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I N T R O D U C T I O N  
This paper  is intended as an introduction to some 
of the basic concepts  of  mult iprogramming for readers  
who wish to study the more specialized literature in 
this field. It  a t tempts  to develop a f ramework  for the 
discussion of  mult iprogramming which motivates  
the forms of  machine organization used in current  
mult iprogramming systems.  The  key requirement  
in mult iprogramming sys tems is that information 
structures be represented in a hardware- indepen-  
dent form until the moment  of  execution,  rather  than 
being conver ted  to a hardware-dependent  form at load 
time. This requirement  leads directly to the concept  
of  hardware- independent  virtual address spaces,  and 
to the concept  of  virtual processors  which are linked 
to physical computer  resources  through address 
mapping tables. The  structure of  the class of  hard- 
ware- independent  virtual processors  in the IBM 360 
model 67 and G E  645 sys tems (1), (2), (3), (4)," is 
developed in some detail. Quest ions of  efficiency of  
throughput  in the resulting class of  compute r  sys tems 
are considered. 

Resource allocation in multiprogramming systems 

Multiprogramming, multiprocessing and multiaccessing 

Compute r  systems in which a number  of  user pro- 
grams may be simultaneously compet ing for physical 
compute r  resources such as m em ory  registers or 
processing units are referred to as multiprogrammed 
computer  systems.  The  set of  techniques for realizing 
mul t iprogrammed compute r  sys tems is referred to as 
multiprogramming. Multiprogramming may be per- 
formed either on a computer  with a single processor  
or on a computer  with multiple processors .  The  set 
of  techniques for realizing computer  sys tems with 
more than one processing unit is referred to as multi- 
processing. A subfield of  mult iprogramming is con- 
cerned with the problems of compute r  sys tem or- 
ganization which arise specifically because of the 
multiplicity of  input-out devices which interface 
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with the system. The  problems in this area are re- 
ferred to as problems of multiaccessing. 

Both multiprocessing and multiaccessing involve 
the allocation of scarce compute r  resources  such as 
the main memory  and the processing units among 
compet ing user-initiated programs,  and therefore are 
subfields Of the general area of  multiprogramming. 
However ,  mul t iprogramming may occur  even on 
computer  sys tems with only a single input channel 
and only a single processor.  

Efficiency Versus flexibility 
A large computer  sys tem may be thought of  as a 

utility which is intended to serve a variety of  users 
both flexibly and efficiently. Access  to the sys tem by 
the user should be simple, rapid, and sufficiently 
flexible to allow the user to suit the mode of access 
to his needs. For  example,  an application which re- 
quires the computer  to make real t ime responses  to 
an on-line process  requires a different mode of opera-  
tion f rom that for a batch processing problem whose 
results are not so urgently required. The  mode of oper- 
ation required to service a user who is debugging a 
program at a typewri ter  console and requires small 
bursts of  computat ion to be performed within a short 
period of elapsed time must also be catered for. 

Program execution in each of the permit ted modes 
of  operat ion should be efficient both in terms of re- 
source utilization and in terms of  user requirements.  
Saltzer ( l )  has classified the problems of computer  
sys tem organization into technological ones con- 
cerned with efficient resource utilization (through- 
put), and intrinsic ones concerned with the con- 
venience of the user. An alternative is to consider 
the user as one of the resources  of  the computer  sys- 
tem, Whose efficiency of utilization is determined by 
the user facilities and the response pat tern of  the 
computer  sys tem to run requests by that user. In- 
trinsic problems may in this way be modelled into 
technological problems;  i.e., the intrinsic problems 
of providing adequate service to an on-line process 
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or to a user at a console can be modelled by the tech- 
nological problem of providing certain user facilities 
and computer  response patterns for classes of periph- 
eral devices. 

Time slicing 

The hardware of  a computer  system consists of  a 
collection of  physical resources each of which has 
certain operating characteristics. When considered 
statically all computer  resources are information 
storage devices which at different times are occupied 
by different items of information. Every  resource 
has a one-dimensional existence through time referred 
to as its time line. The time line of  each resource 
can be subdivided into segments called time slices 
corresponding to periods for which the resource is 
allocated to a particular information item. The com- 
puter resources form a hierarchy such that some 
are more in demand than others, although the total 
storage capacity in the computer  (including auxiliary 
memory) is sufficient for information items of all 

computations.* 
At any given point of  time the computer  hard- 

ware is occupied by a group of  "loosely intercon- 
nected" information structures each of  which rep- 
resents a process at some stage of  execution. The 
term process or computation will be used to denote 
the sequence of  information structures representing 
the program and data of a given "user"  during suc- 
cessive stages of execution.** It is convenient to in- 
troduce the notion of  a time line for computations. 
The time line of  computation measures progress 
within the computation in terms of  the number of  ex- 
ecuted instructions since the beginning of  the com- 
putation, and has no direct correspondence with real 
time. 

The information structure associated with a com- 
putation undergoes transformations as it progresses 

*We adopt the point of view that a coTputation has just as real an 
existence in time as a physical resource, and use the terms "time 
line" and "time slice" to denote time segments for both kinds of 
objects. 
**The term "user" does not necessarily have human connotations 
and should be thought of as a group of programs for performing a 
certain function, or a "front" for purposes of accounting, rather 
than as something of flesh and blood. Thus system programs for 
performing specific system functions may be thought of as users. 
"Users" not under the control of the problem programmer are some- 
times referred to as "Daemon users" (I) It is usually possible to 
dynami6ally partition executed instructions so that each is associ- 
ated with precisely one user. However, there are some fuzzy bound- 
aries in such partitioning for which arbitrary decisions must be 
made. Partitioning of a set of static information structures among 
users for purposes of "space accounting" present problems because 
structures may be shared by more than one user. 

along its time line. A snapshot of  the information 
structure at a given point of  the computation will 
be referred to as an instantaneous description. A 
computation may be completely characterized by the 
sequence of instantaneous descriptions to which it 
gives rise. Individual instructions or executable pro- 
gram segments may be characterized by the effect 
which they have in transforming instantaneous de- 
scriptions. 

Allocation of information to resources 

The physical storage registers in which instructions 
and data reside while they are actually being trans- 
formed are referred to as processor registers. Pro- 
cessor registers are in very great demand during a 
computation, and the time slice of  processor  registers 
allocated to an information item is restricted to the 
time that the information item is required in trans- 
forming the instantaneous description. When an in- 
formation item in a processing register is no longer 
required it is moved to a register that is less in de- 
mand by an information moving instruction. 

The speed at which information moving instruc- 
tions operate is determined by the accessing char- 
acteristics of  the information storage media between 
which the information is moved. It is important that 
instructions which move information in and out of  
processing registers can be rapidly executed, since the 
moving of information in and out of processing reg- 
isters constitutes a greater computational bottleneck 
than the processing time. Information which has been 
moved out of the processing registers and is no longer 
required can be moved to an information medium with 
slower accessing characteristics by more slowly exe- 
cuted information moving instructions which do not 
tie up the processing unit while they are being exe- 
cuted. 

The information storage medium which serves as 
the direct source and destination of  processing-unit 
information is called the main memory.  Information 
storage media to which information is moved when it 
is not directly required by the processing unit is 
called the auxiliary memory.  There may, in general, 
be several levels of  auxiliary memory with different 
accessing speeds, some communicat ing directly with 
the main memory and others communicating with the 
main memory through one or more intermediate levels 
of  auxiliary memory.  

