
Machine organization for multiprogramming

by P E T E R W E G N E R
Cornell University
Ithaca, New York

I N T R O D U C T I O N
This paper is intended as an introduction to some
of the basic concepts of mult iprogramming for readers
who wish to study the more specialized literature in
this field. It a t tempts to develop a f ramework for the
discussion of mult iprogramming which motivates
the forms of machine organization used in current
mult iprogramming systems. The key requirement
in mult iprogramming sys tems is that information
structures be represented in a hardware- indepen-
dent form until the moment of execution, rather than
being conver ted to a hardware-dependent form at load
time. This requirement leads directly to the concept
of hardware- independent virtual address spaces, and
to the concept of virtual processors which are linked
to physical computer resources through address
mapping tables. The structure of the class of hard-
ware- independent virtual processors in the IBM 360
model 67 and G E 645 sys tems (1), (2), (3), (4)," is
developed in some detail. Quest ions of efficiency of
throughput in the resulting class of compute r sys tems
are considered.

Resource allocation in multiprogramming systems

Multiprogramming, multiprocessing and multiaccessing

Compute r systems in which a number of user pro-
grams may be simultaneously compet ing for physical
compute r resources such as m em ory registers or
processing units are referred to as multiprogrammed
computer systems. The set of techniques for realizing
mul t iprogrammed compute r sys tems is referred to as
multiprogramming. Multiprogramming may be per-
formed either on a computer with a single processor
or on a computer with multiple processors . The set
of techniques for realizing computer sys tems with
more than one processing unit is referred to as multi-
processing. A subfield of mult iprogramming is con-
cerned with the problems of compute r sys tem or-
ganization which arise specifically because of the
multiplicity of input-out devices which interface

135

with the system. The problems in this area are re-
ferred to as problems of multiaccessing.

Both multiprocessing and multiaccessing involve
the allocation of scarce compute r resources such as
the main memory and the processing units among
compet ing user-initiated programs, and therefore are
subfields Of the general area of multiprogramming.
However , mul t iprogramming may occur even on
computer sys tems with only a single input channel
and only a single processor.

Efficiency Versus flexibility
A large computer sys tem may be thought of as a

utility which is intended to serve a variety of users
both flexibly and efficiently. Access to the sys tem by
the user should be simple, rapid, and sufficiently
flexible to allow the user to suit the mode of access
to his needs. For example, an application which re-
quires the computer to make real t ime responses to
an on-line process requires a different mode of opera-
tion f rom that for a batch processing problem whose
results are not so urgently required. The mode of oper-
ation required to service a user who is debugging a
program at a typewri ter console and requires small
bursts of computat ion to be performed within a short
period of elapsed time must also be catered for.

Program execution in each of the permit ted modes
of operat ion should be efficient both in terms of re-
source utilization and in terms of user requirements.
Saltzer (l) has classified the problems of computer
sys tem organization into technological ones con-
cerned with efficient resource utilization (through-
put), and intrinsic ones concerned with the con-
venience of the user. An alternative is to consider
the user as one of the resources of the computer sys-
tem, Whose efficiency of utilization is determined by
the user facilities and the response pat tern of the
computer sys tem to run requests by that user. In-
trinsic problems may in this way be modelled into
technological problems; i.e., the intrinsic problems
of providing adequate service to an on-line process

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800196.805984&domain=pdf&date_stamp=1967-01-01

136 P r o c e e d i n g s - A . C , M . National Meeting, 1967

or to a user at a console can be modelled by the tech-
nological problem of providing certain user facilities
and computer response patterns for classes of periph-
eral devices.

Time slicing

The hardware of a computer system consists of a
collection of physical resources each of which has
certain operating characteristics. When considered
statically all computer resources are information
storage devices which at different times are occupied
by different items of information. Every resource
has a one-dimensional existence through time referred
to as its time line. The time line of each resource
can be subdivided into segments called time slices
corresponding to periods for which the resource is
allocated to a particular information item. The com-
puter resources form a hierarchy such that some
are more in demand than others, although the total
storage capacity in the computer (including auxiliary
memory) is sufficient for information items of all

computations.*
At any given point of time the computer hard-

ware is occupied by a group of "loosely intercon-
nected" information structures each of which rep-
resents a process at some stage of execution. The
term process or computation will be used to denote
the sequence of information structures representing
the program and data of a given "user" during suc-
cessive stages of execution.** It is convenient to in-
troduce the notion of a time line for computations.
The time line of computation measures progress
within the computation in terms of the number of ex-
ecuted instructions since the beginning of the com-
putation, and has no direct correspondence with real
time.

The information structure associated with a com-
putation undergoes transformations as it progresses

*We adopt the point of view that a coTputation has just as real an
existence in time as a physical resource, and use the terms "time
line" and "time slice" to denote time segments for both kinds of
objects.
**The term "user" does not necessarily have human connotations
and should be thought of as a group of programs for performing a
certain function, or a "front" for purposes of accounting, rather
than as something of flesh and blood. Thus system programs for
performing specific system functions may be thought of as users.
"Users" not under the control of the problem programmer are some-
times referred to as "Daemon users" (I) It is usually possible to
dynami6ally partition executed instructions so that each is associ-
ated with precisely one user. However, there are some fuzzy bound-
aries in such partitioning for which arbitrary decisions must be
made. Partitioning of a set of static information structures among
users for purposes of "space accounting" present problems because
structures may be shared by more than one user.

along its time line. A snapshot of the information
structure at a given point of the computation will
be referred to as an instantaneous description. A
computation may be completely characterized by the
sequence of instantaneous descriptions to which it
gives rise. Individual instructions or executable pro-
gram segments may be characterized by the effect
which they have in transforming instantaneous de-
scriptions.

Allocation of information to resources

The physical storage registers in which instructions
and data reside while they are actually being trans-
formed are referred to as processor registers. Pro-
cessor registers are in very great demand during a
computation, and the time slice of processor registers
allocated to an information item is restricted to the
time that the information item is required in trans-
forming the instantaneous description. When an in-
formation item in a processing register is no longer
required it is moved to a register that is less in de-
mand by an information moving instruction.

The speed at which information moving instruc-
tions operate is determined by the accessing char-
acteristics of the information storage media between
which the information is moved. It is important that
instructions which move information in and out of
processing registers can be rapidly executed, since the
moving of information in and out of processing reg-
isters constitutes a greater computational bottleneck
than the processing time. Information which has been
moved out of the processing registers and is no longer
required can be moved to an information medium with
slower accessing characteristics by more slowly exe-
cuted information moving instructions which do not
tie up the processing unit while they are being exe-
cuted.

The information storage medium which serves as
the direct source and destination of processing-unit
information is called the main memory. Information
storage media to which information is moved when it
is not directly required by the processing unit is
called the auxiliary memory. There may, in general,
be several levels of auxiliary memory with different
accessing speeds, some communicat ing directly with
the main memory and others communicating with the
main memory through one or more intermediate levels
of auxiliary memory.

