

hypothet ica l ,  computations w i th in  the set of 

integers ." 

As to the nature of the integers, Bishop 

agrees completely wi th Brouwer: leave i t  to our 

i n t u i t i o n ,  and do not derive the integers from 

some formal system. 

Hence Bishop accepts the algorithm 

X 0 : :  1 

Xn+ 1 := ~ 2X n 

as a f i n i te l y  performable sequence of operations 

and the theorem 
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l im X n : (2) I /3  
n ~  

as a predict ion on the sequence {Xn}. Note that 

Bishop never assumes that the sequence {X n} is 

ever given in i t s  en t i re t y ,  nor does he ever need 

th is  assumption. 

From his construct ive viewpoint,  Erret t  

Bishop has successful ly  recast in his book, 

Foundations of Constructive Analysis,  a large por- 

t ion of modern abstract analys is ,  inc lud ing the 

central theory of  measure. (This was an accom- 

plishment that David H i lbe r t  did not th ink was 

possible.)  Bishop does not negate a l l  the 

achievements of c lassical  mathematics. What he 

did in his book was to ext ract  and whenever neces- 

sary to implant computational meaning in the 

theorems of c lassical  mathematics. For instance, 

construct ive measure theory is based on a lemma 

that is c l ass i ca l l y  a general izat ion of Cantor's 

diagonizat ion process (6; p. 160). This lemma was 

l a te r  extended to give an elegant measure theory 

using the ideas of Daniel l  (7) .  Moreover, con- 

s t ruc t i ve  measure theory seems s u f f i c i e n t  as a 

vehicle to study p robab i l i t y  (8) and ergodic (9) 

theor ies.  More examples can be c i ted ;  but the 

important thing is that ,  in one stroke, Bishop has 

d ispel led the myth that any mathematical system 

wi thout  the services of the pr inc ip le  of the ex- 

cluded middle w i l l  be meager in resul ts and un- 

natural l y  cumbersome. 

Clear ly ,  the success of Bishop's program w i l l  

have profound impl icat ions on computer science, 

because what are computers except fas t ,  re l i ab le  

and versa t i le  machines dedicated to f i n i t e l y  per- 

formable operations on the set of integers. 

In fac t ,  construct ive mathematics appears to 

be branching in to  two roles. On the one hand, 

construct ive mathematics w i l l  continue to develop 

on an informal basis. The main concern w i l l  be 

"the communication of algorithms [and predict ions 

about algor i thms],  with enough precision to be 

i n t e l l i g i b l e  to the mathematical community" ( I0 ) .  

On the other hand, the movement to formalize 

mathematics is jus t  beginning. Again Erret t  

Bishop has provided the i n i t i a l  impetus. "Formal 

construct ive mathematics is concerned with the 

communication of algorithms [and predict ions about 

algori thms] with enough precision to be 

i n t e l l i g i b l e  to machines ( I0 ) .  Of 

course the machines we have in mind are 

the computers. 

Let us now consider the kind of mathematics 

that machines or d ig i t a l  computers ( I  w i l l  use 

these two words interchangeably) are capable of  

doing or understanding. I should say at the out- 

set that i t  appears every aspect of our i n t u i t i o n  

about the integers has a counterpart in the hard- 

ware c a p a b i l i t i e s o f  the machine. The most basic 

i n t u i t i o n  of counting 

I ,  I+I . . . . .  k, k+l . . . .  

has the counterpart of the b i t  adder. Of course 

we assume that the b i t  adder has the property that  

i f  an integer k+l is too large for  one reg is ter ,  

the overflow w i l l  simply be taken up in the next 

reg is ter .  Someone may object that  although we 

comprehend the integer 

a machine c e r t a i n l y  cannot s to re  i t  as a binary 

number in i t s  memory, because th is  i n t ege r  i s  

l a r g e r  than the to ta l  number of molecules in our 

observable universe .  But th i s  is  an unfa i r  com- 

parison.  To requi re  that  th i s  number be s tored  in 

i t s  binary representation is equivalent to re- 

qu i r ing that we, as humans, wr i te  out th is  integer 

X in decimal notat ion.  Clear ly ,  we are sa t i s f i ed  

to have obtained the integer in one of i t s  repre- 

sentations and do not attempt to convert one re- 

presentation into another one. The machine i s ,  of  

course, also capable of such soph is t i ca t ion ,  and 

hence can digest the integer Xo In regard to a l l  

known f i n i t e  operations on the integers,  the 

machine has already surpassed us in speed and 

accuracy. 

Hence the machine appears no weaker than our 

i n t u i t i o n  is handling the integers. From Bishop's 

thesis that a l l  mathematics is derived from the 

integers,  i t  fol lows as a coro l la ry  that the 

machine is equipotent as our i n t u i t i o n  in i t s  

a b i l i t y  to grasp mathematics. Therefore, at least 

in p r i nc ip le ,  informal and formal construct ive 

mathematics are equivalent.  However, in pract ice,  

they are very d i f f e ren t .  Why is th is  so? The 

answer l i es  not only in the greater complexity of 

the brain over the in ternal  hardware of the 
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machine, but also in the greater sophis t icat ion of 

human mathematical languages over the current com- 

puter languages. For instance, the beaut i fu l  

Fourier inversion formula 

(*) f ( X ) : ~ - 1 1  [~ f (~)e i~md~]e- imX dm 

defies any exact, not approximate, representation 

as an ALGOL program. However, we have no doubt 

that formula (*) w i l l  be computerized, perhaps 

not in the near fu ture.  For the moment, i t  suf-  

f ices to give an out l ine  of how th is  can be done. 