A computer  system normally contains only a small 
number of  processing units in which processing can 
be performed, and a hierarchy of  different memory 
devices with different accessing speeds. Information 
which is not currently in use is normally stored in a 
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low-speed memory device. Information which is 
currently being used in processing is stored in pro- 
cessing registers. Information which is about to be 
used must be stored in the main memory if the com- 
puter is to access it directly. If an information item 
accessed by a processing unit is not in the main mem- 
ory, the processing unit cannot proceed with the com- 
putation until the slow information transfer from aux- 
iliary to main memory has been accomplished. The 
time for an information transfer from auxiliary to 
main memory is typically at least one thousand times 
as long as the transfer time from the main memory to 
the processing unit, so that the real time required to 
execute  an instruction whose information is not in 
main memory ks several orders of  magnitude greater 
than that required for an instruction whose infor- 
mation is in main memory.  

If a processing unit is to execute  a sequence of in- 
structions at its normal processing speed, then all 
components  of the instantaneous description accessed 
during execution of  this sequence of instructions must 
be in the main computer  memory.  It is one of the prin- 
cipal tasks of a programming system to organize in- 
formation transfers between various levels of  aux- 
iliary memory so that information is in the main 
memory when it is required by the processor.  The  
programming system must allocate time slices of  
blocks of physical main memory registers so that in- 
formation required for processing is usually, though 
not always, in the main memory before it is used. At 
the same time, the memory time slices allocated to 

an information item should not greatly exceed the 
time period during which it is used, so that it can 
be freed for use by other  information items. The 
efficiency of  decisions regarding allocation of  physi- 
cal memory to information items is determined by the 
time pattern of  accesses to the information item. In 
considering this time pattern, it is important to dis- 
tinguish the time pattern of  access in the internal time 
scale of a given program and the time pattern in real 
time when interrupts are to be taken into account. 

Time patterns of accessing 

Time patterns in which access to a given infor- 
mation block occurs in bursts separated by long in- 
tervals with no accesses allow very much greater 
efficiency of physical memory allocation than real 
time patterns in which accesses to a large number of 
blocks are interspersed with each other  in a relatively 
uniform manner. 

The real time pattern of  information accesses in a 
multiprogramming system is inevitably more  diffuse 
than in a batch-processing system because different 

processes are interleaved with each other  on a given 
processor.  Such interleaving of  processes not only 
requires information items of  a number of interleaved 
processes to occupy concurrent  time slices of  the main 
memory,  but also requires information items of  each 
of  the processes to occupy its time slice for a longer 
period of time. 

The  index of main memory utilization by a given 
computation or set of computations is clearly the prod- 
uct of  the number  of  physical main memory registers 
used and the time for which they were used. This 
index will be referred to as the memory slice of the 
computation or set of computations.  An example will 
be given to show that the memory slice occupied by 
a set of processes rises sharply as the number of pro- 
cesses being simultaneously executed increases. 

Example: Assume that there are n tasks with similar 
time and space requirements to be executed on a single 
processor  of the multiprogramming system. Assume 
also that each process requires m fixed size blocks 
(pages) of  main memory to operate efficiently and that 
the internal process time during which the process 
is required is k seconds for each process. Then  the 
memory slice required for processing the set of  n tasks 
in sequence is kmn units. If, however,  the n tasks are 
interleaved, then each task occupies mn blocks for kn 
seconds, so that the memory slice required to execute  
the set of tasks is kmn 2 units. 

Multiprogramming leads to greater technological 
efficiency by allowing processor  idle time in a given 
process to be used by another  process which is ready 
for execution. It greatly facilitates more efficient 
servicing of multiple users requiring real time re- 
sponses and short elapsed time responses. However ,  it 
leads to a greater strain on memory  resources even 
in the case when program characteristics are assumed 
known and memory allocation problems are assumed 
to have been solved. 

Matching software to resource allocation 

In a muitiprogramming system with given facilities 
for allocation of  information structures to resources 
the system software must be specifically designed to 
work efficiently under the given allocation scheme. 
Efficient design of  system software can improve over- 
all system efficiency at two levels. 

1. If  frequently used system programs are con- 
structed to make efficient use of  computer  resources 
during their execution,  than all programs that utilize 
scarce computer  resources during the execution of  
these system programs will operate more efficiently, 
resulting in an overall improvement  of  system effi- 
ciency. 
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2. Compilers and other programs that determine the 
run-time representation of user programs should cause 
programs to have a run-time representation that makes 
efficient use of allocation facilities during execution. 

If, as has happened in a number of instances, the 
performance of a given multiprogramming system has 
been found to be poor, then it is difficult to judge 
whether the poor performance is due to inherently 
unworkable allocation procedures, or to software 
design which made poor use of the given allocation 
procedures. A complex system is as weak as its 
weakest link, and it is not always possible to identify 
the weakest link in a complex system. Indeed, since 
components of a system strongly interact, there are 
usually a number of alternative ways of improving the 
overall performance of a system, such as expanding 
hardware capacity of critical hardware components, 
placing restrictions on multiprogramming within the 
system, providing poorer elapsed time service to cer- 
tain classes of users, redesigning software system 
modules, redesigning the run-time representation 
strategy for programs, redesigning the basic hardware 
allocation scheme and many other strategies. In order 
to determine which of these factors is the critical one, 
some means of measuring system performance must 
be devised, and the behavior of the system under 
changes in system design parameters must be meas- 
ured. The measurement of system performance will 
be further discussed in a later section. 

Virtual processors 

Resource-independent information structures 

One of the principal differences between batch- 
processing programming systems lies in the degree to 
grammed programming systems lies in the degree to 
which a user program has control over physical com- 
puter resources during the execution of his program. 
In batch-processing programming systems, machine 
language programs are permitted in which the user 
decides for himself how physical resources are to be 
allocated during program execution, and has complete 
control over the real time sequence of events within 
the computer during execution of his program except 
in exceptional circumstances which cause interrupts. 
In a multiprogrammed computer system, the program- 
mer has control over the time sequence of events in 
his own program, but has little explicit control over 
the allocation of computer resources among different 
programs in the programming systems. 

A multiprogrammed system allocates scare com- 
puter resources to programs during execution. Since 
the physical resources allocated to a program may be 
different on different instances of execution, it is 

essential that a multiprogrammed computer system 
provide facilities for the run-time representation of 
programs in a manner that is independent of the 
physical resources they will occupy during execu- 
tion. 

It will be assumed that the physical computer re- 
sources are approximately as follows: 

1. Several hundred thousand main memory regis- 
ters addressable by a linear sequence of integer 
addresses. 

2. One or more processing units having access to 
a common main memory. 

3. Several hundred million registers of fast auxiliary 
memory with a block access time of a few mili- 
seconds. 

4. Data channels to a wide unpredictable variety 
of input-output devices such as tapes, printers, card 
readers, typewriter consoles, direct data channels to 
on-line equipment, scopes, etc. 

5. A number of meters and clocks for measuring 
resource usage. 

In a batch-processing programming system the 
above resources can be directly addressed at the ma- 
chine language level. In a multiprogrammed system 
the allocation of resources to information structures 
associated with a particular user is performed dynami- 
cally by the programming system. It is therefore con- 
venient to store the information structures in a hard- 
ware-independent manner during execution. 

Virtual machine language 

The hardware-independent run-time representation 
of instructions will be referred to as virtual machine 
language to emphasize that it is a hardware-indepen- 
dent representation. The computer system is designed 
to execute programs specified in virtual machine 
language rather than programs in a more hardware 
oriented language. The virtual machine language pro- 
grams may be thought of as being executed inter- 
pretively by the programming system. Like every 
interpretive system, a penalty is paid in that there is 
an interpretive overhead in the execution of individ- 
ual instructions. In the multiprogrammed systems 
considered below only the address field is interpreted, 
and indirect addressing hardware is used to reduce the 
interpretive overhead. 