A computer system normally contains only a small
number of processing units in which processing can
be performed, and a hierarchy of different memory
devices with different accessing speeds. Information
which is not currently in use is normally stored in a

Machine Organization for Multiprogramming 137

low-speed memory device. Information which is
currently being used in processing is stored in pro-
cessing registers. Information which is about to be
used must be stored in the main memory if the com-
puter is to access it directly. If an information item
accessed by a processing unit is not in the main mem-
ory, the processing unit cannot proceed with the com-
putation until the slow information transfer from aux-
iliary to main memory has been accomplished. The
time for an information transfer from auxiliary to
main memory is typically at least one thousand times
as long as the transfer time from the main memory to
the processing unit, so that the real time required to
execute an instruction whose information is not in
main memory ks several orders of magnitude greater
than that required for an instruction whose infor-
mation is in main memory.

If a processing unit is to execute a sequence of in-
structions at its normal processing speed, then all
components of the instantaneous description accessed
during execution of this sequence of instructions must
be in the main computer memory. It is one of the prin-
cipal tasks of a programming system to organize in-
formation transfers between various levels of aux-
iliary memory so that information is in the main
memory when it is required by the processor. The
programming system must allocate time slices of
blocks of physical main memory registers so that in-
formation required for processing is usually, though
not always, in the main memory before it is used. At
the same time, the memory time slices allocated to

an information item should not greatly exceed the
time period during which it is used, so that it can
be freed for use by other information items. The
efficiency of decisions regarding allocation of physi-
cal memory to information items is determined by the
time pattern of accesses to the information item. In
considering this time pattern, it is important to dis-
tinguish the time pattern of access in the internal time
scale of a given program and the time pattern in real
time when interrupts are to be taken into account.

Time patterns of accessing

Time patterns in which access to a given infor-
mation block occurs in bursts separated by long in-
tervals with no accesses allow very much greater
efficiency of physical memory allocation than real
time patterns in which accesses to a large number of
blocks are interspersed with each other in a relatively
uniform manner.

The real time pattern of information accesses in a
multiprogramming system is inevitably more diffuse
than in a batch-processing system because different

processes are interleaved with each other on a given
processor. Such interleaving of processes not only
requires information items of a number of interleaved
processes to occupy concurrent time slices of the main
memory, but also requires information items of each
of the processes to occupy its time slice for a longer
period of time.

The index of main memory utilization by a given
computation or set of computations is clearly the prod-
uct of the number of physical main memory registers
used and the time for which they were used. This
index will be referred to as the memory slice of the
computation or set of computations. An example will
be given to show that the memory slice occupied by
a set of processes rises sharply as the number of pro-
cesses being simultaneously executed increases.

Example: Assume that there are n tasks with similar
time and space requirements to be executed on a single
processor of the multiprogramming system. Assume
also that each process requires m fixed size blocks
(pages) of main memory to operate efficiently and that
the internal process time during which the process
is required is k seconds for each process. Then the
memory slice required for processing the set of n tasks
in sequence is kmn units. If, however, the n tasks are
interleaved, then each task occupies mn blocks for kn
seconds, so that the memory slice required to execute
the set of tasks is kmn 2 units.

Multiprogramming leads to greater technological
efficiency by allowing processor idle time in a given
process to be used by another process which is ready
for execution. It greatly facilitates more efficient
servicing of multiple users requiring real time re-
sponses and short elapsed time responses. However , it
leads to a greater strain on memory resources even
in the case when program characteristics are assumed
known and memory allocation problems are assumed
to have been solved.

Matching software to resource allocation

In a muitiprogramming system with given facilities
for allocation of information structures to resources
the system software must be specifically designed to
work efficiently under the given allocation scheme.
Efficient design of system software can improve over-
all system efficiency at two levels.

1. If frequently used system programs are con-
structed to make efficient use of computer resources
during their execution, than all programs that utilize
scarce computer resources during the execution of
these system programs will operate more efficiently,
resulting in an overall improvement of system effi-
ciency.

138 Proceedings-A.C.M. National Meeting, 1967

2. Compilers and other programs that determine the
run-time representation of user programs should cause
programs to have a run-time representation that makes
efficient use of allocation facilities during execution.

If, as has happened in a number of instances, the
performance of a given multiprogramming system has
been found to be poor, then it is difficult to judge
whether the poor performance is due to inherently
unworkable allocation procedures, or to software
design which made poor use of the given allocation
procedures. A complex system is as weak as its
weakest link, and it is not always possible to identify
the weakest link in a complex system. Indeed, since
components of a system strongly interact, there are
usually a number of alternative ways of improving the
overall performance of a system, such as expanding
hardware capacity of critical hardware components,
placing restrictions on multiprogramming within the
system, providing poorer elapsed time service to cer-
tain classes of users, redesigning software system
modules, redesigning the run-time representation
strategy for programs, redesigning the basic hardware
allocation scheme and many other strategies. In order
to determine which of these factors is the critical one,
some means of measuring system performance must
be devised, and the behavior of the system under
changes in system design parameters must be meas-
ured. The measurement of system performance will
be further discussed in a later section.

Virtual processors

Resource-independent information structures

One of the principal differences between batch-
processing programming systems lies in the degree to
grammed programming systems lies in the degree to
which a user program has control over physical com-
puter resources during the execution of his program.
In batch-processing programming systems, machine
language programs are permitted in which the user
decides for himself how physical resources are to be
allocated during program execution, and has complete
control over the real time sequence of events within
the computer during execution of his program except
in exceptional circumstances which cause interrupts.
In a multiprogrammed computer system, the program-
mer has control over the time sequence of events in
his own program, but has little explicit control over
the allocation of computer resources among different
programs in the programming systems.

A multiprogrammed system allocates scare com-
puter resources to programs during execution. Since
the physical resources allocated to a program may be
different on different instances of execution, it is

essential that a multiprogrammed computer system
provide facilities for the run-time representation of
programs in a manner that is independent of the
physical resources they will occupy during execu-
tion.

It will be assumed that the physical computer re-
sources are approximately as follows:

1. Several hundred thousand main memory regis-
ters addressable by a linear sequence of integer
addresses.

2. One or more processing units having access to
a common main memory.

3. Several hundred million registers of fast auxiliary
memory with a block access time of a few mili-
seconds.

4. Data channels to a wide unpredictable variety
of input-output devices such as tapes, printers, card
readers, typewriter consoles, direct data channels to
on-line equipment, scopes, etc.

5. A number of meters and clocks for measuring
resource usage.

In a batch-processing programming system the
above resources can be directly addressed at the ma-
chine language level. In a multiprogrammed system
the allocation of resources to information structures
associated with a particular user is performed dynami-
cally by the programming system. It is therefore con-
venient to store the information structures in a hard-
ware-independent manner during execution.

Virtual machine language

The hardware-independent run-time representation
of instructions will be referred to as virtual machine
language to emphasize that it is a hardware-indepen-
dent representation. The computer system is designed
to execute programs specified in virtual machine
language rather than programs in a more hardware
oriented language. The virtual machine language pro-
grams may be thought of as being executed inter-
pretively by the programming system. Like every
interpretive system, a penalty is paid in that there is
an interpretive overhead in the execution of individ-
ual instructions. In the multiprogrammed systems
considered below only the address field is interpreted,
and indirect addressing hardware is used to reduce the
interpretive overhead.

The principal reason for choosing a run-time rep-
resentation which must be interpreted arises from
the requirement that the run-time representation
be hardware independent. However, once the decision
for an interpretive run-time representation has been
made, other benefits associated with interpretive lan-
guages can be exploited. The run-time representation

Machine Organization for Multiprogramming 139

can be chosen so that it is a clean and logical language.
Additional flexibility of control sequencing, diag-
nostics, and control over access, can be provided by
interpretive control bits encountered during indirect
addressing.

