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COMPUTER GENERATION OF SERIES AND RATIONAL 
FUNCTION SOLUTIONS TO PARTIAL DIFFERENTIAL 

INITIAL VALUE PROBLEMS 

F. C. Gey and M. B.Lesser 

ABSTRACT 

Series and rational function approximations prov~de a viable 

alternative to finite difference methods in the solutioh of partial 

differential initial value problems. Large scale symbolic algebra 

manipulation systems can be used to generate such approximations for 

a very general class of problems. The use of operator derivatives 

keeps the method from being limited to ordinary power series. 

The procedure is applied to the non-linear Burgers' equation 

with periodic initial condition 

u{x,O) = sin{x) 

and the results are compared to an asymptotic expansion and a finite 

difference solution. 

Introduction 

If someone says he has "solved" a partial differential equation 

on a computer, we usually assume that he has found a numerical solution 

by means of a finite differenc-e--tewnique. However, a computer solution 

need not imply a finite difference or even a numerical solution, and in 

some cases it may be a considerable advantage to use a computer to 

obtain a quasi-analytic solution to a problem. One step towards using 

the computer to perform analytic tasks has been the development of 

computer systems to symbolically manipulate polynomials. We intend to 
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show how 'quasi-analytic" solutions to problems governed by parabolic 

and hyperbolic partial differential equations can be obtained, at 

least in principle, on a computer. We will implement our ideas with 

the ALTRAN language for symbolic algebra on a digital computer [lJ 
although we wish to emphasize that this may not be the best tool for. 

the job. 
i 

To illustrate the ideas involved, a quasilinear parabolic 

equation in two independent variables will be solved by our methods. 

Finally, we will discuss the practical limitations and potential 

usefulness of the method. To set the tone for our development, we 

will now discuss some failings of the common finite difference approach 

to pa~tial differential equations. 

Disadvantages of Finite Difference Methods 

The most obvious drawback of finite difference methods is the 

specific nature of the results: the effects of parameter variations 

must be ascertained from specific solutions for many different values 

of the parameter. Hence it is clear that a computer method which 

permits the parameter to be varied after the computation would have 

considerable utility. The technique which we shall present is in a 

crude state and does hot readily yield a "simple" analytic result; 

however, there is reason to believe that with sufficient effort useful 

results can be obtained. 

Moreover, while stable finite difference schemes are generally 

available for linear problems, such is by no means the case for non­

linear problems. No general guidelines·are available for the genera­

tion of stable finite difference schemes for non-linear equations; 

each equation requires analysis oriented to its individual nature. 

Indeed, Richtmyer and Morton [2] have commented: for non-linear 

problems, stability depends not only on the structure of the finite 

difference system but also generally on the solution being obtained, 

and for a given solution, the system may be stable for some values of t 

and not for others. , 

... 

•. 

,. 
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Another problem with finite difference methods is that certain 

types of boundary and initial conditions present great difficulties, 
2/ -x E e.g. an initial condition such as e ,where E ~ 0, requires an 

infinitely fine mesh, while with a quasi-analytic method we might be 

able to leave E as a parameter and study the result of E ~O in 

the solution. This type of problem might arise if we wish to find 

the Greens function for a linear equation. 

In many problems there are no physical boundariesj for such 

problems, the finite difference approach requires the introduction of 

spurious boundaries which may produce stability difficulties in the 

finite difference scheme. Finally, we note the exponential increase 

of required storage with the number of independent variables that 

occurs with finite difference schemes. This need not occur with a 

carefully chosen quasi-analytic scheme, at least not for linear problems. 

Of course, quasi-analytic schemes have many drawbacks of their ownj 

~owever, for special cases and for obtaining insight such schemes may 

prove invaluable. 

Series Solutions to Partial Differential Equations 

Consider the following type of problem in two independent 

variables t and x • 

(1) 
ut = f(x,u,u ,u ) x xx 

u(x,O) = cf>(x) 

where f is a polynomial function. An example is the heat equation. 

