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Abstract 

A single server queue with feedback and multiple customer classes is analyzed. Arrival processes are 
independent Poisson processes. Each round of service is exponentially distributed. After receiving a 
round of service, a customer may depart or rejoin the end of the queue for more service. The number of 
rounds of service required by a customer is a random variable with a general distribution. Our main 
contribution is characterization of response time distributions for the customer classes. Our results 
generalize in some respects previous analyses of processor-sharing models. They also represent initial 
efforts to understand response time behavior along paths with loops in local balanced queueing networks. 

i. INTRODUCTION 

Many service facilities can be modeled as a feedback queue such as shown in Figure i. Of interest 

in this paper is a single-server queue with infinite waiting room and Q types of customers. The arrival 

process of type q customers is an independent Poisson process (q = i, 2, ... Q). Each new arrival joins 

the end of the queue. The customer at the head of the queue receives from the server a round of service, 

which is an independent exponentially distributed random variable with mean i/~ seconds. After receiving 

a round of service, a customer may depart or rejoin the end of the queue for more service. The number of 

rounds of service required by a type q customer is a random variable with a general probability distribu- 

tion {a (q) , r = i, 2, .. R} where a (q) is the probability of a type q customer requiring exactly r 
r "' r 

rounds of service. 

The queue length distribution of the above model is readily available since the feedback queue 

described is an open queueing network satisfying local balance [i]. The contribution of this paper is to 

characterize response time distributions of the different types of customers; specifically, we solved for 

the conditional response time distributions of an arbitrary customer requiring r rounds of service for 

r = i, 2, ..., R. 
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Relationship to prior work 

Our feedback queue model is like a time-sharing model with exponentially distributed service 

"quantumS." Time-sharing models were first studied by Kleinrock [2] who solved for the mean response 

time of a customer conditioning on his (total) service requirement. He considered two cases: (a) constant 

quantum size &, and (b) the limiting case of & ÷ 0 called processor-sharing. Customers are assumed to 

arrive according to a Poisson process. In case (a), the number of service quantums required by a customer 

is geometrically distributed. In case (b), the service requirements are characterized by an exponential 

distribution. (This is called the processor-sharing M/M/I queue.) Kleinrock's conditional mean response 

time result was later shown to hold for a processor-sharing M/G/I queue (i.e. service requirements 

characterized by a general distribution) as well by Sakata, Noguehi and Oizumi [3]. Higher order response 

time statistics are much harder to get. The response time distribution for the processor-sharing M/M/I 

queue was obtained by Coffman, Muntz, and Trotter [4]. The response time distribution for the constant 

quantum size case was obtained by Muntz [5] assuming exponentially distributed service requirements. 

Our feedback queue model is different from the time-sharing models in several respects. A round of 

service in our model, corresponding to a service quantum in time-sharing models, is exponentially 

distributed. Our model can be used, however, to approximate processor-sharing by making I/D very small 

relative to the mean service requirement. 

Aside from the quantum size assumption, our model is more general than those of [4,5] in two respects: 

(i) multiple types of customers, and (ii) the number of rounds of service for each customer type has a 

general probability distribution. Specifically, distributions of service requirements that are admissible 

in our model are those with moment generating functions of the form 

, R 
Bq(S) = ~ a (q) ( ~ ~r 

r= 1 r ~" (1) 

Our model is also different from the feedback queue model of Tak~cs [6]. In his model, each round 

of service can have a general distribution. However, he considered one type of customers only and the 

number of rounds of service required by a customer is geometrically distributed; in other words, after 

each round of service, a customer always departs with probability (l-p) and rejoins the end of the queue 

with probability p (memoryless behavior). 

The original motivation of this work stems from our efforts to characterize the response time in a 

network of queues. For a network of FCFS queues that satisfies local balance, J. Wong [7] found the 

response time distribution of customers traversing loop-free paths. Our results in this paper represent 

efforts to understand the response time behavior along paths with loops in the simplest form of queueing 

networks satisfying local balance. 

Assumptions and definitions 

Consider the following example of 2 types of customers. Type i customers arrive according to a 

Poisson process with rate ~i customers per second. The number of rounds of service required by a type 1 
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customer has the probability distribution 

a(1)_ { i/i00 r = i, 2 ..... i00 

r - 0 otherwise 

Type 2 customers arrive according to a Poisson process with rate e2 customers per second. The number of 

rounds of service required by a type 2 customer has the probability distribution 

a(2)_ g i/i0 r = i, 2 ..... i0 

r - ~ 0 otherwise 

Using the properties of Poisson processes, the above model is equivalent to the following model with i00 

types of customers. Type r customers (r = i, 2, ..., i00) require exactly r rounds of service and arrive 

according to a Poisson process with rate 

I 0.01~ 1 + 0.i~ 2 r = i, 2, ..., i0 

Yr = O'01el r = ii, 12, ..., i00 

0 otherwise 

We shall~ without any loss of generality, consider the following model. There are R types of 

customers. The arrival process of the r th type is Poisson at rate Yr customers per second. A type r 

customer requires exactly r rounds of service. It should be obvious that if we can derive response time 

distributions for this model, response time distributions for any model with Q customer types and service 

time requirements characterized by Eq. (i) can be easily obtained. 

t o 

Let t be the response time of attaining exactly r rounds of service; r = i, 2, R and obviously 
r . . . . . . . .  "'° 

= 0. We shall solve for its moment generating function 

, -st 
Tr(S) = E[e r] 

where E[.] denotes the expectation of the function of random variable(s) inside the brackets. 