Interpretation is normally restricted to indirect
addressing, but may in certain cases require system
programs to be executed. Such system programs
are referred to as hardware management routines.
Hardware management routines of a computer system
are equivalent in their effect to microprograms which
modify the primitive hardware structure of the com-
puter and give the user the illusion of a more civilized
environment. However , hardware management rou-
tines are implemented by software, and may require
a considerable programmed overhead to achieve their
effect during execution.

The term "virtual memory" will be used to dis-
tinguish the memory seen by each user from the physi-
cal memory of the actual computer. The concept o f a
hardware independent "virtual address" will be de-
fined and distinguished from that of a physical register
address. The concept of a "virtual processor" or "vir-
tual computer" is defined as the computer con-
figuration which each user sees when he writes his
program, and distinguished from the physical com-
puter that is actually available. It will be assumed that
a multiprogrammed physical computer can cope with
an indefinite number of identical hardware-indepen-
dent virtual computers. A virtual computer has hard-
ware-independent virtual registers and a virtual pro-
cessing unit. Each programmer programs his virtual
computer as though it were a physical computer all
of whose resources are dedicated to execution of
the program specified by the programmer. The pro-
gramming system allocates physical facilities of the
physical computer to virtual facilities of each virtual
computer as they are required.

Although the virtual machine language cannot refer
to physical storage registers, some form of address-
ing must be available within the virtual machine lan-
guage. The set of all addresses available to the user
will be called the virtual address space, and individual
addresses in the virtual address space will be called
virtual addresses. All information items accessible
in a given program are referred to by virtual addresses.
Information that is placed in a given virtual address is
assumed to remain in that virtual address unless it is
modified or moved, just as information in a conven-
tional computer. However , the programmer has no
control over the physical storage medium in which
virtual addresses are stored. The correspondence be-
tween physical and virtual addresses is completely
under the control of the computer system. It is the

responsibility of the computer system to move
locks of information about in the physical memory
hierarchy so that information appears in the main
memory when it is required for processing, and is
retired to auxiliary memory when no longer required,
to make room for other blocks of information.

The programming system must provide facilities
not only for moving blocks of information in the
physical storage hierarchy, but also for accessing the
physical register corresponding to a given virtual
address when such access is required during execu-
tion. The correspondence between virtual addresses
and physical addresses is stored for each program in
a set of address mapping tables, which are updated
whenever a block of information is moved within
the physical storage hierarchy, and used for table
look-up whenever access to information specified
by a virtual address is required during execution.
The structure of the address mapping table depends
on the relation between the virtual address space
and physical address space and also on the hardware
facilities available for performing address mapping.
The structure of address mapping tables will be
further discussed below.

Virtual address space organization and two-com-
ponent addressing

Since the virtual address space is hardware inde-
pendent, the system designer has considerable free
dom in designing the virtual address space. In de-
signing a virtual address space the following factors
must be considered.

1. The virtual address space must be related to the
physical address space in such a manner that mapping
virtual addresses to physical addresses through the
address mapping table can be performed reasonably
rapidly.

2. Within the constraints imposed by 1, the virtual
address space should be designed for the convenience
of the programmer.

Programmers find it convenient to subdivide the
information structures of a computation into program
and data segments which correspond to logical sub-
divisions of the problem. The virtual address or-
ganization described below structures the address
space into a set of segments which can be indepen-
dently named, so that logical segments of a computa-
tion can conveniently be mapped into segments of
the virtual address space. Information structures with-
in a segment are referred to by a two-component vir-
tual address (i, j) where i specifies the segment ad-
dress (segment name), and j specifies a word-within-
segment address. In the discussion below some of

140 P r o c e e d i n g s - A . C . M . National Meeting, 1967

the design considerat ions which determine the form
of a two-component address space are given.

The simplest form of virtual address space is a one-
dimensional sequence of virtual addresses running
f rom 0 through 2 n - I for some n. In choosing the size
of the virtual address space we are not restr icted to
the size of any specific physical storage medium.
Techniques are discussed below which permit the
size of the virtual address space to be independent of
the number of bits in vir tual-machine-language in-
structions.

The number of address bits in an instruction can be
reduced if the convent ion is adopted that the address
field contains merely a displacement relative to an
origin specified in a special register. I f the max imum
displacement permit ted is 2 (then a main address field-
of (bits is sufficient, independent of the size of the
address space. Special registers which specify the
origin with respect to which displacements are meas-
ured are referred to as relocation registers or base
registers.

The number of bits required in a base register to
specify the origin for purposes of relocation can
be reduced by p bits if the convent ion is adopted that
origins can occur only at registers which are multiples
of 2 p. I f the maximum displacement is 2 (then it is
convenient to choose p = (, so that an increment of
l in a base register is associated with an increment
of 2(in the address space. When this convent ion is
adopted, then addresses in an address space with
2 n addresses can be represented by a k-bit base
register address on an ('-bit main m em ory address
where k + { = n.

The above organization structures an address space
of 2 n addresses into 2 k blocks each of which contains
2 t words, where K + (= n. The resulting blocks will
be referred to as segments*. The contents of the k-bit

base register will be referred to as a segment address
and the / -bi t address in the address field will be
referred to as a word-within-segment address.

Addressing by means of a segment address and a
word-within-segment address is referred to as two-
component addressing. Twq-componen t addressing
allows a very large address space to be defined
without unduly increasing the number of bits in the
address field. For example , in the IBM 360 Model
67, an address space of 232 words is defined by 12-bit
segment addresses and 20-bit work-within-segment
addresses , while in the G E 645 machine an address

*The term "segment" is used in different ways by different com-
puter system designers. This definition does not allow segments
to be truly independent because of carry from the ith to the / + Ith
position. Truly independent segment naming requires suppression
of the carry as indicated below.

space of 236 words is defined by 18-bit segment
addresses and 18-bit word-within-segment addresses.

In the scheme described above the segments may be
thought of as being laid end to end in the address space
so that the last address on one segment is a neighbor of
the first address of the next segment. Howeve r , the
address spaces associated with different segment ad-
dresses may be made truly independent of each other
by suppressing carries f rom the most significant bit
of a word address into a segment address, and causing
either an end around carry or an error interrupt when-
ever such a carry occurs. When this is done the two
address coordinates become truly independent , and
the address space becomes a set of independent seg-
ment address spaces.

When the address space being considered is a v i r -
tual address space, then physical addresses need be
assigned only to those elements of the address space
in which information is actually being stored. This
allows ext ravagant provisions to be made for the pos-
sible growth of segments stored in the address space
without commit t ing physical resources to unused por-
tions of the segment. In a virtual address space of this
kind the problem of dynamic storage allocation is
solvi~d by very sparse use of the address space so that
there is a lmost a lways room for s tructures to expand.
Physical storage for s tructures in the virtual address'
space of a given program is provided by a "h idden"
allocator whose characteris t ics are further discussed
in a later section.