This is a so-called "pure" initial-value problem for which the 

requirement that the solution be bounded is sufficient to guarantee 

uniqueness [3] . 
-+ If u(r,t) describes the state of a physical system, and we 

are given the initial state of the system, Le., u(1,0), then partial 

differential equations of parabolic and hyperbolic type, such as the 
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heat and wave equation, provide a means of describing the time evolu­

tion of the system. Thus the solution of the equation takes the form 

u(~t) = E(t) u(~,O), where E(t) is an operator which represents the 

action of the differential equation. In some sample cases like the ohe 

dimensional linear heat equation ut = Uxx with no boundary conditions 

and the initial condition u(x,O) = u (x), E(t) can be explicitly found. 
o 

In the one dimensional heat equation case 

E ( t ) u (x) = ;::;=1:;:::-
o .J 41ft 

2 (x-z) 
4t u (z)dz. 

o 

Another approach to find the time evolution of a system is to 

generate a power series solution of the differential equation; thus in 

OJ 

the case of the heat equation let u(x,t) = 2: The term 

n=O 

a (x) = u (x), and the general a is found by a recursion derived 
o 0 n 

1 II 

from ut = uxx • Thus an+l(x) = (n+l)- an(x). It is evident that 

this method requires u (x) to be an analytic function. 
o 

The power series solution can also be obtained from the integral 

form of the solution. A simple transformation of variables shows that 

OJ 

u(x,t} ,= (.r1
/

2 J expj-i}Uo(X-2 Vt y}dy. 

-OJ 

A series expansion of uo(x - 2 Vt y). in the variable 2 Vt y then 

provides the series expansion. From this form it is clear that the 
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singularities of u (z), considered as a function of the complex 
o 

variable "z", determine the radius of convergence of the power series 

solution. In general, we must expect a similar state of affairs to 

hold for series solutions of other hyperbolic and parabolic problems, 

i.e. the series will only converge in a limited region. To overcome 

this difficulty and to improve the convergence of the solution, we 

resort to techniques for analytic continuation and improvement of rate 

of series convergence. 

It is well known that a meromorphic function can be represented 

at all non-singular points by a single rational fraction expansion. 

This expansion can be found by a recasting of the power series repre­

sentation of the function as a rational fraction. The method has been 

used with success in fluid mechanics to solve both the blunt body 

problem and the shock on shock problem [4]. The rational fraction 

expansion can be obtained using a special nonlinear sequence to sequence 

transformation known as the Pade approximant method [5] which we will 

discuss in connection with the use of computer algebra manipulation to 

develop a solution to a quasilinear parabolic equation. Before doing 

this, we believe it will be profitable to discuss the general idea 

behind the approach to a solution of such problems. 

For the simple case of a parabolic equation with no explicit 

dependence on x and t, we have a relation of the form ut = f(u,u ,u ), x xx 

together with the initial condition u(x,O) = u (x). 
, 0 

We know that a 

power series of the form 

OJ 

u(x,t) = 

, ••• ~< •••• , 

can represent the solution in same region of the x,t-plane centered 

at t = ° in the complex t-plane. The equation can then be expressed 

in terms of a recursion relation which yields the function a (x) in terms 
n 

of the given 11 (x) = a (x). 
o 0 

The recursion relation for aN will require 
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operations such as differentiation and multiplication of the a 's 
n 

For many equations the function g will be simple enough to permit 

automation of the recursion process. As an example, suppose only 

multiplication and differentiation are involved in g, and the initial 

function U (x) has the form [1 + exp(x/6) ] -1, where 6 is a para-
o 

meter. If we differentiate C(M, Q,S) = 6-S exp(Mx/6) [1 + exp(x/6)] -Q 

we find:: 

.! C(M,Q,S)=M;'C(M,Q,S+l)- Q-C(M+l,Q+l,S+l). 

If two ·of these functions are multiplied together we find that 

C(M,Q,S)·C(M',Q',S') = C(M+M',Q+Q',S+S'). Thus we can replace the 

operations of differentiation and multiplication by operations on the 

integers M,Q,S. The general term in the power series expansion would 

then have the form 

aN(x) = I A(M,Q,S)C(M,Q,S). 