The principal reason for choosing a run-time rep- 
resentation which must be interpreted arises from 
the requirement that the run-time representation 
be hardware independent. However, once the decision 
for an interpretive run-time representation has been 
made, other benefits associated with interpretive lan- 
guages can be exploited. The run-time representation 
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can be chosen so that it is a clean and logical language. 
Additional flexibility of control sequencing, diag- 
nostics, and control over  access, can be provided by 
interpretive control bits encountered during indirect 
addressing. 

Interpretation is normally restricted to indirect 
addressing, but may in certain cases require system 
programs to be executed. Such system programs 
are referred to as hardware management routines. 
Hardware  management routines of  a computer  system 
are equivalent in their effect to microprograms which 
modify the primitive hardware structure of the com- 
puter and give the user the illusion of  a more civilized 
environment.  However ,  hardware management rou- 
tines are implemented by software, and may require 
a considerable programmed overhead to  achieve their 
effect during execution. 

The  term "virtual memory"  will be used to dis- 
tinguish the memory seen by each user from the physi- 
cal memory of the actual computer.  The concept  o f  a 
hardware independent "virtual address"  will be de- 
fined and distinguished from that of a physical register 
address. The concept  of  a "virtual processor"  or "vir- 
tual computer"  is defined as the computer  con- 
figuration which each user sees when he writes his 
program, and distinguished from the physical com- 
puter that is actually available. It will be assumed that 
a multiprogrammed physical computer  can cope with 
an indefinite number of  identical hardware-indepen- 
dent virtual computers.  A virtual computer  has hard- 
ware-independent virtual registers and a virtual pro- 
cessing unit. Each programmer programs his virtual 
computer  as though it were a physical computer  all 
of  whose resources are dedicated to execution of 
the program specified by the programmer. The  pro- 
gramming system allocates physical facilities of the 
physical computer  to virtual facilities of each virtual 
computer  as they are required. 

Although the virtual machine language cannot refer 
to physical storage registers, some form of  address- 
ing must be available within the virtual machine lan- 
guage. The set of all addresses available to the user 
will be called the virtual address space, and individual 
addresses in the virtual address space will be called 
virtual addresses. All information items accessible 
in a given program are referred to by virtual addresses. 
Information that is placed in a given virtual address is 
assumed to remain in that virtual address unless it is 
modified or moved, just  as information in a conven- 
tional computer.  However ,  the programmer has no 
control over  the physical storage medium in which 
virtual addresses are stored. The correspondence be- 
tween physical and virtual addresses is completely 
under the control of the computer  system. It is the 

responsibility of the computer  system to move 
locks of  information about in the physical memory 
hierarchy so that information appears in the main 
memory when it is required for processing, and is 
retired to auxiliary memory when no longer required, 
to make room for other  blocks of  information. 

The programming system must provide facilities 
not only for moving blocks of  information in the 
physical storage hierarchy, but also for accessing the 
physical register corresponding to a given virtual 
address when such access is required during execu- 
tion. The  correspondence between virtual addresses 
and physical addresses is stored for each program in 
a set of address mapping tables, which are updated 
whenever  a block of  information is moved within 
the physical storage hierarchy, and used for table 
look-up whenever  access to information specified 
by a virtual address is required during execution. 
The  structure of  the address mapping table depends 
on the relation between the virtual address space 
and physical address space and also on the hardware 
facilities available for performing address mapping. 
The structure of  address mapping tables will be 
further discussed below. 

Virtual address space organization and two-com- 
ponent addressing 

Since the virtual address space is hardware inde- 
pendent,  the system designer has considerable free 
dom in designing the virtual address space. In de- 
signing a virtual address space the following factors 
must be considered. 

1. The virtual address space must be related to the 
physical address space in such a manner  that mapping 
virtual addresses to physical addresses through the 
address mapping table can be performed reasonably 
rapidly. 

2. Within the constraints imposed by 1, the virtual 
address space should be designed for the convenience 
of the programmer. 

Programmers find it convenient  to subdivide the 
information structures of a computation into program 
and data segments which correspond to logical sub- 
divisions of  the problem. The virtual address or- 
ganization described below structures the address 
space into a set of segments which can be indepen- 
dently named, so that logical segments of  a computa- 
tion can conveniently be mapped into segments of  
the virtual address space. Information structures with- 
in a segment are referred to by a two-component vir- 
tual address (i, j) where i specifies the segment ad- 
dress (segment name), and j specifies a word-within- 
segment address. In the discussion below some of  
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the design considerat ions which determine the form 
of  a two-component  address space are given. 

The  simplest form of  virtual address space is a one- 
dimensional sequence of virtual addresses running 
f rom 0 through 2 n - I for some n. In choosing the size 
of  the virtual address space we are not restr icted to 
the size of  any specific physical storage medium. 
Techniques  are discussed below which permit  the 
size of  the virtual address  space to be independent  of  
the number  of  bits in vir tual-machine-language in- 
structions. 

The  number  of  address  bits in an instruction can be 
reduced if the convent ion is adopted that the address 
field contains merely  a displacement relative to an 
origin specified in a special register. I f  the max imum 
displacement  permit ted is 2 (  then a main address field- 
of  ( bits is sufficient, independent  of  the size of  the 
address  space. Special registers which specify the 
origin with respect  to which displacements  are meas-  
ured are referred to as relocation registers or base 
registers. 

The  number  of  bits required in a base  register to 
specify the origin for purposes  of  relocation can 
be reduced by p bits if the convent ion is adopted that 
origins can occur  only at registers which are multiples 
of  2 p. I f  the maximum displacement  is 2 (  then it is 
convenient  to choose  p = ( ,  so that an increment  of  
l in a base register is associated with an increment  
of  2( in the address space. When this convent ion is 
adopted,  then addresses in an address space with 
2 n addresses  can be represented by a k-bit base 
register address on an ('-bit main m em ory  address 
where k + { = n. 

The  above  organization structures an address  space 
of  2 n addresses into 2 k blocks each of  which contains 
2 t words,  where K + ( = n. The  resulting blocks will 
be referred to as segments*. The contents  of  the k-bit 

base register will be referred to as a segment address 
and the / -bi t  address in the address field will be 
referred to as a word-within-segment address. 

Addressing by means of  a segment  address  and a 
word-within-segment  address is referred to as two- 
component addressing. Twq-componen t  addressing 
allows a very large address space to be defined 
without unduly increasing the number  of  bits in the 
address  field. For  example ,  in the IBM 360 Model 
67, an address space of  232 words is defined by 12-bit 
segment  addresses and 20-bit work-within-segment  
addresses ,  while in the G E  645 machine an address  

*The term "segment" is used in different ways by different com- 
puter system designers. This definition does not allow segments 
to be truly independent because of carry from the ith to the / + Ith 
position. Truly independent segment naming requires suppression 
of the carry as indicated below. 

space of  236 words is defined by 18-bit segment  
addresses and 18-bit word-within-segment  addresses.  

In the scheme described above  the segments  may  be 
thought of  as being laid end to end in the address  space 
so that the last address on one segment  is a neighbor of  
the first address of  the next segment.  Howeve r ,  the 
address spaces associated with different segment  ad- 
dresses may be made truly independent  of  each other  
by suppressing carries f rom the most  significant bit 
of  a word address  into a segment  address,  and causing 
either an end around carry or  an error  interrupt when- 
ever  such a carry  occurs.  When this is done the two 
address coordinates  become truly independent ,  and 
the address space becomes  a set of  independent  seg- 
ment  address spaces.  

When the address  space being considered is a v i r -  
tual address space,  then physical  addresses  need be 
assigned only to those elements  of  the address  space 
in which information is actually being stored. This  
allows ext ravagant  provisions to be made for the pos- 
sible growth of  segments  stored in the address  space 
without commit t ing physical  resources  to unused por- 
tions of  the segment.  In a virtual address  space of  this 
kind the problem of  dynamic  storage allocation is 
solvi~d by very sparse use of  the address  space so that 
there is a lmost  a lways room for s tructures to expand.  
Physical storage for s tructures in the virtual address'  
space of  a given program is provided by a "h idden"  
allocator whose characteris t ics  are further  discussed 
in a later section. 