Each user programs as though he has his own vir-
tual p rocessor with a private virtual address space.
There is a set of address mapping tables which are
consulted during execution to determine the physical
address. During the course of the computa t ion a given
virtual address may at different times cor respond to a
number of different physical registers of the m e m o r y
hierarchy. The sys tem keeps track of blocks of infor-
mation by updating the address mapping tables of the
associated virtual compute r whenever a block of infor-
mation is moved.

The use of address mapping tables not only permits
the same virtual address to be represented by different
physical addresses at different points of the computa-
tion, but also permits addresses of two different vir-
tual memories to denote the same physical address
and thereby to have access to the same common infor-
mation. In particular, the address space of every vir-
tual processor permits access to a common set of sys-
tem routines.

The virtual memory of every virtual p rocessor may
be thought of as being initialized so that it has a stan-
dard set of initial sys tem facilities resident in its vir-
tual memory .

Machine Organization for Mult iprogramming 141

Auxiliary memory and user communication

Although the virtual memory of each user is very
large, there may still be programs for which the virtual
memory is not large e.nough and for which auxiliary
memory is therefore required. The requirement of
hardware independence applies to auxiliary m e mory
as well as to the main memory . The auxiliary m e mory
accessible to a user will be called the virtual auxiliary
memory .

T w o alternative approaches can be adopted to aux-
iliary memory space.

1. Each user has a private virtual auxiliary memory
space.

2. There ~ a sys tem wide virtual auxiliary memory
space.

The second approach is the one adopted in the IBM
and Multics sys tems and will be illustrated below.

The sys tem wide virtual auxiliary memory will be
referred to as the f i le system. The file sys tem may be
described by a directed graph with an initial ver tex
called the root vertex and a number of terminal ver-
tices. The terminal vert ices correspond to information
blocks and the non-terminal vertices consist of sets
of pointers to lower level vertices. The sets of pointers
associated with non-terminal vertices are referred to
as catalogs (IBM) or directories (Multics). The direc-
tory (catalog) associated with the root ver tex of the
file sys tem tree structure is referred to as the root di-
rectory.*

The information structures associated with vertices
in the file sys tem will be referred to as files. Access
to all files in the file sys tem must pass through the root
directory. Each file in the file sys tem has a tree name
which consists of a sequence of pointers through suc-
cessive directories terminating in a pointer to the file
itself. The tree name is the address of the file in the
virtual auxiliary memory . A given file in the file
sys tem may in general have more than one tree name,
corresponding to different paths through the graph
structure f rom the root directory to the file. However ,
the convent ion is usually adopted that there are no
loops in the graph which represents the file structure;
i.e., the vert ices of the file sys tem consti tute a partial
ordering.

The set of physical storage registers in which files
of the file sys tem are stored may vary during execu-
tion. The correspondence between addresses in the
virtual auxiliary mem ory and physical registers is de-
termined by a sys tem wide f i le sys tem address map-
ping table.

*Spec'ific auxiliary memory designs along these lines are given in
(2), and by Daley and Neuman in (3).

The system-wide virtual auxiliary memory fulfills
the following functions:

a) It s tores information structures private to indi-
vidual computat ions which it is inconvenient to store
in the main virtual memory .

b) It serves as a common information base which
stores individual program and data segments that
are generally available to all computat ions or selected
classes of computat ions.

c) It can be used for purposes of communicat ing be-
tween computat ions.

In order to ensure pr ivacy of information in cate-
gories a) and c), and f reedom from unauthorized modi-
fication of information in all categories, there are
means of restricting the form of access to information
stored in the virtual auxiliary memory . The modes of
permit ted access may be a combinat ion of the follow-
ing:

X The segment may be executed as a program.
R Reading f rom the segment is permitted.
W Writing of information into the segment is per-

mitted.
A Changing the size of the segment is permitted.
The mode of access permit ted to a given segment in

the auxiliary memory is not determined solely by the
segment being accessed but by the relation between
the accessing process and the accessed segment.
This effect can be achieved by encoding the mode of
access in the sequence of pointers that consti tute its
tree name. For example the mode of access deter-
mined by a sequence of pointers can be taken to be the
mode of access associated with the last of the pointers.

The above logical attributes of segments in an infor-
mation structure are represented at the physical level
by bit pat terns in address mapping tables which are
interpretively interrogated during execution. When a
segment is " m o v e d " f rom auxiliary memory to a given
virtual address space, the accessing bit pat terns which
determine the mode of access are initialized in the
address mapping tables of the virtual processor .

When a user is given permission to use the sys tem
he is allocated a standard initialized virtual processor,
with access to a standard set of sys tem programs in
his main addressing space and access to a standard set
of files in the file sys tem in standard accessing modes.
During execution he may build up information struc-
tures both in his virtual address space and in the file
system. However , he may also wish to request access
to information in the file sys tem that is not made a-
vailable on an automatic basis. T w o categories of in-
formation in this class may be distinguished.

1. Sys tem files for which access requests are chan-
neled through the compute r opera tor and are
made available by an action of the compute r op-

142 Proceedings-A.C.M. National Meeting, 1967

erator, possibly after consultation with the sys-
tem administrator of the computation center.

2. Private files for which access requests must be
made directly to the user having control over
these files.

The system must contain facilities for granting of
access to privileged files both by system adminis-
trators and by private system users. A set of primi-
tive system operations for allowing such access is dis-
cussed in (5).

Mapping of an object from the virtual auxiliary
memory to the virtual main memory of a virtual com-
puter does not require moving of the information it-
self but merely updating of the address mapping tables
of the virtual computer to establish the correspon-
dence between the physical registers of the informa-
tion item and the virtual main memory address with
which it has become associated. However, in perform-
ing a mapping between the virtual auxiliary memory
and the virtual main memory, information regarding
the mode of access to the information must be pre-
served. The encoding of accessing information in the
main memory address mapping tables is further dis-
cussed in a later section.

Virtual computers

Each user of a multiprogrammed computer system
has at his disposal a virtual computer with a virtual
address space which is initialized to have access to a
standard set of system facilities. During the lifetime
of a given computation the user may introduce his
own information structures into his virtual address
space, and introduce information structures from the
virtual auxiliary memory into his virtual address
space.

A virtual computer has an associated stateword
which contains the information that resides in the pro-
cessing unit when the process is being executed.
However, the stateword has an existence as an infor-
mation structure independently of whether it is loaded
into a physical processing unit. When the stateword
occupies a processing unit, the computation asso-
ciated with that virtual computer is said to be active
or running. When the stateword is stored in the main
or auxiliary memory, the computation is said to be
passive or blocked.

The stateword of a virtual computer C contains in-
formation stored in processing unit registers such as
the accumulator and instruction location register.
It also contains a pointer to the address mapping
tables which determine the correspondence between
virtual and physical addresses for the given computa-
tion. The pointer to the address mapping tables links

the stateword to all information structures of the vir-
tual computer associated with the stateword. The
term computation will be used to denote the sequence
of instantaneous descriptions associated with a given
virtual computer.

The transition from a computation C, to a computa-
tion C~ on a given processing unit is accomplished by
storing the stateword associated with C1 and loading
the stateword associated with C2 into the processing
unit.

Loading of the new stateword automatically causes
a new set of address mapping tables to be used in
interpreting address fields. The address mapping ta-
bles are used both in the instruction fetch phase and in
the instruction execution phase as indicated below.