M, Q,S 

A computer can be used to carry out the necessary arithmetic and to 

store the resul;ting symbolic representation of aN(x). The result is 

not a numerical solution but a power series in t with coefficients 

that are functions of x. In principle one can produce for as 

large an N as desired; however, limitations on storage and the com­

plexity of terms for large N will in most cases limit the number of 

terms that can be found. 

As an example of the above idea, we will "solve" a nonlinear para­

bolic equation with a sinusoidal initial condition. Before proceeding 

to this problem, we will first examine how ALTRAN can be used for our 

purpose and how the convergence of a series can be improved by recasting 

as a rational fraction. 
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Operator Derivatives and Transcendental Functions 

ALTRAN is based on the ALPAK system for non-numerical algebra 

on the digital computer [ 6]. ALPAK and similar systems such as PM 

[ 7] can deal only with polynomials (and, in the case of ALPAK, with 

rational functions considered as two polynomials, the numerator and 

denominator); they cannot explicitly handle the elementary transcen­

dental functions Sine, cosine, and expo However, by the simple method 

of introducing additional independent variables and making use of 

operator derivatives obtained by the chain rule, one can easily generate 

series coefficients in terms of these transcendental functions. 

Sine and cosine are handled by introducing the variables S = sin(x) 

and C = cos (x) and then taking derivatives using a subroutine which 

defines an operator L acting on polynomials P by 

L = DIFF(P,S)*C - DIFF(P,C)*S 

where DIFF is the system differentiation function, i.e. 

In this way we have L(S) = C and L(C) = -So 

Rational Fraction Approximations 

dP 
DIFF(P,X) = dx . 

As was noted above , we should not expect the power series to 

converge for all t; and even if the function does converge for all x 

in the complex t plane, it is unlikely that convergence will be rapid. 

Also, in our method the complexity of higher order a rapidly increase, 
n 

and it is desirable that we obtain a reasonable approximation of the 

solution with as few a as possible. To accomplish this purpose, we 
n 

shall make use of the so called Pad~ approximants to a power series. 

The (N,M) Pade approximant of a function is a rational fraction of 

the form: 

2 N 
1 + ~l Nt + ~2 Nt + ••• + ~N Nt " , . 
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If (N,M) is expanded in a power series, it must have the property that 

the coefficients of the terms up to tM+N match the coefficients of the 

power series expansion of the function being approximated. It can be 

shown [5] that this uniquely determines (N,M). 

The current theory of Pad~ approximants does not appear to do 

justice to their power as an approximation tool, however those theorems 

that do exist give some indication of this power. For example, suppose 

fez) has a finite number of poles, i.e., is a meromorphic function, then 

the limit as N~ro of the (N,N) Pade approximant of fez) converges 

uniformly to fez) except in the neighborhood of the poles. Thus, unlike 

power series, the Pade approximants' region of convergence is not limited 

to circular regions in the complex plane. Some theorems for functions 

wi th branch point,s also show the power of the Pad~ approximant. We do 

not wish to discuss Pad~ approximants in detail here, and we refer the 

reader to [5 J and [8] for a complete discussion. However as a simple 

example consider 

- ... . 

To compute (1,1) consider 

If we match coefficients we find 
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and +1 • 

Hence we find: 

(1,1) of f(Z) 1 is just 1 =---
1 + Z 1 + Z 

In this case (N,N) is also (l+z)-l. Of course the Pad~ method works 

so well on this function because it is a rational function to begin with. 

But equally remarkabl, e results exist for functions such as exp {_ Z } 
1 + Z ' 

a function which possesses an essential singularity at Z = -1 . 

Example: The Burgers' equation 

Burgers' equation [9] provides us with an interesting non-trivial 

equation which conta~ns many of the features indicative of problems in 

non-linear acoustics, and fluid dynamics. A good deal is known about 

the'behavior of Burgers' equation, which will permit us to ascertain at 

least qualitatively, the behavior of the true solution. Thus we solve 

the following initial value problem 

u(x,O) = sin x • 

If we consider a series solution of the form 

u = I:a. (x)t i 
:L 

we can easily obtain the following recursion formula for 

the a. 
:L 

a i +l (x) = i!l a~(x) - L a/x).a~(x) 
j+k=i 

a (x) = sin(x) o 
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Introducing the dummy variables 

S == sin(x) C == cos(x) 

an ALTRAN program can be written to obtain the a. as polynomials in 
1 

the variables Sand C • 

The first ten coefficients a i are listed in Appendix A. Only 

the first three could be obtained by hand without undue effort. Because 

of the explosive growth with increasing i of the integer coefficients 

of the terms of ai' this seemed an ideal situation to apply the Pade 

approximant method. 