We examine f i r s t  ( , )  from the informal viewpoint.  

In other words, how did we get (*) from our i n t u i -  

t ion of the integers? We use the natural induc- 

t i ve  process to construct a hierarchy of sets, 

p a r t i a l l y  ordered in degrees of  complexity. The 

most basic set of construct ive mathematics is 

again the integers Z. Then we construct the 

rat ionals Q out of the integers as ordered pairs 

of integers whose second components are non-zero. 

Then we construct the reals R as Cauchy sequences 

of ra t iona ls ;  that  i s ,  as certain functions from Z 

into Q. We push on to obtain the set of complex 

numbers C, the set of continuous functions on R, 

the set of absolutely integrable functions on R, 

and f i n a l l y  the set S of a l l  continuous and abso- 

l u te l y  integrable complex functions on R. Now, 

formula ( , )  is c lear ly  a formula on elements of S. 

This a b i l i t y  to define new sets cannot be over- 

exaggerated. Once real numbers are properly de- 

f ined and shown to obey certain laws of operation, 

we can usual ly forget them as being Cauchy 

sequences of rat ionals and work with them as pure 

abstract objects. Our at tent ion span is qui te 

l im i ted ,  and to continuously th ink on more than 

two levels of the hierarchy of sets can be very 

d is t rac t ing  ( I I ) .  Besides, we sometimes de l ib-  

erate ly  omit the e x p l i c i t  dependence of  a set on 

the integers, as in the case of an abstract group. 

When we prove a theorem on abstract groups, the 

dependence of an abstract group on the integers is 

hypothet ica l ;  that i s ,  we w i l l  supply the depen- 

dence only on demand, when we specia l ize to a 

given concrete group. So th is  is the informal 

viewpoint. 

How do we then get hold of formula ( , )  from 

the formal construct ive viewpoint? Here the road 

is much more arduous; but in p r inc ip le ,  we merely 
formalize each of the informal steps taken to 
obtain ( * ) .  We must define a hierarchy of data 

types fo r  representation on the machine. This is 

not possible in such languages as ALGOL 60 or 

FORTRAN. But we already see in ALGOL 68 the pro- 

v is ion that  does allow the programmer to construct 

certain data types of his own, with the general i ty  

that routines themselves may be elements of a 

given type and therefore can be used as parameters 

in other routines (12). This scheme also allows 

the construct ion of types, having, for  instance, 

abstract groups as t he i r  elements. One drawback, 

though, is the a p r io r i  de f i n i t i on  of the type 

' r e a l ' ,  wi thout  reference to the type ' i n tege r ' .  

This is not surpr is ing because ALGOL is very much 

an appl icat ions-or iented language. 

So there is no theoret ical  d i f f i c u l t y  in 

creating a computer language to accommodate the 

algorithms of formal construct ive mathematics, 

since these algorithms are merely elements of 

higher order data types. Unfortunately (or 

fo r tuna te ly ,  depending on your point of view) th is  

is not the case fo r  the proofs in formal construc- 

t i ve  mathematics. (The fo l lowing exposit ion is 

due to Bishop (13).) Consider the general impl i -  

cation formula S + T, where S and T may or may not 

contain addi t ional  impl icat ions.  Then we have 

roughly the fo l lowing in te rpre ta t ions .  Classi- 

ca l l y ,  S ÷ T means ~S)vT. Since th is  in terpre-  

ta t ion  uses the p r inc ip le  of  the excluded middle, 

i t  cannot possibly be implemented on the computer. 

I n t u i t i o n i s t i c a l l y ,  Brouwer said that  S ÷ T means 

the t ru th  of S necessari ly en ta i l s  the t ru th  of T. 

This is s t i l l  too nebulous for  the computer. From 

the informal construct ive viewpoint,  Bishop says 

S + T means there exists a method (dependent on S 

and T) which converts a proof of S into a proof of 

T. This is much closer to an exp l ica t ion  of our 

i n t u i t i v e  (numerical) notion of impl icat ion.  How- 

ever, we have no doubt that the most precise and 

revealing in te rpre ta t ion  of impl icat ion shal l  come 

from formal construct ive mathematics. We hope to 

prescribe a general ( f i n i t e )  algorithm (independ- 

ent of S and T) that w i l l  mechanically transform 

an algorithm asserting S in to  an algorithm assert- 

ing T. Consider the formula (*) again. Let S be 

the statement " f  is continuous and absolutely 

989 



integrable on R." Then we have the theorem S ÷ ( , ) .  

Then formal ly ,  we expect the existence of a general 

algorithm that w i l l  mechanically transform any 

algorithm which asserts S in to  an algorithm which 

asserts ( * ) .  We are s t i l l  searching for  th is  

general algorithm. More l i k e l y ,  we w i l l  not f ind  

a s ingle general algor i thm, but a hierarchy of 

algorithms that transform other algorithms, l i ke  a 

compiler. This hierarchy may look very s im i la r  to 

our hierarchy of data types, p a r t i a l l y  ordered in 

complexity. 

In conclusion, we see that construct ive 

mathematics serves as a most natural impetus for  

the search for  more powerful computer languages. 

In turn,  computer languages w i l l  give us ins ights 

in the objects (or data types) and the proof pro- 

cedures of construct ive mathematics. 
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