Moving of information in the physical memory dur-
ing a computation causes changes in the address map-
ping tables of the associated virtual computer but not
in the virtual addresses of the moved information.
Location independent virtual addresses and location
independent pure procedure segments are made pos-
sible by the expedient of interposing an interpretive
address mapping phase into the computation. The ad-
dress mapping tables rather than the address itself
are modified whenever the physical address changes
during execution.

-- E(~mory

Location Independent inforr~.tic,n

IAdd pping Syst ide tree-rs]
tables for virtual structuzed address Location dependent inforr,'.~tien
.... y 1 ~ng tables f° Ealntained by supervisory

l Ifil e system 2] system
L Inaccessible to the proi~'~n~¢r

gr-----~ . and AtLxill r" "'era ry Physical Registers in the E~ID p. j ~.. , e

Figure I . - -A virtual computer with address mapping tables that
determine the physical location of accessible information structures

Figure l illustrates the relation between the infor-
mation structure which constitutes a virtual computer
and the physical registers in which the information
structure is stored.

Measures of system efficiency

When a virtual computer is in execution, it is occu-
pying a time slice of a physical processor, It is also
occupying time slices of a number of other resources.
It is the job of the computer system to allocate time
slices of resources to virtual processors so that com-
putations specified by users can be executed both
efficiently and flexibly.

One of the measures of efficiency is the proportion
of the time that a physical processor spends doing
computations specified by virtual processors of users.
This proportion is less than one because a processor
may be idle or perform administrative system func-

Machine Organization for Multiprogramming 143

tions such as process interchange or memory alloca-
tion. System functions such as input-output are pro-
vided as a service to the user and charged to the user.
System functions such as accounting or interrupt
routines that are not explicitly requested by the user
but form part of the system overhead for a computa-
tion may also legitimately be charged to the user.*
However , certain system wide computations and cer-
tain kinds of excessive administrative overhead due
to system inefficiency cannot legitimately be charged
to the user.

One of the features of a multiprogramming sys-
tem is that the user is never charged for idle time
on a physical processor. If a given physical processor
becomes idle because the information required to exe-
cute an instruction is not in the physical main memory,
then the current computation is interrupted while the
information is brought into core, and execution of
some other process is initiated on this processor.

More precise data on the factors which affect the
efficiency of through put in a computer system can be
obtained by breaking down the time spent in various
system functions into categories such as interrupt
servicing, resource allocation, resource accounting,
etc., and measuring the time spent in each of these ac-
tivities, the proportion of idle time due to each of these
activities, and the change in these times brought
about by the change of certain design parameters.

Efficiency is measured above in terms of the effi-
ciency of processor utilization. We shall consider next
the effect of the problem mix on the efficiency of
processor utilization.

Foreground and background processes

Computations which have elapsed time deadlines
for their completion are called foreground processes.
Real time computations, interactive computations in
which a user at a console expects an " immediate"
response, and debugging runs are examples of fore-
ground processes.

Computations for which there is no pressing real
time deadline are referred to as background processes.
Long production runs and batch-processing runs for
which an elapsed time of more than a few minutes is
acceptable are examples of background processes.
Background processes usually make less stringent
demands on input-output resources than foreground
processes. The running of programs as background
processes can be encouraged both by lower charging
rates and by system rules.**

*The user of electricity has to pay for the electricity used in running
his electric meter.
**The classification of processes into foreground and background
processors is a special case o f a classification into priority classes,
each having its own scheduling and account ing algorithm.

Foreground processes tend to make heavy use of
input-output l~acilities while background processes
tend to make heavier use of processor time. In order
to avoid situations in which a processor is idle because
there are no processes waiting to be processed, it is
desirable to include in the problem mix a number of
background processes which make heavy use of the
processor and relatively light use of other resources.
Multiprogramming systems are specifically designed
to take advantage of variation in the resource require-
ments of different computations for the purpose of im-
proving the average overall efficiency of resource
utilization.

Processing unit organization for two-component
addressing

Representations of identifiers

One of the most important problems in program-
ming at all language levels is the representation of
identifiers. There are at least four levels of represen-
tation of names that must be considered in a multi-
programming system.

1. The source language level
Names at the source language level are symbo-
lic, e.g., X, X(I) etc. The association of names
with objects they denote is determined partially
by context and partially by declarations which
specify attributes associated with the given
name.

2. The instruction address level
The contents of the address and special register
fields of an instruction determine a rule for com-
puting an address. The address is determined
both by the contents of address and special reg-
ister fields and by the contents of explicit
and implicit registers used in the address com-
putation.

3. The virtual address level
The modified address obtained from an instruc-
tion address by indexing, indirect addressing and
other forms of address computation results in a
virtual address. In the multiprogrammed com-
puters considered here the virtual address is a
two-component address with a segment compo-
nent and word within segment component .

4. Physical register address level.
A physical register address is the address of a
physical register in the main memory.

The translation from a source language name to an
instruction address is accomplished by a compiler
which translates source language into object language.
The translation from an instruction address to a vir-
tual address and from a virtual address to a register

144 P r o c e e d i n g s - A . C . M . National Meeting, 1967

address is accomplished by computer hardware during
execution.

In the present section the translation from instruc-
tion addresses to virtual address will be considered.
The translation from virtual addresses to physical ad-
dresses will be considered in the following section.

It will be assumed that each processing unit contains
a two-component address register comprised of a seg-
ment register and a word register. During execution
the address register contains the two component ad-
dress of the next instruction to be executed. The bas-
ic instruction execution cycle is as follows:

1. Fetch an instruction from the virtual address
specified in the address register.

2. If a data access is required fetch the data from
the virtual data address specified by the instruc-
tion.

3. Execute the instruction.

Two-component instruction fetch

The instruction fetch phase makes use of a register
referred to as the temporary address register com-
prised of a temporary segment register and a tempo-.
rary word register. During the instruction fetch phase
the address register is moved to the temporary address
register, the word register is incremented by 1, and
the content of the temporary register is used to com-
pute the physical register containing the instruction
as illustrated in Figure 2.

Segment Rcglster [
Word Register

Pointer I Register ~,I

Current Instrue- I Two-Component Virtual Address

tlon Register 3 Compute physical register address]
, using the address mapping tables [

pointed to by the address mapping
Dolnter

Instruction Processing Unil 4,

Use the physical register address
to. fetch an instruction from the
computer memory end place it in the
current instruction register.

Figure 2.--The instruction fetch phase
An address mapping pointer stored in the instruc-

tion processing unit is used to determine the physical
origin of the address mapping tables to be used in the
physical instruction address.

The determination of the virtual address in the in-
struction fetch phase is trivial since the two-compo-
nent virtual address is explicitly stored in the process-
ing unit. However , the effective address computation
in thi~ data fetch phase involves convert ing the address
fields of a one-address instruction into a two-compo-

nent physical address and is considerably more com-
plex. Assume that the one address instruction has the
following format.

i IA I I' I "ul
Figure 3.- Two-component instruction address format

OP is the operation code field, A is the address
field, I is the index register field, B is the base reg-
ister field and is used to point to one of a number of
base registers containing a two-component base ad-
dress, and M is a modifier field.

Two-component data fetch

The simplest form of address computat ion occurs
when the I, B and M fields specify no modification.
In this case A is assumed to be an absolute word ad-
dress in the segment being executed, so that the seg-
ment address is automatically taken to be that of the
segment register in the instruction processing unit.

