Constructive Mathematics and Computer Science

. Henry Cheng, New Mexico State University

Check for
Updates

This paper gives an informal exposition of the
relationship between mathematics and computer
science generated by the constructive viewpoint
of Errett Bishop.
of computational content in classical mathematics

Brouwer's insight on the Tack
is discussed first. Then Bishop's constructivism
is presented as a natural completion on the pro-
gram started by Brouwer to develop a more realis-
Finally, the
correlation between formal constructive mathemat-

tic foundation for mathematics.

ics and computer languages is illustrated and
examined.

KEY WORDS AND PHRASES:
mathematics, formal constructive mathematics,

informal constructive

principle of the excluded middle, intuitionism,
data types, implication.

CR CATEGORIES: 5.20, 5.21, 5.23

Both mathematics and computer science are
undergoing vigorous development. However, if
there is any interaction between these two
sciences, it is more on an incidental basis than
on any systematic one. This is not a healthy
situation and I hope to illustrate a genuine
alternative to this status quo. I hope to show
that if mathematics is approached from the con-
structive viewpoint of Errett Bishop, then it is
recognized that the development of computer
science, at least the software, is essentially a
mathematical one. On the other hand, a study of
computer Tanguages can be used to delineate the
scope of constructive mathematics. To explain
the constructive viewpoint, it appears best to
contrast it with the classical viewpoint (first
enunciated by Plato (1)) that currently domi-

nates mathematical thinking.

986

Now the
classical mathematician or the Platonist pre-

Consider the set of all integers Z.

supposes that the entire infinite set Z pre-exists
in some immutable world of ideas and that our
knowledge or ignorance of Z in no way affects its
existence. In a sense, the totality of integers
transcends our own existence. There is a most
beautiful statement of this attitude by the
British mathematician G. H. Hardy (2; p. 63):

"T believe that mathematical reality lies outside
us, that our function is to discover or observe
it, and the theorems that we prove, and which we
describe grandiloquently as our 'creations', are
simply our notes of our observations. This view
has been held, in one form or another, by many
philosophers of high reputation from Plato onwards,
and I shall use the language which is natural to a
man who holds it." The language that Hardy refers
to is, of course, the language of Aristotelian
logic. And Hardy is absolutely correct when he
said that Aristotelian logic is natural to the
classical viewpoint of mathematics. The clearest
example of this claim is the Aristotelian princi-
ple of the excluded middle: for any mathematical
statement S, either S is true or S is false.
Clearly, if all mathematical ideas, along with the
integers, pre-exist in some nebulous worid, then
their truth values must also have been predeter-
mined, one way or the other. The principle is
most often used in the form of double negation:
for any mathematical statement S, S is true if and
only if not(not S) ds true. To show that a con-
tinuous function f:[0,1]~+ [0,1] has a fixed
point, it suffices to show that the assumption
that such a function f does not have a fixed point

leads to a contradiction. There is no need to

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800194.805890&domain=pdf&date_stamp=1972-08-01

even determine the fixed point to within 1/2. So,
from the classical viewpoint, mathematics, at
least in principle, need not have anything to do
with computations. Its sole task is to specify
the truth values of certain statements in the
metaphysical world of ideas. (It goes without
saying that this is very detrimental to the com-
puter scientist.)

The Dutch mathematician Brouwer was one of
the first to seriousiy object to the lack of com-
putational meaning in the classical viewpoint, and
named the principle of the excluded middle as the
main culprit (3).
sequence X]""’Xn of integers and observed that

He considered first a finite

the principle of the excluded middle implies that
either Vk(Xk < 0) or EIk(Xk > 0).
quarrel with this application of the principle of
the excluded middle because it is always possible