Each user programs as though he has his own vir- 
tual p rocessor  with a private virtual address  space. 
There  is a set of  address  mapping tables which are 
consulted during execution to determine the physical 
address. During the course of  the computa t ion  a given 
virtual address may  at different times cor respond to a 
number  of  different physical registers of  the m e m o r y  
hierarchy. The  sys tem keeps  track of  blocks of  infor- 
mation by updating the address  mapping tables of  the 
associated virtual compute r  whenever  a block of  infor- 
mation is moved.  

The  use of  address mapping tables not only permits 
the same virtual address to be represented by different 
physical addresses  at different points of  the computa-  
tion, but also permits addresses of  two different vir- 
tual memories  to denote  the same physical address  
and thereby to have access to the same common  infor- 
mation. In particular, the address  space of  every  vir- 
tual processor  permits access  to a common  set of  sys- 
tem routines. 

The  virtual memory  of  every  virtual p rocessor  may 
be thought of  as being initialized so that it has a stan- 
dard set of  initial sys tem facilities resident in its vir- 
tual memory .  
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Auxiliary memory and user communication 

Although the virtual memory  of each user is very 
large, there may still be programs for which the virtual 
memory  is not large e.nough and for which auxiliary 
memory  is therefore required. The  requirement  of  
hardware independence applies to auxiliary m e mory  
as well as to the main memory .  The  auxiliary m e mory  
accessible to a user will be called the virtual auxiliary 
memory .  

T w o  alternative approaches  can be adopted to aux- 
iliary memory  space. 

1. Each user has a private virtual auxiliary memory  
space. 

2. There  ~ a sys tem wide virtual auxiliary memory  
space. 

The  second approach is the one adopted in the IBM 
and Multics sys tems and will be illustrated below. 

The  sys tem wide virtual auxiliary memory  will be 
referred to as the f i le system. The file sys tem may be 
described by a directed graph with an initial ver tex 
called the root vertex and a number  of  terminal ver- 
tices. The  terminal vert ices correspond to information 
blocks and the non-terminal vertices consist  of  sets 
of  pointers to lower level vertices. The  sets of  pointers 
associated with non-terminal vertices are referred to 
as catalogs ( IBM) or directories (Multics). The  direc- 
tory (catalog) associated with the root ver tex of the 
file sys tem tree structure is referred to as the root di- 
rectory.* 

The information structures associated with vertices 
in the file sys tem will be referred to as files. Access  
to all files in the file sys tem must  pass through the root 
directory. Each file in the file sys tem has a tree name 
which consists of  a sequence of pointers through suc- 
cessive directories terminating in a pointer  to the file 
itself. The  tree name is the address of  the file in the 
virtual auxiliary memory .  A given file in the file 
sys tem may in general have more than one tree name, 
corresponding to different paths through the graph 
structure f rom the root directory to the file. However ,  
the convent ion is usually adopted that there are no 
loops in the graph which represents  the file structure; 
i.e., the vert ices of  the file sys tem consti tute a partial 
ordering. 

The  set of  physical  storage registers in which files 
of  the file sys tem are stored may vary during execu-  
tion. The  correspondence  between addresses in the 
virtual auxiliary mem ory  and physical registers is de- 
termined by a sys tem wide f i le sys tem address map- 
ping table. 

*Spec'ific auxiliary memory designs along these lines are given in 
(2), and by Daley and Neuman in (3). 

The  system-wide virtual auxiliary memory  fulfills 
the following functions: 

a) It  s tores information structures private to indi- 
vidual computat ions  which it is inconvenient  to store 
in the main virtual memory .  

b) It serves as a common  information base which 
stores individual program and data segments  that 
are generally available to all computat ions  or selected 
classes of  computat ions.  

c) It can be used for purposes  of  communicat ing be- 
tween computat ions.  

In order  to ensure pr ivacy of information in cate- 
gories a) and c), and f reedom from unauthorized modi- 
fication of information in all categories,  there are 
means of restricting the form of access  to information 
stored in the virtual auxiliary memory .  The  modes of 
permit ted access may be a combinat ion of  the follow- 
ing: 

X The  segment  may be executed as a program. 
R Reading f rom the segment  is permitted.  
W Writing of  information into the segment  is per- 

mitted. 
A Changing the size of  the segment  is permitted. 
The  mode  of access permit ted to a given segment  in 

the auxiliary memory  is not determined solely by the 
segment  being accessed but by the relation between 
the accessing process  and the accessed segment.  
This effect can be achieved by encoding the mode of 
access in the sequence of  pointers that consti tute its 
tree name. For  example  the mode of  access deter- 
mined by a sequence of pointers can be taken to be the 
mode of  access associated with the last of  the pointers. 

The  above  logical attributes of  segments  in an infor- 
mation structure are represented at the physical level 
by bit pat terns in address mapping tables which are 
interpretively interrogated during execution. When a 
segment  is " m o v e d "  f rom auxiliary memory  to a given 
virtual address space, the accessing bit pat terns which 
determine the mode of access are initialized in the 
address mapping tables of  the virtual processor .  

When a user is given permission to use the sys tem 
he is allocated a standard initialized virtual processor, 
with access  to a standard set of  sys tem programs in 
his main addressing space and access to a standard set 
of  files in the file sys tem in standard accessing modes.  
During execution he may build up information struc- 
tures both in his virtual address space and in the file 
system. However ,  he may also wish to request  access 
to information in the file sys tem that is not made a- 
vailable on an automatic  basis. T w o  categories of  in- 
formation in this class may be distinguished. 

1. Sys tem files for which access requests  are chan- 
neled through the compute r  opera tor  and are 
made available by  an action of the compute r  op- 
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erator, possibly after consultation with the sys- 
tem administrator of the computation center. 

2. Private files for which access requests must be 
made directly to the user having control over 
these files. 

The system must contain facilities for granting of 
access to privileged files both by system adminis- 
trators and by private system users. A set of primi- 
tive system operations for allowing such access is dis- 
cussed in (5). 

Mapping of an object from the virtual auxiliary 
memory to the virtual main memory of a virtual com- 
puter does not require moving of the information it- 
self but merely updating of the address mapping tables 
of the virtual computer to establish the correspon- 
dence between the physical registers of the informa- 
tion item and the virtual main memory address with 
which it has become associated. However, in perform- 
ing a mapping between the virtual auxiliary memory 
and the virtual main memory, information regarding 
the mode of access to the information must be pre- 
served. The encoding of accessing information in the 
main memory address mapping tables is further dis- 
cussed in a later section. 

Virtual computers 

Each user of a multiprogrammed computer system 
has at his disposal a virtual computer with a virtual 
address space which is initialized to have access to a 
standard set of system facilities. During the lifetime 
of a given computation the user may introduce his 
own information structures into his virtual address 
space, and introduce information structures from the 
virtual auxiliary memory into his virtual address 
space. 

A virtual computer has an associated stateword 
which contains the information that resides in the pro- 
cessing unit when the process is being executed. 
However, the stateword has an existence as an infor- 
mation structure independently of whether it is loaded 
into a physical processing unit. When the stateword 
occupies a processing unit, the computation asso- 
ciated with that virtual computer is said to be active 
or running. When the stateword is stored in the main 
or auxiliary memory, the computation is said to be 
passive or blocked. 