Indexing using an index register pointed to by the I
field, and indirect addressing using a bit in the M
field are assumed to operate on the word address A
just as though it were a one-component address.

If no "base register is specified, then the segment ad-
dress is always assumed to be that of the currently ex-
ecuted segment. However , if a base register is speci-
fied, then the segment component of the base register
becomes the segment component of the effective ad-
dress, and the word component of the base register is
used to increment the word component of the effec-
tive address, just as though it were an exta index reg-
ister.

The effective address computed during the data
fetch phase is stored in the temporary segment register
and temporary word register just as in the instruction
fetch phase. If indirect addressing is specified, the re-
gister address corresponding to this effective addre'ss
is used to replace the A, 1, and M fields by the A,
I, B and M fields of the fetched instruction, and to ini-
tiate a further effective address computation. Other-
wise the content of the register address is used as the
data item for the current operation.

The address computation during the data fetch
phase is illustrated in Figure 4.

The above machine language instruction format is
basically a one-address instruction format in which
the second component is specified by a pointer to a
two component base register. This requires the seg-
ment number to be set by special base register load-
ing instructions prior to use of a given segment. The
word component of the base register may be thought
of as a relocation register which determines as a rela-
tive initial address within the segment. Because of this

Machine Organization for Multiprogramming 145

I Word Reglster~

InBtructlon
processing Unit

Replace A, I, B. El fields
of current instruction register
and initiate new virtual address
c o ~ p u t s t i o n

l Index Regl~t er] ~

1 V
Virtual Address

1

1

lno
Fetch data item

Figure 4. - Effective address computation during the data fetch
phase

relocation facility the word address can be regarded as
a relative rather than absolute word-within-segment
address, and the number of address bits in an instruc-
tion word need not be the full segment size.

Machine language programming for a computer with
two-component addresses requires the programmer to
keep track of both index registers and base registers
addresses and is therefore more complex than on a
machine with fewer address modifiers. However, if
standard conventions are adopted for inter-segment
communication the burden of the machine language
programmer can be eased. Clearly programming in
machine language is the exception rather than the rule.

Physical register computation under paging
and segmentation

Mapping of segments without paging
In the previous section it was shown that conver-

sion from virtual to physical addresses was required
both during the instruction fetch phase and during the
data fetch phase. The overall features of this address
computation are similar both in the IBM and GE ad-
dress computation, and will be described in greater
detail below.

Two-component addressing suggests that each seg-
ment of a virtual address space have an independent-
ly specified physical origin. As a first approximation to
an address mapping scheme we shall assume that each
segment of a process must occupy a contiguous block
of registers in the memory hierarchy. In this case the

initial segment address would completely specify all
storage allocation information about the segment. The
address mapping tables would consist of a segment
table with one entry per segment specifying the initial
address of the segment if it is in main memory and a
segment not in core marker if the segment is not in
main memory.

The stateword of a processor contains a word called
the address mapping pointer which points to the first
address of the segment table. The segment table en-
try for a particular segment is obtained by relative ad-
dressing relative to the address mapping word.

The above scheme is clearly impracticable when the
segment size is of the same order of magnitude as the
number of registers in the main memory. Since infor-
mation structures stored in segments normally occupy
only a small initial portion of the segment, the above
scheme would also be very wasteful. One modifica-
tion which would make the above scheme more prac-
ticable would be to allocate memory only to the ini-
tial portion of the segment that actually contains in-
formation. This would require a specification of both
the initial address and the segment length in the ad-
dress mapping table. On access to the segment the
system would first check the segment not in core
marker. If the segment were in core it would check
that the word address was less than the segment
length. Access to the segment would be performed
only if these checks were satisfactory. Otherwise an
interrupt would be initiated causing the system to take
some action.

The above checks illustrate some of the advantages
of interposing an interpretive address mapping be-
tween the virtual and physical addresses. Multipro-
grammed systems take advantage of this intermediate
stage of interpretation in other ways too.

Segment attributes
The entry for each segment in the address mapping

table may be thought of as a "description list" which
specifies segment wide accessing attributes. The
accessing attributes so far introduced are location,
length and the property of being in core. Other attri-
butes which may conveniently be specified in this de-
ent modes of access may conveniently be distin-
guished.

1. Access which involves reading words of the seg-
ment

2. Access which involves writing words of the seg-
ment

3. Access which involves executing words of the
segment

4. Access which involves adding or deleting words
of the segment.

146 P r o c e e d i n g s - A.C.M. National Meeting, 1967

These four modes of access are referred to respec-
tively as the read mode, write mode, execute mode
and append mode, and will be denoted respect ively
by R, W, X and A. Each mode of access may be con-
trolled by a single bit in the segment description list.
I f during execution a form of access which is not per-
mitted is a t tempted, then an interrupt occurs result-
ing in a sys tem action.

A restriction on the mode of access to a segment
may be thought of as a mode of protection of that seg-
ment f rom interference by other segments. Since
mode of access and mode of protect ion are reverse
sides of the same coin, the terms access and protec-
tion will be used interchangeably.

Although allocation of only the used portion of a
segment is a great improvement over allocation of
the whole segment, it may still lead to difficulties.

1. Variable size segments make the problem of stor-
age allocation when a new segment is introduced
into the memory very complex.

2. One or two very large segments may use up the
whole of physical m em ory and therefore present
efficient mult iprogramming.

Pages

In order to avoid both of the above problems it is
convenient to choose a fixed size unit for purposes of
storage allocation which is independent of segment
size and sufficiently small so that a large number
(say 1,000) of these units may simultaneously reside
in the main memory . This unit will be called the page.

The number of words in a page will be chosen to
be a power of 2, say 2 m. I f the number of words in a
segment is 2 n, n > m , then each segment will be sub-
divided for purposes of storage allocation into 2 k
pages where k + m = n. Since each page of a segment
can be mapped independently into a block of storage,
an initial address and storage not in core indicator is
required for each of the pages of a given segment. This
information is stored in a page table.

When pages are used as the unit of storage alloca-
tion, then address mapping consists of two stages of
indirect addressing through the segment table and the
page table associated with the segment. Each stage of
indirect addressing may have associated with it cer-
tain interpretive tests triggered by indicators stored
along with pointer information in the address mapping
tables. Attr ibutes that are associated with the seg-
ment as a whole are stored in the segment table. These
attributes include the location of the segment page
table, the access mode of the segment, the length
(number of pages) of the segment, etc. Attr ibutes of
individual pages include their location, whether or
not they are in core, etc. Thus the two stage inter-

pretat ion process permits testing for run time segment
attributes to be separated f rom attributes associated
purely with the storage allocation process.

The physical memory of the compute r is subdivided
into pages for purposes of storage allocation. The vir-
tual memory of each virtual p rocessor is also sub-
divided into pages. When a virtual p rocessor is ini-
tiated by placing its s ta teword into the physical pro-
cessor the majority of its pages normally reside in the
auxiliary memory . If, during execut ion access to a
page which is not currently in core in required, the ab-
sence of the page will be d iscovered during address
mapping and a missing page fault will occur. The
missing page fault will cause a sys tem program for me-
mory allocation to allocate a page in core for the re-
quired page, possibly retiring an existing page to the
auxiliary memory to make room for the new page. The
virtual p rocessor will become blocked while the me-
mory allocation mechanism brings in the required
page, giving up the physical p rocessor to some other
virtual p rocessor that can proceed wi th its computa-
tion. The given processor will react ivated when the
page has been read into the main memory . When it re-
gains possession of a physical p rocessor it will again
access the required page through the address computa-
tion mechanism and will this t ime succeed.