Brouwer did not

in a finite number of simple arithmetical opera-
tions to determine one of the two above alterna-
tives. However, Brouwer felt the situation is
dramatically different when we consider an
infinite sequence {X],Xz,...} of integers, which
are generated by some algorithm. Then in general
we have no finite computational method to assert
either Vk(Xk < 0) or 3k(Xk > 0). A typical
example is the sequence {Xk}:=1 defined by X, =0
if 2k is the sum of.two primes and Xk = 1 other-
wise. The case Vk(Xk < 0) is Goldbach's conjec-
ture; and at present, we have no proof of
Goldbach's conjecture nor have we exhibited a
counter-example. Hence the principle of the ex-
cluded middle, at least when applied to infinite
sets, becomes more an affirmation of faith in that
world of ideas than a basic principle of numeri-
cal computation. Brouwer thought this was such a
blot on mathematics that he set about himself the
task of removing the Platonic world of ideas as
the basis of mathematical thought and called his
program intuitionism. To begin with, he simply
denied the existence of the infinite, relegating
it to a figment of our imagination. (We should
mention that this idea had already been proposed
by Kronecker, Poincaré and others.) Brouwer
declared that one can speak of an infinite
sequence of integers only in the sense of a finite
process that can be continued indefinitely, capa-

ble of surpassing each finite 1imit. He felt that

987

mathematics should be based on our intuition,
since it is only a human endeavor.

Brouwer's critique of classical mathematics
was grudgingly accepted by some of his contem-
Even the staunchest defender of classi-
cal mathematics yielded ground: David Hilbert
stipulated that only finitistic methods are
admissible in meta-mathematics (4; p. 62). As to
mathematics itself, Hilbert intended to extricate

poraries.

it from the yoke of Brouwer's objections by an
appeal to the formal consistency of the classical
mathematical system. Due to Godel intervention,
we know now that Hilbert did not achieve his
objective. Nonetheless, few mathematicians became
advocates of intuitionism. The reason is quite
simple. Despite his great contribution in point-
ing out the deficiencies of classical mathematics,
Brouwer failed to provide a viable substitute for
the classical viewpoint. His introduction of such
ideas as free choice sequences make intuitionistic
mathematics no less ethereal (nor more computa-
tional) than classical mathematics.

It remained for the American mathematician
Errett Bishop to complete the grand design of
Brouwer, but from a different viewpoint; namely,
constructivism. Instead of basing mathematics on
what is intuitively evident, as Brouwer did,
Bishop states as his basic constructivist goal
(5): ". . . that mathematics concerns itself with
the precise description of finitely performable
It is an empirical fact that

all such operations reduce to operations with the

abstract operations.
integers Thus by 'constructive' I shall
mean a mathematics that describes or predicts the
results of certain finitely performable, albeit
hypothetical, computations within the set of
integers."

As to the nature of the integers, Bishop
agrees completely with Brouwer: leave it to our
intuition, and do not derive the integers from
some formal system.

Hence Bishop accepts the algorithm
X0 =

1
1 2
Xt1 53 {zxn + X_ﬁ]

n

as a finitely performable sequence of operations
and the theorem

Tim x = (2)1/3
noe N

as a prediction on the sequence {Xn}. Note that
Bishop never assumes that the sequence {Xn} is
ever given in its entirety, nor does he ever need
this assumption.

From his constructive viewpoint, Errett
Bishop has successfully recast in his book,
Foundations of Constructive Analysis, a large por-
tion of modern abstract analysis, including the

central theory of measure. (This was an accom-
plishment that David Hilbert did not think was
possible.) Bishop does not negate all the
achievements of classical mathematics. What he
did in his book was to extract and whenever neces-
sary to implant computational meaning in the
theorems of classical mathematics. For instance,
constructive measure theory is based on a lemma
that is classically a generalization of Cantor's
diagonization process (6; p. 160).
later extended to give an elegant measure theory
using the ideas of Daniell (7).

This lemma was

Moreover, con-
structive measure theory seems sufficient as a
vehicle to study probability (8) and ergodic (9)
theories. More examples can be cited; but the
important thing is that, in one stroke, Bishop has
dispelled the myth that any mathematical system
without the services of the principle of the ex-
cluded middle will be meager in results and un-
naturally cumbersome.

Clearly, the success of Bishop's program will
have profound implications on computer science,
because what are computers except fast, reliable
and versatile machines dedicated to finitely per-
formable operations on the set of integers.