(2,2) as computed by ALTRAN, contains 30 terms in the numerator 

and 34 terms in the denominator; an attempt to reduce it to lowest form 

failed because of coefficient overflow during a greatest conrrnon denom­

inator execution. The higher order Pade approximants (3,3) and (4,4) 
could not be obtained symbolically using ALTRAN, but they were obtained 

numerically. In view of the complicated symbolic structure of (2,2), 

no significant advantage is apparent in a symbolic over a numerical 

solution. A selective sampling of the results, in comparison with two 

other solution methods to be described below, is shown in Figures 1-5 • 

Finite Difference Solution 

Problem (2) was formulated as an initial-boundary problem for 

finite difference solution by imposing the additional boundary values· 

u(O,t) = u(2n,t) = 0 

As might be expected, an explicit difference s.cheme proved· unstable for 

all but very small values of t. However, a predictor-corrector modifi­

cation of an implicit Crank-Nicholson scheme as suggested by Douglas & 

Jones [10] provided a stable finite difference solution to the problem. 

An Asymptotic Solution for Small t 

As discussed in[9], Burgers' equation can be transformed into the 

linear heat equation by use of the so called Hopf-Cole trans·formation. 
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Thus letting u 
d -2 dX £n 1jr we see that Burgers' equation implies 

that 1jr = 1jr • 
t xx 

Using the Green's function form of the solution to 

the appropriate transformed initial value problem for the heat equa­

tion, one finds that 

u(x,t)" 13 x?~ exp 1 ~ cos y - (x-d/4t I dy 
----~m~---~-----------------------------

f exp 1 ~ cos y - (x-y)2/4t (dy 
-00 

We have not been able to obtain a closed form evaluation of the above; 

however, standard techniques (Laplace's method) have led us to the 

following asymptotic result for·small t: 

. u -- sin x - sin x(cos x+l)t 1 sin
3
x t 2 + O(t3) . 

1 + t cos x - 2' 2 
(l+t cos x) 

Fourier Series Form of Solution 

As may be seen in Appendix A, the coefficients a i of the series 

solution to Burgers equation are in the form of polynomials in sine and 

cosine. This is necessarily the form of output obtained using ALTRAN. 

For numerical purposes of evaluation of the solution, this form is 

entirely satisfactory. However, for purposes of insight into the nature 

of the solution and the possible location of Singular points, the equiv­

alent finite Fourier series may be more appropriate. This equivalent 

form for the series coefficients has been obtained using identities in 

[llJ which were programmed for this purpose. The coefficients are shown 

in Fourier series form in Appendix B. 

This result was also recast as a (2,2) PadJ approximant which can 

be found in Appendix B. Inspection shows that the resulting fraction 

is much simpler, and more compact than the previous form. 
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Evaluation of Results 

Figures 1-5 plot the various solutions u for five different 

values of time. The solid line is the finite difference solution. 

By t = 0.6 the asymptotic expansion values are no longer resonable. 

At this point the Pade approximants seem to be the only analytic 

representation behaving as the true solution (except in the neighbor­

hood of singular points, as will be discussed below). By t = 2.0 the 

Pade approximants begin to diverge from the finite difference solution. 

Poles of Pade Approximants 

The appearance of singular behavior in the Pade approximants (2,2), 
(3,3), and (4,4) in Figures 2-5 displays a disadvantage of Pade approx­

imants which must be allowed .for in their use as a calculation tool. An 

(n,n) Pade solution to a differential equation in 2 independent variables 

of the form 

P 
(n,n) = ~ 

P (x, t) 
n 

will have at most n (complex) poles for each value of x within the 

range of the problem. As t ~r where Q(x,r) = 0 the Pade approx­

imant becomes infinite. Since we are solving an initial value problem, 

we need only consider positive real roots of ~(x,t). Byobtaining 

a profile of the positive real roots, it is possible to practically 

determine regions in which the Pade approximant will not be an accurate 

representation of the solution to the equation. Root profiles for the 

(2,2) (3,3) and (4,4) Pade approximants to Burgers' equation are shown 

in Figures 6-8. 