The stateword of a virtual computer C contains in- 
formation stored in processing unit registers such as 
the accumulator and instruction location register. 
It also contains a pointer to the address mapping 
tables which determine the correspondence between 
virtual and physical addresses for the given computa- 
tion. The pointer to the address mapping tables links 

the stateword to all information structures of the vir- 
tual computer associated with the stateword. The 
term computation will be used to denote the sequence 
of instantaneous descriptions associated with a given 
virtual computer. 

The transition from a computation C, to a computa- 
tion C~ on a given processing unit is accomplished by 
storing the stateword associated with C1 and loading 
the stateword associated with C2 into the processing 
unit. 

Loading of the new stateword automatically causes 
a new set of address mapping tables to be used in 
interpreting address fields. The address mapping ta- 
bles are used both in the instruction fetch phase and in 
the instruction execution phase as indicated below. 

Moving of information in the physical memory dur- 
ing a computation causes changes in the address map- 
ping tables of the associated virtual computer but not 
in the virtual addresses of the moved information. 
Location independent virtual addresses and location 
independent pure procedure segments are made pos- 
sible by the expedient of interposing an interpretive 
address mapping phase into the computation. The ad- 
dress mapping tables rather than the address itself 
are modified whenever the physical address changes 
during execution. 

-- E(~mory 

Location Independent inforr~.tic,n 

IAdd ...... pping Syst ide tree-rs ] ..... 
tables for virtual structuzed address Location dependent inforr,'.~tien 
.... y 1 ~ng tables f° Ealntained by supervisory 

l Ifil e system 2 ] system 
L Inaccessible to the proi~'~n~¢r 
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Figure I . - -A virtual computer with address mapping tables that 
determine the physical location of accessible information structures 

Figure l illustrates the relation between the infor- 
mation structure which constitutes a virtual computer 
and the physical registers in which the information 
structure is stored. 

Measures of system efficiency 

When a virtual computer is in execution, it is occu- 
pying a time slice of a physical processor, It is also 
occupying time slices of a number of other resources. 
It is the job of the computer system to allocate time 
slices of resources to virtual processors so that com- 
putations specified by users can be executed both 
efficiently and flexibly. 

One of the measures of efficiency is the proportion 
of the time that a physical processor spends doing 
computations specified by virtual processors of users. 
This proportion is less than one because a processor 
may be idle or perform administrative system func- 
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tions such as process interchange or memory alloca- 
tion. System functions such as input-output are pro- 
vided as a service to the user and charged to the user. 
System functions such as accounting or interrupt 
routines that are not explicitly requested by the user 
but form part of the system overhead for a computa- 
tion may also legitimately be charged to the user.* 
However ,  certain system wide computations and cer- 
tain kinds of excessive administrative overhead due 
to system inefficiency cannot legitimately be charged 
to the user. 

One of  the features of  a multiprogramming sys- 
tem is that the user is never  charged for idle time 
on a physical processor.  If a given physical  processor  
becomes idle because the information required to exe- 
cute an instruction is not in the physical main memory,  
then the current computation is interrupted while the 
information is brought into core,  and execution of  
some other process is initiated on this processor.  

More precise data on the factors which affect the 
efficiency of through put in a computer  system can be 
obtained by breaking down the time spent in various 
system functions into categories such as interrupt 
servicing, resource allocation, resource accounting, 
etc., and measuring the time spent in each of  these ac- 
tivities, the proportion of idle time due to each of  these 
activities, and the change in these times brought 
about by the change of  certain design parameters.  

Efficiency is measured above in terms of the effi- 
ciency of  processor  utilization. We shall consider next 
the effect of  the problem mix on the efficiency of 
processor  utilization. 

Foreground and background processes 

Computations which have elapsed time deadlines 
for their completion are called foreground processes. 
Real time computations,  interactive computations in 
which a user at a console expects an " immediate"  
response, and debugging runs are examples of  fore- 
ground processes. 

Computations for which there is no pressing real 
time deadline are referred to as background processes. 
Long production runs and batch-processing runs for 
which an elapsed time of  more than a few minutes is 
acceptable are examples of  background processes. 
Background processes usually make less stringent 
demands on input-output resources than foreground 
processes. The running of  programs as background 
processes can be encouraged both by lower charging 
rates and by system rules.** 

*The user  of  electricity has to pay for the electricity used  in running 
his electric meter.  
**The classification of  processes  into foreground and background 
processors  is a special case o f  a classification into priority classes,  
each having its own scheduling and account ing algorithm. 

Foreground processes tend to make heavy use of 
input-output l~acilities while background processes 
tend to make heavier use of  processor  time. In order  
to avoid situations in which a processor  is idle because 
there are no processes waiting to be processed, it is 
desirable to include in the problem mix a number of 
background processes which make heavy use of the 
processor  and relatively light use of other resources. 
Multiprogramming systems are specifically designed 
to take advantage of  variation in the resource require- 
ments of  different computations for the purpose of im- 
proving the average overall efficiency of resource 
utilization. 

Processing unit organization for two-component 
addressing 

Representations of identifiers 

One of  the most important problems in program- 
ming at all language levels is the representation of 
identifiers. There  are at least four levels of  represen- 
tation of names that must be considered in a multi- 
programming system. 

1. The source language level 
Names  at the source language level are symbo- 
lic, e.g., X, X(I) etc. The  association of names 
with objects they denote is determined partially 
by context  and partially by declarations which 
specify attributes associated with the given 
name. 

2. The  instruction address level 
The contents of the address and special register 
fields of  an instruction determine a rule for com- 
puting an address. The  address is determined 
both by the contents of address and special reg- 
ister fields and by the contents of  explicit 
and implicit registers used in the address com- 
putation. 

3. The virtual address level 
The modified address obtained from an instruc- 
tion address by indexing, indirect addressing and 
other  forms of  address computation results in a 
virtual address. In the multiprogrammed com- 
puters considered here the virtual address is a 
two-component  address with a segment compo- 
nent and word within segment component .  

4. Physical register address level. 
A physical register address is the address of a 
physical register in the main memory.  

The  translation from a source language name to an 
instruction address is accomplished by a compiler 
which translates source language into object language. 
The translation from an instruction address to a vir- 
tual address and from a virtual address to a register 
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address is accomplished by computer  hardware during 
execution. 

In the present section the translation from instruc- 
tion addresses to virtual address will be considered. 
The  translation from virtual addresses to physical ad- 
dresses will be considered in the following section. 

It will be assumed that each processing unit contains 
a two-component  address register comprised of  a seg- 
ment register and a word register. During execution 
the address register contains the two component  ad- 
dress of  the next instruction to be executed. The bas- 
ic instruction execution cycle is as follows: 

1. Fetch an instruction from the virtual address 
specified in the address register. 

2. If a data access is required fetch the data from 
the virtual data address specified by the instruc- 
tion. 

3. Execute  the instruction. 

Two-component instruction fetch 

The  instruction fetch phase makes use of  a register 
referred to as the temporary address register com- 
prised of  a temporary segment register and a tempo-. 
rary word register. During the instruction fetch phase 
the address register is moved to the temporary  address 
register, the word register is incremented by 1, and 
the content  of  the temporary register is used to com- 
pute the physical register containing the instruction 
as illustrated in Figure 2. 

Segment Rcglster [ 
Word Register 

Pointer I Register ~,I 

Current Instrue- I Two-Component Virtual Address 

tlon Register 3 Compute physical register address ] 
, using the address mapping tables [ 

pointed to by the address mapping 
Dolnter 

Instruction Processing Unil 4, 

Use the physical register address 
to. fetch an instruction from the 
computer memory end place it in the 
current instruction register. 

Figure 2.--The instruction fetch phase 
An address mapping pointer stored in the instruc- 

tion processing unit is used to determine the physical 
origin of the address mapping tables to be used in the 
physical instruction address. 