It is assumed that segments stored in the auxiliary
memory occupy a contiguous set of physical registers
in the auxiliary memory . In order to retr ieve a miss-
ing page f rom the auxiliary memory , a table must be
available which specifies for each segment of a process
the tree name or physical auxiliary memory address
for that segment. This table is referred to as the seg-
ment" name table. Thus the relation between virtual
and physical addresses is in fact determined by two
tables. The segment table specifies physical ad-
dresses for segments which are in core and the seg-
ment name table specifies physical addresses for seg-
ments that are not in core.

It was assumed above that the page table of the seg-
ment containing the page being accessed was in core.
The page table of a segment will itself occupy a page
of main memory and need be created only when at
least one of the pages of the segment are in core. I f
the page table is not in core then a missing segment
fault will occur at the segment- table stage of indirect
addressing. A missing segment fault will cause the
sys tem to allocate a page for the page table, create a
page table for the segment with missing page faults
in all its entries, and return control to the interrupted
program. Note that no information f rom auxiliary
memory is actually required when setting up a page
table, so that the page table can be set up by the sys-
tem by merely borrowing the p rocessor that requires

Machine Organization for Multiprogramming 147

the page table. However, time would be required to
retire a page if no pages were available. In order to
reduce storage allocation waiting time associated with
pages that are being retired, four or five vacant pages
are normally available in the main memory, and a page
is retired whenever the threshold of vacant pages
falls below this level.

When the number of segments in the virtual address
space is very large, it is no longer possible to have the
complete segment table of the virtual processor in
the main memory. This can be avoided by allowing the
segment table itself to be paged. The segment table
can be paged without any extra machinery by allow-
ing it to be a segment of the virtual processor.

When the segment table is paged then the address
mapping word of the stateword of the virtual processor
points not to the segment table but to the page ta-
ble of the segment table. Access to a physical register
now requires three stages of indirect addressing
through the page table of the segment table, the seg-
ment table itself, and the page table of the segment.

Address mapping under paging and
segmentation

When both the segment table and the segment ad-
dress are paged a two component virtual address (i j)
effectively becomes a four component address
(k,m; 1 ,m) where the segment table page table contains
2 k entries, the page tables of individual segments con-
tain 2(entries, and pages contain 2 m entries. Since
page tables themselves occupy pages of the computer
memory, k and (must not exceed m, and should be
chosen to be m for maximum memory utilization.
Example: If the address space permits 2 TM, then a
segments each having a maximum length of 2 TM then a
page size of 2 9 would result in page tables with 2 9
entries. In this case k----(---m:9.

The segment address together with the page compo-
nent of the word within segment address is sometimes
called a virtual page address since it is the address of
a page of the virtual memory.

The three stage indirect address computation Which
results when both individual segments and the seg-
ment table are paged is illustrated in Figure 5.

v l r t u a l address
t I I

i j

(- 1 "~
address mapping Segtlent table Page of Physical

word " 0 " [pa,e ta bl e ~C>~: ~ ~ O ~ a d d

Figure 5 . - Address computation under paging and segmentation

The address mapping word of the processor is modi-
fied by the first (k bit) component to determine a page
of the segment table. The initial address of this page
is modified by the second component to determine the
segment table entry. The segment table entry is incre-
mented by the third component to determine the reg-
ister which specifies the initial page address. Fi-
nally the initial page address is incremented by the
fourth component to determine the physical register
address.

Each of the above stages may resulteither in a miss-
ing information fault or in an accessing gault due to
accessing attributes associated with the information
access not being met.

Associative registers

The effectiveness of a system in which memory al-
location is performed by paging depends in part on the
characteristics of the information structure on which
the computation is being performed. Paged storage
allocation is most effective for computations in which
there are long sequences of instructions whose infor-
mation requirements are restricted to a small number
of pages. If the number of pages to which access is
required in a computational sequence is large then the
computation will require a large number of in core
pages to run without interruption. In this case a choice
must be made between allowing the computation to
occupy a disproportionate amount of main memory
thereby impairing the efficiency of other processes,
or executing the process in a highly inefficient manner,
constantly retiring pages that will again be required at
a later point of the process.

The overall efficiency of a computer system under
paged storage allocation depends in large measures on
the information accessing characteristics of the "av-
erage" process in the system. If the average process
has long computational sequences requiring only a
small number of pages then a small number of "mem-
ory-eating" processes with large storage requirements
can be tolerated. However, if the typical process ac-
cesses large numbers of pages intermittently during
most of its computational life then paging may not pro-
vide a sufficient economy of storage allocation to jus-
tify the time and space overhead that it introduces.

Paging introduces a time overhead by requiring ex-
tra indirect addressing during execution of individual
instructions and by requiring system actions during
allocation and retiring of pages. It introduces space
overhead by requiring extra space for address map-
ping tables and by requiring space for system pro-
grams and their address mapping tables. One of the
factors which determines whether paged storage al-

148 P r o c e e d i n g s - A . C . M . National Meeting, 1967

location can succeed is the degree to which the time
and space penalty of paging can be reduced.

The time and space penalties introduced by paging
can be reduced in part by hardware and in part by ef-
ficient system organization. For example, there is
hardware for automatic (non-programmed) indirect ad-
dressing from the processor address mapping word
through page and segment tables to the physical ad-
dress. This reduces the time penalty to three memory
cycles per memory access. This time penalty can be
further reduced by means of a special set of hardware
registers known as associative register.

An associative register is a register that is addressed
by its content rather than by an address. The asso-
ciative registers used to speed up the address compu-
tation contain direct correspondence, between a small
number of virtual page addresses and corresponding
physical addresses. The content of an associative reg-
ister is illustrated in Figure 6.

Statistical Usage I Virtual address pa~e Physical address register information

l

Figure 6. - Associative register format
A processor typically has eight or possibly sixteen

very rapid access associative registers in which re-
cently accessed virtual page addresses and corre-
sponding physical addresses are stored.* Whenever
access to a given virtual address is required, the asso-
ciative memory is scanned for the virtual page address.
If the virtual page address is found, the physical ad-
dress is given in the physical register field of the asso-
ciative register, and can immediately be used for ac-
cessing purposes without performing multistage in-
direct addressing. If the virtual page address is not
present in the auxiliary memory, multistage indirect
addressing is performed in the normal manner. The re-
sulting physical address is used not only to access the
physical memory but also to establish a new entry in
the associative memory for the accessed page, retir-
ing a current entry in the associative memory. The sta-
tistical usage information is used to determine which
of the current entries the new entry is to replace.

The effectiveness of this scheme depends on the
proportion of the time that memory accesses can be
accomplished through the associative memory. This
in turn depends on the size of the associative memory,
the rule for replacing segments of the associative mem-
ory, and the type of process mix for which computa-
tions are being performed.

*Note that the virtual page address is a process-dependent quan-
tity, and that virtual-actual address cor respondences are valid only
in the lifetime of the process in which they were loaded. It is usual
to clear the associative registers when replacing one process by an-
other. However, an alternative scheme is further discussed below.