There is a large body of literature devoted to convergence proofs 

. for sequences of Pade approximants [8] . Recently Walsh [12] has 

obtained new results in this area. However, little work has been done 

in the area of error estimation in the neighborhood of poles of a given 

approximant. Thus root profiles remain the practical tool for deter­

minationof the region of validity of Pade approximants as a solution 

to a partial differential equation. 

.. 
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Three Dimensional Problems 

The application of finite difference methods to eCluations of 

three independent variables sCluares the amount of space and alloted 

time reCluired to solve problems of magnitude eCluivalent to two­

dimensional ones. This "is to say nothing of additional difficulties 

introduced in the theory by such transition to higher-dimensional 

problems. Furthermore, in these problems, the task of fitting extra­

neous boundary conditions is more complicated. The introduction of an 

additional spatial variable will not, however, significantly complicate 

or overwhelm the series and rational function generation method which 

we have described. Taking, for example . the three-dimensional wave 

eCluation 

u .+ u 
xx yy 

1 
= c(x,y) Utt 

it would be easily possible to automate and generate a series of 

the form 

( ) n+l ••. + a x,y t + ••• 
n 

to which Pad~ approximants could be applied. The storage space reCluire­

ments which are the bane of finite difference methods do not bother the 

symbolic series method, since it deals with functions rather than values 

of functions at specific points of a finite difference mesh .• " 

Summary 

This paper has presented a solution method for partial differ­

ential initial value problems which rests upon three basic ideas. First, 

a solution is formulated as a power series in the relevant variable, 

time, whose coefficients are functions of the other independent 
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variables. Second, computer symbolic algebra manipulation systems are 

used to generate these coefficients from recursion relationships derived 

from the differential equation. This may be accomplished only if the 

initial function is a polynomial over a finite set of functions which 

are closed under theo~tions found in the recursion relationships 

(usually addition, subtraction, multiplication and differentiation). 

Finally, since the series thus obtained will, in general, be a poor 

representation of the actual solution, the Pad~ approximant method is 

applied to obtain a better analytic approximation to the actual solution. 

Our results demonstrate that it is feasible, using existing systems, 

to generate accurate analytic approximations to the solution of partial 

differential initial value problems. The primary importance of the 

method lies in that it provides a general solution method even for those 

non~linear equations for which stable finite difference schemes may be 

unavailable. 
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APPENDIX A 

Listing of Series Coefficients and 

Rational Approximations for Burgers Equation 
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Appendix A - 2 

·s = sine(x) 

C = cosine(x) 

. S.c:. 2 2 
a 2 (x) = ~ (1~c+2c -s ) 

s 2 3 2 . 2 = - b (1+28c+36 c -t-6c ~15s -lOs c) 

222 4 -328s c-88s c +13s ) 

5622- 2 2 +120c -1 50s -7280s c-~340s c 

\ 

-800s2c3+705s4+376s4c) 
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Appendix A - 3 

2 2 2 3 2 4 -207140s c -80640s c -7800s c 

6 2 2 ·22 -762 15s -1912736s c-1064616s c 



.. 

SOLUTIONS TO INITIAL VALUE PROBLEMs 

Appendix A - 4 
-19-

a8(x) = 40;20 [1+32640c+3915200c2+39312000c3 

+85536864c4+59270400C5+15240960c6 



SOLUTIONS TO INITIAL VALUE PROBLEMS 

-20-
Appendix A - 5 

a9(x) = 36~'880 {-1-3571524oc-35715240c2-62140160oc3 

-2433624480c4-2793934080c5 

-716597280c4-46738944c5+349425300s2 . 