The  determination of the virtual address in the in- 
struction fetch phase is trivial since the two-compo- 
nent virtual address is explicitly stored in the process- 
ing unit. However ,  the effective address computation 
in thi~ data fetch phase involves convert ing the address 
fields of  a one-address instruction into a two-compo- 

nent physical address and is considerably more com- 
plex. Assume that the one address instruction has the 
following format. 

i IA I I' I "ul 
Figure 3.-  Two-component instruction address format 

OP is the operation code field, A is the address 
field, I is the index register field, B is the base reg- 
ister field and is used to point to one of  a number  of  
base registers containing a two-component  base ad- 
dress, and M is a modifier field. 

Two-component data fetch 

The simplest form of  address computat ion occurs  
when the I, B and M fields specify no modification. 
In this case A is assumed to be an absolute word ad- 
dress in the segment being executed,  so that the seg- 
ment address is automatically taken to be that of  the 
segment register in the instruction processing unit. 

Indexing using an index register pointed to by the I 
field, and indirect addressing using a bit in the M 
field are assumed to operate on the word address A 
just as though it were a one-component  address. 

If  no "base register is specified, then the segment ad- 
dress is always assumed to be that of  the currently ex- 
ecuted segment. However ,  if a base register is speci- 
fied, then the segment component  of  the base register 
becomes the segment component  of the effective ad- 
dress, and the word component  of  the base register is 
used to increment the word component  of the effec- 
tive address, just  as though it were an exta index reg- 
ister. 

The  effective address computed during the data 
fetch phase is stored in the temporary segment register 
and temporary word register just  as in the instruction 
fetch phase. If indirect addressing is specified, the re- 
gister address corresponding to this effective addre'ss 
is used to replace the A, 1, and M fields by the A, 
I, B and M fields of  the fetched instruction, and to ini- 
tiate a further effective address computation.  Other- 
wise the content  of  the register address is used as the 
data item for the current operation. 

The address computation during the data fetch 
phase is illustrated in Figure 4. 

The  above machine language instruction format is 
basically a one-address instruction format in which 
the second component  is specified by a pointer to a 
two component  base register. This requires the seg- 
ment number to be set by special base register load- 
ing instructions prior to use of  a given segment. The 
word component  of  the base register may be thought 
of  as a relocation register which determines as a rela- 
tive initial address within the segment. Because of  this 
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Figure 4. - Effective address computation during the data fetch 
phase 

relocation facility the word address can be regarded as 
a relative rather than absolute word-within-segment 
address, and the number of address bits in an instruc- 
tion word need not be the full segment size. 

Machine language programming for a computer with 
two-component addresses requires the programmer to 
keep track of both index registers and base registers 
addresses and is therefore more complex than on a 
machine with fewer address modifiers. However, if 
standard conventions are adopted for inter-segment 
communication the burden of the machine language 
programmer can be eased. Clearly programming in 
machine language is the exception rather than the rule. 

Physical register computation under paging 
and segmentation 

Mapping of segments without paging 
In the previous section it was shown that conver- 

sion from virtual to physical addresses was required 
both during the instruction fetch phase and during the 
data fetch phase. The overall features of this address 
computation are similar both in the IBM and GE ad- 
dress computation, and will be described in greater 
detail below. 

Two-component addressing suggests that each seg- 
ment of a virtual address space have an independent- 
ly specified physical origin. As a first approximation to 
an address mapping scheme we shall assume that each 
segment of a process must occupy a contiguous block 
of registers in the memory hierarchy. In this case the 

initial segment address would completely specify all 
storage allocation information about the segment. The 
address mapping tables would consist of a segment 
table with one entry per segment specifying the initial 
address of the segment if it is in main memory and a 
segment not in core marker if the segment is not in 
main memory. 

The stateword of a processor contains a word called 
the address mapping pointer which points to the first 
address of the segment table. The segment table en- 
try for a particular segment is obtained by relative ad- 
dressing relative to the address mapping word. 

The above scheme is clearly impracticable when the 
segment size is of the same order of magnitude as the 
number of registers in the main memory. Since infor- 
mation structures stored in segments normally occupy 
only a small initial portion of the segment, the above 
scheme would also be very wasteful. One modifica- 
tion which would make the above scheme more prac- 
ticable would be to allocate memory only to the ini- 
tial portion of the segment that actually contains in- 
formation. This would require a specification of both 
the initial address and the segment length in the ad- 
dress mapping table. On access to the segment the 
system would first check the segment not in core 
marker. If the segment were in core it would check 
that the word address was less than the segment 
length. Access to the segment would be performed 
only if these checks were satisfactory. Otherwise an 
interrupt would be initiated causing the system to take 
some action. 

The above checks illustrate some of the advantages 
of interposing an interpretive address mapping be- 
tween the virtual and physical addresses. Multipro- 
grammed systems take advantage of this intermediate 
stage of interpretation in other ways too. 

Segment attributes 
The entry for each segment in the address mapping 

table may be thought of as a "description list" which 
specifies segment wide accessing attributes. The 
accessing attributes so far introduced are location, 
length and the property of being in core. Other attri- 
butes which may conveniently be specified in this de- 
ent modes of access may conveniently be distin- 
guished. 

1. Access which involves reading words of the seg- 
ment 

2. Access which involves writing words of the seg- 
ment 

3. Access which involves executing words of the 
segment 

4. Access which involves adding or deleting words 
of the segment. 
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These  four modes  of  access  are referred to respec-  
tively as the read mode, write mode, execute mode 
and append mode, and will be denoted respect ively 
by R, W, X and A. Each mode of access  may  be con- 
trolled by a single bit in the segment  description list. 
I f  during execution a form of  access  which is not per- 
mitted is a t tempted,  then an interrupt occurs  result- 
ing in a sys tem action. 

A restriction on the mode of  access  to a segment  
may be thought of  as a mode of  protection of  that seg- 
ment  f rom interference by other  segments.  Since 
mode of  access  and mode of  protect ion are reverse  
sides of  the same coin, the terms access  and protec-  
tion will be used interchangeably.  

Although allocation of  only the used portion of  a 
segment  is a great improvement  over  allocation of  
the whole segment,  it may still lead to difficulties. 

1. Variable size segments  make the problem of stor- 
age allocation when a new segment  is introduced 
into the memory  very  complex.  

2. One or two very large segments  may use up the 
whole of  physical m em ory  and therefore present  
efficient mult iprogramming.  

Pages 

In order  to avoid both of the above  problems it is 
convenient  to choose a fixed size unit for purposes  of  
storage allocation which is independent  of  segment  
size and sufficiently small so that a large number  
(say 1,000) of  these units may simultaneously reside 
in the main memory .  This  unit will be called the page. 

The number  of  words in a page will be chosen to 
be a power  of  2, say 2 m. I f  the number  of  words in a 
segment  is 2 n, n > m ,  then each segment  will be sub- 
divided for purposes  of  storage allocation into 2 k 
pages where k + m = n. Since each page of  a segment  
can be mapped independently into a block of  storage, 
an initial address  and storage not in core indicator is 
required for each of the pages of  a given segment.  This 
information is stored in a page table. 

When pages are used as the unit of  storage alloca- 
tion, then address mapping consists of  two stages of  
indirect addressing through the segment  table and the 
page table associated with the segment.  Each stage of  
indirect addressing may have associated with it cer- 
tain interpretive tests triggered by indicators stored 
along with pointer  information in the address  mapping 
tables. Attr ibutes that are associated with the seg- 
ment as a whole are stored in the segment  table. These  
attributes include the location of the segment page 
table, the access  mode of  the segment,  the length 
(number  of  pages) of  the segment,  etc. Attr ibutes of  
individual pages include their location, whether  or 
not they are in core, etc. Thus  the two stage inter- 

pretat ion process  permits testing for run time segment  
attributes to be separated f rom attributes associated 
purely with the storage allocation process.  

