Check for
Updates

WEDNESDAY, SEPTEMBER 5, 1962 ... MEMORIAL AUDITORIUM ... 2:00 P.M.
m

SESSION 12: Invited Papers

WPM 12.1: Toward Better Programming Languages

V. H. Yngve
Research Laboratory of Electronics—MIT

Cambridge, Mass.

THE STYLE of a programming language often has a great
influence on the approach that a programmer takes to a
particular problem. This is the Whorf hypothesis applied
to programming languages. Most programming languages
are general purpose in that anything that is programmable
can be programmed in them. But to the extent that
they differ, some programs are more easily expressed in
one language than in another. We do not consider here
the important considerations of the efficient use of com-
puter memory and running time, since these are more
related to the particular machine and compiler con-
figuration used than to the structure of the programming
language itself. We are more interested in factors of
pregramming convenience, brevity, fluency, legibility,
ease of learning, ease of checkout, etc., that are of more
direct concern to the programmer.

One of the most important characteristics of a language,
from the programmer’s point of view, is the method of
handling references to data, The machine instruction code
itself usually allows reference te data by numerical
address alone, although newer computers provide index
registers and indirect addressing. In any case, the
reference is usually to only a single register of the size
provided by the hardware. Assembly programs provide
conveniences like symbolic addressing and relative ad-
dressing, but reference is still to the individual register.
One of the most important conveniences of FORTRAN
and most other compilers is a method of referring to
whole arrays without having to mention explicitly the
address of each member of the array. Another important
convenience of most compilers is the facility of indicating
a computed address by writing an algebraic expression.
Local addressing, or the ability to use the same name to
refer to different data, is a convenience afforded by socme
systems: assembly programs provide heading features or
separate assembly and relocation; COBOL provides a
very convenient facility for this purpose by its system
of qualification.

One of the biggest advantages of list processing lan-
guages is the opportunity they afford to refer with one
name to a whole list, possibly also including many
sublists. The elements comprising the lists usually are
single registers; some may contain data and some may
contain information specifying the organization of or
interrelations between the data registers.

The reason why methods of data reference are so im-
portant for the style of a programming language is that
a programmer tends to think in terms of the items that
he can name in the language and manipulate.

It is in the area of data reference that the COMIT
language is much different from other programming
languages, COMIT was originally designed for convenient
handling of alphabetic data—English and foreign words
and sentences together with any temporary data nceded
for the operations of mechanical translation programs.
COMIT has turned out, however, to be convenient for a
number of other types of programs where the data are
essentially non-numerical in character.

42 o 1962 ACM National Conference

Moderator: E. T. Irons

Institute for Defense Analyses, Princeton, N.).

In COMIT, the items of reference are not computer
registers, but problem-oriented items of any convenient
size called constituents, A constituent may consist of any
number of characters; thus it could be used for a letter,
an English word of any lengh, or any other item of non-
numerical data. The programmer may refer to these con-
stituents directly, and so he does not have to take into
consideration the particular compuier word size. A con-
stituent may also carry, in addition to the data part, any
number of classificatory subscripts, and a numerical sub-
script useful for counting and simple arithmetic
computations.

COMIT is rich in its methods of data reference. It
includes several types of direct referencing, as well as
direct address referencing and indirect address refer-
encing, By direct referencing we mean the mention in
the program of some or all of the data characters or
classificatory subscripts. The desired data item or con-
stituent is found by a linear search through a defined
portion of the data. A fast alphabetic search is also
available for table or dictionary look-up.

A convenient and much-used method of reference
that is perhaps unique to COMIT is through context. It
is possible, for example, to refer to the data on the right
or on the left of a given item or to the data between
given items, This is possible because data in COMIT can
be conceived of as being arrayed along a one-dimensional
problem space, The programmer thinks in terms of this
problem-space and not in terms of computer registers.
He is free to insert and delete items from the problem
space without having to keep track of storage.

An example of the brevity and convenience that these
features provide is the following program for reading
an unknown amount of data, sorting it numerically, and
printing it out in numerical order.

SET-UP $ = A + MARK/.32787 // *RSKl *

INSERT $1 4 $ + $1I/G*1 = A + 2+ 1 4+ 3 // *RSK1
INSERT

PRINT A + $ + MARK — 2 // *WSM1 *

The first line initializes and reads in the first item. The
second line is a loop that inserts an item in its correct
numerical position and then reads in another item. The
last line cleans up and prints the results.

The potential range of application of the digital com-
puter is very wide. There is a wide diversity of problem
areas involving a wide wvariety of items and structures
to be referenced and manipulated. But computers are
still relatively small so that it is at present unfeasible
to supply all of the desirable features in one programming
language that would make it simultanecusly convenient
for all problems. It is probably impossible to design the
ideal general-purpose programming language because
each useful programming language must be a judicious
compromise between the various contradictory require-
ments of a problem area. The wider the problem area,
the more difficult the compromise. A halting of the trend
toward Babel through standardization would be disas-
trous. The continued development of new and especially
of novel programming languages is required for continued
progress—an¢d necessary for a fuller realization of the
potentialities of the digital computer.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800198.806097&domain=pdf&date_stamp=1962-09-01