" 
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224 2 -96s c -36s +(-6+318c+888c 

+744c 3+288c4-804s 2-1428s2c 

-984s2C2-216s2C3-102S4_42S4C)t 

5 2 2 ' 2 2 +144c -381s -892s c-1924s c 

2 3 2 4 4 4 -672s c -120s c -363s +18s c 

4 2 6 2 -58s c -39s )t ] 
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APPENDIX B 

Fourier Series Form of Coefficients 
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a (x) = sin(x) 
.0 

a1 (x) = -sin(x) - ~ sin(2x) 

a2(x) = ~ sin(x) + ~Sin(2X) +~. sin(3x) 

a3(x) = ~ sin(x) - il sin(2x) - 1t sin(3x) - ~ sin(4x) 

a4(x) = - i~~ sin(x) + it sin(2x) + I~§ sin(3x) 

+ ~U sin(4x) + ~§~ sin(5x) 

() 6~7 . () l.3.2.. (2) 1441 . (3 ) a5 x = 9 0 Sln x + 240 Sln x -~ SlD X 

- .~g7 sin( 4x) - ~i sin(5x) - ~ sin(6x) 

() 3159l. ( ) . ~ . (2) 39905 . (3 ) a6 x = - 40080 Sln x - I440 Sln x + 3072 Sln x 

+ 1~g69 sin(4x) + ~5~~5 sin(5x) + ~t§ sin(6x) 

u~8g7 . + 0 0 sln(7x) 
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() ~U289 . () 1a09 . (2) ~ . (3 ) a7 x = 512 Sln x + 1 0 Sln x - l5350 Sln x 

lli.2. 4 1113~05. 6fl71. - 20 sin( x) 921 sln(5x) - 1 0 sln(6x) 

n~5081 . (7) 128 . (8 ) -080 Sln x - 315 Sln x 

2628205. ~. 
a8(x) = 1032192 sln(x) -~ sln(2x) 

2~~37~87 50651,· -01 0 sin(3x ) + 320 sln(4x) 

531441 
r- 1146880 sin(9x) 

:; 
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2~~na~n21 1536391 " a9(x) = 4 0 sin(x) + 72576 sln(2x) 

+ 75509a851 sl"n(3x) - 325~091 " (4 ) 7741 40 ,22 80 Sln x 

- 177403~427 s" (5 ) - 1261~227 sl"n(6x) '15 82 8 In x , 89 0 

+ 1~6~~~i~~27 sin(7x) - 64~§~69 sin(8x) 

16441017" ' 78125 ' "' 
- 11 6880 sln(9x) - 145152 sln(10x) 

\ 
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Appendix B - 5 

(~~,2) :: [(- 4~7 sin(x) + 126 sin(2x) + ¥ sin(~) 
+ 39 sin(4x) + ¥ sln(5x») + (-~ sin(x) 

_ 1ii9 sin(2x) + 2~01 sin(3x) + ~ sin(4x) 

+ ¥ ~in( 5x) + it sin(6x»)t + (- 'fl.2 sin(~) 
1849 . 8079 . 79 929 + ~ s1n(2x) -~ s1n(3x) - lf sin(4x) + ~ sin{5x) 

+ ~ sin{6x)+ fl sin{7x»)t
2
] 

[~ ~7 + 330 cos{x) + 210 cos{2x) + 78 cos(3x) +¥ cos(4x») 

+ ( - ~ + ~ cos (x) + 1041 cos{2x) + ~ cos{~) 

+ ~ cos(4x) + ~ cos(5x»)t + (- 5~g3 +9:01 cos{x) 

21483 4949 4191 
+ -~ cos(2x) + --a-- cos{~) + lb cos{4·x) 

. 417 101.) 2J + -g- cos{5x) + 32 cos{6x) t 
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Fig. 1. Solutions to Burgers I equation. 
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Fig. 2. Solutions to Burgers' equation. 
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Fig. 3. Solutions to Burgers' equation . 
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Fig. 4. Solutions t~ Burgers' equation. 
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Fig. 5. Solutions to Burgers I equation. 
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Fig. 6. Root profile, Denominator of ,(2, 2) 
Pade approximant. 
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Fig. 7. Root profile. Denominator of (3,3) 
Pade approximant. . 
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Fig. 8. Root profile. Denominator of (4,4) 
Pade" approximant. 

'lj 

•• 



J 

LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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