The  physical memory  of  the compute r  is subdivided 
into pages for purposes  of  storage allocation. The  vir- 
tual memory  of each virtual p rocessor  is also sub- 
divided into pages. When a virtual p rocessor  is ini- 
tiated by placing its s ta teword into the physical  pro- 
cessor  the majority of  its pages normally reside in the 
auxiliary memory .  If, during execut ion access  to a 
page which is not currently in core in required, the ab- 
sence of  the page will be d iscovered during address  
mapping and a missing page fault will occur. The  
missing page fault will cause a sys tem program for me- 
mory  allocation to allocate a page in core for the re- 
quired page, possibly retiring an existing page to the 
auxiliary memory  to make room for the new page. The  
virtual p rocessor  will become  blocked while the me- 
mory  allocation mechanism brings in the required 
page, giving up the physical p rocessor  to some other  
virtual p rocessor  that can proceed wi th  its computa-  
tion. The  given processor  will react ivated when the 
page has been read into the main memory .  When it re- 
gains possession of a physical p rocessor  it will again 
access  the required page through the address  computa-  
tion mechanism and will this t ime succeed. 

It is assumed that segments  stored in the auxiliary 
memory  occupy  a contiguous set of  physical  registers 
in the auxiliary memory .  In order  to retr ieve a miss- 
ing page f rom the auxiliary memory ,  a table must be 
available which specifies for each segment  of  a process  
the tree name or physical auxiliary memory  address  
for that segment.  This table is referred to as the seg- 
ment" name table. Thus  the relation between virtual 
and physical addresses  is in fact determined by two 
tables. The  segment  table specifies physical ad- 
dresses for segments  which are in core and the seg- 
ment name table specifies physical addresses  for seg- 
ments  that are not in core. 

It was assumed above  that the page table of  the seg- 
ment containing the page being accessed was in core. 
The  page table of  a segment will itself occupy  a page 
of  main memory  and need be created only when at 
least one of  the pages of  the segment  are in core. I f  
the page table is not in core then a missing segment 
fault will occur  at the segment- table stage of  indirect 
addressing. A missing segment fault will cause the 
sys tem to allocate a page for the page table, create  a 
page table for the segment  with missing page faults 
in all its entries, and return control to the interrupted 
program. Note  that no information f rom auxiliary 
memory  is actually required when setting up a page 
table, so that the page table can be set up by the sys- 
tem by merely  borrowing the p rocessor  that requires 
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the page table. However, time would be required to 
retire a page if no pages were available. In order to 
reduce storage allocation waiting time associated with 
pages that are being retired, four or five vacant pages 
are normally available in the main memory, and a page 
is retired whenever the threshold of vacant pages 
falls below this level. 

When the number of segments in the virtual address 
space is very large, it is no longer possible to have the 
complete segment table of the virtual processor in 
the main memory. This can be avoided by allowing the 
segment table itself to be paged. The segment table 
can be paged without any extra machinery by allow- 
ing it to be a segment of the virtual processor. 

When the segment table is paged then the address 
mapping word of the stateword of the virtual processor 
points not to the segment table but to the page ta- 
ble of the segment table. Access to a physical register 
now requires three stages of indirect addressing 
through the page table of the segment table, the seg- 
ment table itself, and the page table of the segment. 

Address mapping under paging and 
segmentation 

When both the segment table and the segment ad- 
dress are paged a two component virtual address (i j) 
effectively becomes a four component address 
(k,m; 1 ,m) where the segment table page table contains 
2 k entries, the page tables of individual segments con- 
tain 2( entries, and pages contain 2 m entries. Since 
page tables themselves occupy pages of the computer 
memory, k and ( must not exceed m, and should be 
chosen to be m for maximum memory utilization. 
Example: If the address space permits 2 TM, then a 
segments each having a maximum length of 2 TM then a 
page size of 2 9 would result in page tables with 2 9 
entries. In this case k----(---m:9. 

The segment address together with the page compo- 
nent of the word within segment address is sometimes 
called a virtual page address since it is the address of 
a page of the virtual memory. 

The three stage indirect address computation Which 
results when both individual segments and the seg- 
ment table are paged is illustrated in Figure 5. 

v l r t u a l  address 
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Figure 5 . -  Address computation under paging and segmentation 

The address mapping word of the processor is modi- 
fied by the first (k bit) component to determine a page 
of the segment table. The initial address of this page 
is modified by the second component to determine the 
segment table entry. The segment table entry is incre- 
mented by the third component to determine the reg- 
ister which specifies the initial page address. Fi- 
nally the initial page address is incremented by the 
fourth component to determine the physical register 
address. 

Each of the above stages may resulteither in a miss- 
ing information fault or in an accessing gault due to 
accessing attributes associated with the information 
access not being met. 

Associative registers 

The effectiveness of a system in which memory al- 
location is performed by paging depends in part on the 
characteristics of the information structure on which 
the computation is being performed. Paged storage 
allocation is most effective for computations in which 
there are long sequences of instructions whose infor- 
mation requirements are restricted to a small number 
of pages. If the number of pages to which access is 
required in a computational sequence is large then the 
computation will require a large number of in core 
pages to run without interruption. In this case a choice 
must be made between allowing the computation to 
occupy a disproportionate amount of main memory 
thereby impairing the efficiency of other processes, 
or executing the process in a highly inefficient manner, 
constantly retiring pages that will again be required at 
a later point of the process. 

The overall efficiency of a computer system under 
paged storage allocation depends in large measures on 
the information accessing characteristics of the "av- 
erage" process in the system. If the average process 
has long computational sequences requiring only a 
small number of pages then a small number of "mem- 
ory-eating" processes with large storage requirements 
can be tolerated. However, if the typical process ac- 
cesses large numbers of pages intermittently during 
most of its computational life then paging may not pro- 
vide a sufficient economy of storage allocation to jus- 
tify the time and space overhead that it introduces. 

Paging introduces a time overhead by requiring ex- 
tra indirect addressing during execution of individual 
instructions and by requiring system actions during 
allocation and retiring of pages. It introduces space 
overhead by requiring extra space for address map- 
ping tables and by requiring space for system pro- 
grams and their address mapping tables. One of the 
factors which determines whether paged storage al- 
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location can succeed is the degree to which the time 
and space penalty of  paging can be reduced. 

The time and space penalties introduced by paging 
can be reduced in part by hardware and in part by ef- 
ficient system organization. For  example, there is 
hardware for automatic (non-programmed) indirect ad- 
dressing from the processor  address mapping word 
through page and segment tables to the physical ad- 
dress. This reduces the time penalty to three memory  
cycles per memory  access. This time penalty can be 
further reduced by means of  a special set of  hardware 
registers known as associative register. 

An associative register is a register  that is addressed 
by its content rather than by an address. The  asso- 
ciative registers used to speed up the address compu- 
tation contain direct correspondence,  between a small 
number of virtual page addresses and corresponding 
physical addresses. The content  of an associative reg- 
ister is illustrated in Figure 6. 

Statistical Usage I Virtual address pa~e Physical address register information 

l 

Figure 6. - Associative register format 
A processor  typically has eight or possibly sixteen 

very rapid access associative registers in which re- 
cently accessed virtual page addresses and corre- 
sponding physical addresses are stored.* Whenever  
access to a given virtual address is required, the asso- 
ciative memory is scanned for the virtual page address. 
If  the virtual page address is found, the physical ad- 
dress is given in the physical register field of  the asso- 
ciative register, and can immediately be used for ac- 
cessing purposes without performing multistage in- 
direct addressing. If the virtual page address is not 
present in the auxiliary memory,  multistage indirect 
addressing is performed in the normal manner. The re- 
sulting physical address is used not only to access the 
physical memory but also to establish a new entry in 
the associative memory for the accessed page, retir- 
ing a current entry in the associative memory.  The sta- 
tistical usage information is  used to determine which 
of the current entries the new entry is to replace. 