In fact, constructive mathematics appears to
be branching into two roles. On the one hand,
constructive mathematics will continue to develop
on an informal basis. The main concern will be
"the communication of algorithms [and predictions
about algorithms], with enough precision to be
intelligible to the mathematical community" (10).
On the other hand, the movement to formalize
mathematics is just beginning. Again Errett
Bishop has provided the initial impetus. "Formal
constructive mathematics is concerned with the
communication of algorithms [and predictions about
algorithms] with enough precision to be

988

intelligible to machines (10)}. Of
course the machines we have in mind are
the computers.

Let us now consider the kind of mathematics
that machines or digital computers (I will use
these two words interchangeably) are capable of
doing or understanding. I should say at the out-
set that it appears every aspect of our intuition
about the integers has a counterpart in the hard-
ware capabilities .of the machine. The most basic
intuition of counting

1, 1+#1, ... , k, k+1, ...
has the counterpart of the bit adder. Of course
we assume that the bit adder has the property that
if an integer k+1 is too large for one register,
the overflow will simply be taken up in the next
register. Someone may object that although we

comprehend the integer

- {[[]01110!110!}101

a machine certainly cannot store it as a binary
number in its memory, because this integer is
larger than the total number of molecules in our
observable universe. But this is an unfair com-
parison. To require that this number be stored in

its binary representation is equivalent to re-

quiring that we, as humans, write out this integer
X in decimal notation. Clearly, we are satisfied
to have obtained the integer in one of its repre-
sentations and do not attempt to convert one re-
presentation into another one. The machine is, of
course, also capable of such sophistication, and
hence can digest the integer X. In regard to all
known finite operations on the integers, the
machine has already surpassed us in speed and
accuracy.

Hence the machine appears no weaker than our
intuition is handling the integers. From Bishop's
thesis that all mathematics is derived from the
integers, it follows as a corollary that the
machine is equipotent as our intuition in its
ability to grasp mathematics. Therefore, at least
in principle, informal and formal constructive
mathematics are equivalent. However, in practice,
Why is this so? The
answer lies not only in the greater complexity of

the brain over the internal hardware of the

they are very different.

machine, but also in the greater sophistication of
human mathematical Tanguages over the current com-
puter languages. For instance, the beautiful

Fourier inversion formula

(%) f(X) =5 r Um f(a)e"““’da]e"'“x do

defies any exact, not approximate, representation
as an ALGOL program. However, we have no doubt
that formula (*) will be computerized, perhaps
not in the near future. For the moment, it suf-
fices to give an outline of how this can be done.
We examine first (*) from the informal viewpoint.
In other words, how did we get (*) from our intui-
tion of the integers? We use the natural induc-
tive process to construct a hierarchy of sets,
partially ordered in degrees of complexity. The
most basic set of constructive mathematics is
Then we construct the

rationals Q out of the integers as ordered pairs

again the integers Z.

of integers whose second components are non-zero.
Then we construct the reals R as Cauchy sequences
of rationals; that is, as certain functions from Z
into Q. We push on to obtain the set of complex
numbers C, the set of continuous functions on R,
the set of absolutely integrable functions on R,
and finally the set S of all continuous and abso-
Tutely integrable complex functions on R. Now,
formula () is clearly a formula on elements of S.
This ability to define new sets cannot be over-
exaggerated.
fined and shown to obey certain laws of operation,

Once real numbers are properly de-

we can usually forget them as being Cauchy

sequences of rationals and work with them as pure
abstract objects. Our attention span is quite
limited, and to continuously think on more than
two levels of the hierarchy of sets can be very
distracting (11).

erately omit the explicit dependence of a set on

Besides, we sometimes delib-

the integers, as in the case of an abstract group.
When we prove a theorem on abstract groups, the
dependence of an abstract group on the integers is
hypothetical; that is, we will supply the depen~
dence only on demand, when we specialize to a
given concrete group. So this is the informal
viewpoint.

How do we then get hold of formula (%) from
the formal constructive viewpoint? Here the road

989

is much more arduous; but in principle, we merely

formalize each of the informal steps taken to
obtain (*). We must define a hierarchy of data

types for representation on the machine. This is
not possible in such languages as ALGOL 60 or
FORTRAN. But we already see in ALGOL 68 the pro-
vision that does allow the programmer to construct
certain data types of his own, with the generality
that routines themselves may be elements of a
given type and therefore can be used as parameters
in other routines (12).
the construction of types, having, for instance,
' One drawback,

This scheme also allows

abstract groups as their elements.
though, is the a priori definition of the type
'real', without reference to the type 'integer'.
This is not surprising because ALGOL is very much
an applications-oriented language.