The technique of allowing rapid access to informa-
tion on the basis of recency and frequency of use is
sometimes referred to as look behind. This is to be
contrasted with look ahead techniques which try to
predict the information which will be required by look-
ing ahead in the instruction sequence.

Factors which determine the efficiency of
paging schemes

Simulation has shown that a small number of asso-
ciative registers will in a typical computat ion re-
quire the address computat ion to be performed less
than 20% of the time. Thus the time factor for address
mapping during accessing can be considerably re-
duced. However , it has been found that the bottle-
necks introduced by paging do not lie in the time pen-
alty during address computat ion but rather in space
problems in the following categories:

1. The system facilities for paging eat up a large a-
mount of space for page tables and other pur-
poses.

2. Problems tend to require a large number of pages
for their execution. Accessing does not tend to be
localized to a small number of pages over short
time sequences (say 10,000 instruction times)
but tends to range quite widely requiring frequent
interchange of pages.

3. The time required by a process to build up a suf-
ficient number of pages in the main memory so
that it can run for an appreciable length of time
wit.hout missing page faults tends to be quite
long, particularly since missing page faults cause
the process to lose control of the processor, and
since successive pages can never be read in par-
allel. Thus building up of a process in main mem-
ory to the point that it can run efficiently repre-
sents a considerable real time investment. The
space constraints may well be such that more
time is spent building up the memory investment
of processes to the point at which they can run
efficiently than is spent in the efficient execut ion
of processes.

The memory utilization of a group of programs in a
multiprogramming system can conveniently be meas-
ured by a memory utilization chart. A memory uti-
lization chart measures space along its horizontal
dimension and time along its vertical dimension. The
total memory space is represented by a fixed horizon-
tal span and the amount of space occupied by each
program is represented by a portion of this span. As
time moves in the vertical direction, the space utili-
zation of each program is represented by a vertical
band. Figure 7 indicates a memory containing three
programs. During the time span indicated in the graph,

Machine Organizat ion for Mult iprogramming 149

I

Figure 7 . - Time profile of memory utilization

the leftmost program expands and takes up memory
space at the expense of the second program, retains a
fixed, large portion of the m em ory for a given time in-
terval, and then relinquishes the space to the second
program. During this time, the third program, possibly
a background program, retains a fixed amount or" space
in the memory throughout the time period.

A profile such as that above implies that the left-
most program built up pages to a level at which it was
able to run with relatively few interruptions, ran at this
level for a while, and was then phased out, allowing
the middle program to resume operation. This profile
is essentially a healthy one and page allocation tech-
niques must allow programs to quickly build up their
page requirements to the level at which they can run in
an uninterrupted fashion, and to maintain their com-
plement of pages at this level for a sufficient t ime so
that the real t ime investment required to build up this
complement of pages pays off.

In an actual mult iprogramming sys tem the number
of programs that can simultaneously share portions of
the main memory is considerably greater than three.
One significant parameter is the ratio n/k of number
of pages n in the main m em ory and the number of pro-
cesses k which may simultaneously share the main
memory . It has been found that, for a page size of
21° words, a ratio n/k = 10 allows sufficient f reedom
for programs to expand their pages at the expense of
others, while a ratio n/k =< 5 leads to overcrowding of
the memory with compet ing programs.

The dynamic behavior of programs under paging has
been simulated in a number of experimental studies
such as (6) (7), and the overall conclusion appears to

be that "demand paging" for individual pages leads to
highly inefficient compute r utilization. It is likely
that mult iprogramming sys tems of the future will
adopt some form of grouped page storage allocation,
where the group of pages allocated during a single stor-
age allocation interrupt is determined either by the
structure of processes or by the storage requirements
during the previous activation of the process.

The efficiency of paged memory allocation would be
greatly increased if groups of pages having a high inci-
dence of internal cross referencing and a low incidence
of external referencing could be isolated by the super-
visory sys tem and moved in and out of me mo ry as
a single unit. Groups of pages which are t reated as a
single unit for purposes of allocation are somet imes
referred to as hyperpages.

The problem of efficiently partitioning a problem
into hyperpages may be thought of as a clustering
problem in which individual pages are represented by
vertices into clusters having high density of traffic
within clusters and low density of traffic between clus-
ters. However , it is not clear that significant clustering
pat terns could be established at a level at which
clusters were significantly smaller than complete pro-
grams. Moreover , clustering patterns within programs
are likely to vary with time, and it is likely that a look-
behind technique for paging of individual processes
would be more effective than a "s ta t ic" clustering
technique.

Clustering techniques are said to be static because
they determine groups of pages that remain fixed
throughout execution. When comparing look-behind
techniques with clustering techniques, it is convenient
to think of the set of most recently used pages singled
out by the look-behind process as a single cluster
which changes in composi t ion through time.

The look-behind techniques discussed above as-
sume a single system-wide set of associat ive registers
which is cleared on every process interchange. Thus
a newly act ivated process has no initial look-behind
information, builds up this information as it goes along,
and has its look-behind information dest royed as soon
as it loses control of the processor . Since the corre-
spondence between logical and physical addresses
might change while the process is not in control, this

information would not be of any use when the process
regains control, unless provision were made for up-
dating it. However , the information specifying the
"c lus ter" of most recently used pages is an important
piece of information and could be used for page con-
trol if it were available. It is felt that storage of the set
of virtual page addresses on termination of a process
as part of an extended stateword, might be a worth-
while hardware extension. For example, if these vir-

150 P r o c e e d i n g s - A . C . M . National Meeting, 1967

tual page addresses were available, then the loaded
process could check for the presence of these pages
and bring in any missing ones in parallel with the ini-
tial part of its computation.

At any instant of time the associative registers con-
tain solely information pertaining to a single process.
When the process is terminated, the part of this infor-
mation that is dependent on physical resources be-
comes outdated as the system reallocates its re-
sources. However , part of the information tells us
about recent page-usage of the process and is as rele-
vant if the process is restarted in a year on a different
machine as when it is restarted within a millisecond.
Careful use of this information could lead to consid-
erably improved paging algorithms.

Problems of paging are caused essentially because
main memory space is a critical resource in current
computers. In the long run it may well prove cheaper
to expand the main memory to a point where it ceases
to be a critical resource rather than to play costly
games whose objective is efficient memory allocation.
However , even if the memory allocation problem
disappears, there will be other critical resources whose

allocation will require similar techniques and solu-
tions as those required for efficient memory allocation.

REFERENCES

I J H SALTZER
Traffic control in a multiplexed computer system
Ph.D. Thesis MITJuly 1966

Available from MIT as MACTR-30
2 IBM Systems Research Library, 1966

Basic concepts and facilities
3 Proceedings of the Gall Joint Computer Conference 1965

Six papers on various aspects of the Multics programming
system

4 ARDEN et al.
Program and addressing structure in a time sharing environ-
ment
JACM January 1966

5 J B DENNIS and E V A N HORN
Programmed semantics for multiprogrammed computations
Comm ACM March 1966

6 G H FINEeta l .
Dynamic program behavior under paging
Proc 21st ACM Conference August 1966

7 R W O'NEILL
'Experience using a time-shared multiprogramming system
with dynamic address relocation hardware
Proceedings Spring Joint Computer Conference April 1967