The effectiveness of this scheme depends on the 
proportion of  the time that memory accesses can be 
accomplished through the associative memory.  This 
in turn depends on the size of  the associative memory,  
the rule for replacing segments of  the associative mem- 
ory, and the type of  process mix for which computa- 
tions are being performed. 

*Note that the virtual page address  is a process-dependent  quan-  
tity, and that virtual-actual address  cor respondences  are valid only 
in the lifetime of the process in which they were loaded. It is usual 
to clear the associative registers when replacing one process by an- 
other. However, an alternative scheme is further discussed below. 

The technique of allowing rapid access to informa- 
tion on the basis of  recency and frequency of  use is 
sometimes referred to as look behind. This is to be 
contrasted with look ahead techniques which try to 
predict the information which will be required by look- 
ing ahead in the instruction sequence. 

Factors which determine the efficiency of 
paging schemes 

Simulation has shown that a small number  of  asso- 
ciative registers will in a typical computat ion re- 
quire the address computat ion to be performed less 
than 20% of the time. Thus the time factor  for address 
mapping during accessing can be considerably re- 
duced. However ,  it has been found that the bottle- 
necks introduced by paging do not lie in the time pen- 
alty during address computat ion but rather in space 
problems in the following categories: 

1. The system facilities for paging eat up a large a- 
mount of  space for page tables and other  pur- 
poses. 

2. Problems tend to require a large number  of  pages 
for their execution. Accessing does not tend to be 
localized to a small number of  pages over  short 
time sequences (say 10,000 instruction times) 
but tends to range quite widely requiring frequent  
interchange of  pages. 

3. The time required by a process to build up a suf- 
ficient number  of  pages in the main memory  so 
that it can run for an appreciable length of  time 
wit.hout missing page faults tends to be quite 
long, particularly since missing page faults cause 
the process to lose control of  the processor,  and 
since successive pages can never  be read in par- 
allel. Thus building up of  a process in main mem- 
ory to the point that it can run efficiently repre- 
sents a considerable real time investment. The  
space constraints may well be such that more 
time is spent building up the memory  investment 
of processes to the point at which they can run 
efficiently than is spent in the efficient execut ion 
of  processes. 

The memory utilization of  a group of  programs in a 
multiprogramming system can conveniently be meas- 
ured by a memory utilization chart. A memory uti- 
lization chart measures space along its horizontal 
dimension and time along its vertical dimension. The  
total memory space is represented by a fixed horizon- 
tal span and the amount  of  space occupied by each 
program is represented by a portion of  this span. As 
time moves in the vertical direction, the space utili- 
zation of  each program is represented by a vertical 
band. Figure 7 indicates a memory containing three 
programs. During the time span indicated in the graph, 
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Figure 7 . -  Time profile of memory utilization 

the leftmost program expands and takes up memory  
space at the expense  of the second program, retains a 
fixed, large portion of the m em ory  for a given time in- 
terval,  and then relinquishes the space to the second 
program. During this time, the third program, possibly 
a background program, retains a fixed amount  or" space 
in the memory  throughout the time period. 

A profile such as that above  implies that the left- 
most  program built up pages to a level at which it was 
able to run with relatively few interruptions, ran at this 
level for a while, and was then phased out, allowing 
the middle program to resume operation. This profile 
is essentially a healthy one and page allocation tech- 
niques must  allow programs to quickly build up their 
page requirements  to the level at which they can run in 
an uninterrupted fashion, and to maintain their com- 
plement  of  pages at this level for a sufficient t ime so 
that the real t ime investment  required to build up this 
complement  of  pages pays  off. 

In an actual mult iprogramming sys tem the number  
of  programs that can simultaneously share portions of  
the main memory  is considerably greater  than three. 
One significant parameter  is the ratio n/k of  number  
of  pages n in the main m em ory  and the number  of  pro- 
cesses k which may simultaneously share the main 
memory .  It has been found that, for a page size of  
21° words,  a ratio n/k = 10 allows sufficient f reedom 
for programs to expand their pages at the expense of 
others,  while a ratio n/k =< 5 leads to overcrowding of 
the memory  with compet ing programs.  

The dynamic behavior  of  programs under  paging has 
been simulated in a number  of  experimental  studies 
such as (6) (7), and the overall  conclusion appears  to 

be that "demand  paging" for individual pages leads to 
highly inefficient compute r  utilization. It  is likely 
that mult iprogramming sys tems of the future will 
adopt  some form of  grouped page storage allocation, 
where the group of  pages allocated during a single stor- 
age allocation interrupt is determined either by the 
structure of  processes  or by the storage requirements  
during the previous activation of  the process.  

The  efficiency of  paged memory  allocation would be 
greatly increased if groups of  pages having a high inci- 
dence of internal cross referencing and a low incidence 
of external referencing could be isolated by the super- 
visory sys tem and moved  in and out of  me mo ry  as 
a single unit. Groups  of pages which are t reated as a 
single unit for purposes  of  allocation are somet imes 
referred to as hyperpages. 

The problem of efficiently partitioning a problem 
into hyperpages  may be thought of  as a clustering 
problem in which individual pages are represented by 
vertices into clusters having high density of  traffic 
within clusters and low density of  traffic between clus- 
ters. However ,  it is not clear that significant clustering 
pat terns could be established at a level at which 
clusters were significantly smaller than complete  pro- 
grams. Moreover ,  clustering patterns within programs 
are likely to vary with time, and it is likely that a look- 
behind technique for paging of individual processes  
would be more effective than a "s ta t ic"  clustering 
technique. 

Clustering techniques are said to be static because  
they determine groups of  pages that remain fixed 
throughout  execution. When comparing look-behind 
techniques with clustering techniques,  it is convenient  
to think of  the set of  most  recently used pages singled 
out by the look-behind process  as a single cluster 
which changes in composi t ion through time. 

The  look-behind techniques discussed above as- 
sume a single system-wide set of  associat ive registers 
which is cleared on every  process  interchange. Thus  
a newly act ivated process  has no initial look-behind 
information, builds up this information as it goes along, 
and has its look-behind information dest royed as soon 
as it loses control of  the processor .  Since the corre- 
spondence between logical and physical addresses 
might change while the process  is not in control,  this 

information would not be of  any use when the process  
regains control, unless provision were made for up- 
dating it. However ,  the information specifying the 
"c lus ter"  of  most  recently used pages is an important  
piece of  information and could be used for page con- 
trol if it were available. It  is felt that storage of  the set 
of  virtual page addresses on termination of a process 
as part  of  an extended stateword,  might be a worth- 
while hardware extension. For  example,  if these vir- 
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tual page addresses were available, then the loaded 
process could check for the presence of  these pages 
and bring in any missing ones in parallel with the ini- 
tial part of  its computation. 

At any instant of  time the associative registers con- 
tain solely information pertaining to a single process. 
When the process is terminated, the part of  this infor- 
mation that is dependent  on physical resources be- 
comes outdated as the system reallocates its re- 
sources. However ,  part of  the information tells us 
about recent page-usage of  the process and is as rele- 
vant if the process is restarted in a year on a different 
machine as when it is restarted within a millisecond. 
Careful use of  this information could lead to consid- 
erably improved paging algorithms. 

Problems of  paging are caused essentially because 
main memory space is a critical resource in current  
computers.  In the long run it may well prove cheaper  
to expand the main memory to a point where it ceases 
to be a critical resource rather than to play costly 
games whose objective is efficient memory allocation. 
However ,  even if the memory allocation problem 
disappears, there will be other  critical resources whose 

allocation will require similar techniques and solu- 
tions as those required for efficient memory  allocation. 
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