So there is no theoretical difficulty in
creating a computer language to accommodate the
algorithms of formal constructive mathematics,
since these algorithms are merely elements of
higher order data types. Unfortunately (or
fortunately, depending on your point of view) this
is not the case for the proofs in formal construc-
tive mathematics. (The following exposition is
due to Bishop (13).)
cation formula S -~ T, where S and T may or may not

Consider the general impli-

Then we have
roughly the following interpretations. C(lassi-
cally, S > T means (~S)vT. Since this interpre-
tation uses the principle of the excluded middle,

contain additional implications.

it cannot possibly be implemented on the computer.
Intuitionistically, Brouwer said that S » T means
the truth of S necessarily entails the truth of T.
This is still too nebulous for the computer. From
the informal constructive viewpoint, Bishop says

S > T means there exists a method (dependent on S
and T) which converts a proof of S into a proof of
T. This is much closer to an explication of our
intuitive (numerical) notion of implication. How-
ever, we have no doubt that the most precise and
revealing interpretation of implication shall come
from formal constructive mathematics. We hope to
prescribe a general (finite) algorithm (independ-
ent of S and T) that will mechanically transform
an algorithm asserting S into an algorithm assert-
ing T. Consider the formula (*) again. Let S be
the statement "f is continuous and absolutely

integrable on R."
Then formally, we expect the axistence of a general
algorithm that will mechanically transform any
algorithm which asserts S into an algorithm which
asserts (x). We are still searching for this
general algorithm. More Tikely, we will not find
a single general algorithm, but a hierarchy of
algorithms that transform other algorithms, like a
compiler. This hierarchy may look very similar to
our hierarchy of data types, partially ordered in
complexity.

In conclusion, we see that constructive
mathematics serves as a most natural impetus for
the search for more powerful computer languages.
In turn, computer ianguages will give us insights
in the objects (or data types) and the proof pro-
cedures of constructive mathematics.

REFERENCES :
(1)

van der Waerden, B. L., Science Awakening,

John Wiley & Soms, Inc., New York, 1963

(2) Hardy, G. H., A Mathematician's Apology,

Cambridge University Press, London, 1941

(3) Brouwer, L. E. J., '"On the Significance of
the Principle of Excluded Middle in Mathe-
matics, Especially in Function Theory,'" in
Jean van Heigenoort's book From Frege to
Godel, Harvard University Press, Cambridge,
1967

Kleene, S. C., Introduction to Metamathe-

(4)

matics, D. van Nostrand Co., Inc.,
Princeton, 1952
(5) Bishop, E., "Mathematics as a numerical
language" in Intuitionism and Proof Theory,
edited by Kino, Myhill and Vesley, North-

Holland Pub. Co., Amsterdam, 1970

(6)

Bishop, E., Foundations of Constructive

Analysis, McGraw-Hill, New York, 1967
(7) Bishop, E. and Cheng, H., Constructive
Measure Theory, Memoir 116 of American
Mathematical Society, Providence, 1972
(8) Chan, Y. K., "A constructive approach to
the theory of stochastic processes,'" Trans.
of AMS, Vol. 165, 1972, p. 37
Nuber, J., "A Constructive Ergodic Theorem,"
to appear
Bishop, E., "How to Compile Mathematics into
ALGOL," to appear

9

(10}

Then we have the theorem S -+ («).

990

(11)

(12)

(13)

Strachey, C., '"System Analysis and Pro-
gramming' in Information, A Scientific
American Book, W. H. Freeman & Co.,

San Francisco, 1966

Branquart, P., Lewi, J., Sintzoff, M., and
Wodon, P. L., "The Composition of Semantics
in ALGOL 68," Communications of ACM, Vol. 14,
1971, p. 697

Bishop, E., "A Formal Language for Con-

structive Mathematics," to appear