We shall only consider steady-state results. For a single-server queue, stationarity is assured if 
R 

the traffic intensity p < I where p = [ Yr(r/~); see Cohen [8]. 
r=l 

Customers in the queue are differentiated into R different classes; class k consists of all those 

customers in the queue with exactly k more rounds of service to go, where k = i, 2, ..., R. 

Let us follow the progress of a "tagged" customer and introduce some more notation. Upon his initial 

arrival, the tagged customer finds n k class k customers in the queue (k = i, 2, ..., R). The system state 

thus found at an arrival instant is denoted by n = (nl, n2, ..., n R) and is described by the moment 

generating function 

* n I n 2 n R 
P (~) = E[z I z 2 .... z R ] 

where z is the shorthand notation for (Zl, z2, ,.., ZR). 

At the end of the tagged customer's r th round of service (given that he requires at least r rounds), 

let the system state at that instant be denoted by m(r)= (m~ r), m~ r), ..., 4 r)) where 4 r) is the number 

of customers who have exactly k more rounds of service to go. Define M (r)= ~ 4 r). 

k=l 
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In order to characterize Tr(S), we shall need to first characterize the joint distribution of 

t and m ( r )  w h i c h  i s  d e s c r i b e d  by 
r - 

, - s t  m~ r )  m~ r )  ml~r) 
Ur(S, z) = E[e rz I z 2 .... z R ] 

Summary. of results 

We d e r i v e d  a r e e u r s i v e  e q u a t i o n  r e l a t i n g  U r + l ( s ,  z_) t o  U r ( S ,  z)  [Lerrana 2 ] .  An e x p l i c i t  s o l u t i o n  o f  

Ur (S ,  z)  was f o u n d ,  f rom w h i c h  Tr (S)  was o b t a i n e d  [Theorem 1 ] .  We t h e n  p r o v e d  t h a t  t h e  s t a t i o n a r y  

d i s t r i b u t i o n  o f  m ( r ) ,  r = 1, 2, . . .  R, i s  t h e  same as t h a t  o f  n [Theorem 2 ] .  With  t h i s  r e s u l t ,  we s o l v e d  

f o r  t h e  mean v a l u e  o f  t [Theorem 3 ] ;  t h i s  l a s t  r e s u l t  i s  s i m i l a r  t o  t h e  mean r e s p o n s e  t i m e  r e s u l t  o f  
r 

p r o c e s s o r - s h a r i n g  m o d e l s .  We a l s o  o b t a i n e d  an e f f i c i e n t  r e c u r s i v e  a l g o r i t h m  to  c a l c u l a t e  t h e  s e c o n d  o r d e r  

s t a t i s t i c s  o f  t [Theorem 4 ] .  Some n u m e r i c a l  r e s u l t s  a r e  shown i n  S e c t i o n  3. 
r 

2. THE ANALYSIS 

Consider the system state n = (nl, n2, ..., nR) at arrival instants. 

of class k customers with exactly k more rounds of service to go. 

to the k th class is 

R 

Xk =i~ k Yi 

since any new arrival who requires at least k rounds of service must enter and leave the k th class 

exactly once. 

Lemma i. 

P(~) 

Recall that n k is the number 

The aggregate arrival rate of customers 

(2) 

The moment generating function of n is 

I-0 (3) 
R 

I -k~10kZk 

R 
where 0 k = Xk/~ and 0 = ~ 0 k. 

k=l 

Proof. Given Poisson arrival processes, the system state probabilities at an arrival instant are the same 

as system state probabilities at a random time instant [9]. With each round of service being exponentially 

distributed with the same mean (i/~), we have an open queueing network that satisfies local balance [i]. 

Eq. (3) has been obtained by Reiser and Kobayashi [i0]. (Q. E. D.) 

Since each round of service is exponentially distributed, it has the moment generating function 

* = ~ (4) B (S) S + 

A recursive solution of Ur(S , z) is next given. 

Lemma 2. 

U0(s , z) = e (z) (5) 

Ur+l(S , _z) = Yl(S,Z) Ur(S , •(s,_z)) r > 0 (6) 
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where 

y(s,z) = (Yl(S,Z), Y2(S,Z) ..... , YR(S,Z)), 

R 

Yl(S,Z) = B (s + ~ Yi(l - zi)), 
i=l 

and 

Yk(S,_Z) = Zk_ I Yl(S,Z) for 2 < k < R 

*(s, z) yield (5) at once. Proof. For r = O, t O = 0 and m (0)= _n. This and the definition of U r _ 

To show (6), consider the time period between t r and tr+ I during which the server served M(r)+ i 
R 

customers, where M (r) r~! = ~ r) and the extra one is for the tagged customer's (r + i) st round. During the 
k=l 

same time period, each class k customer became a class (k - i) customer where k = 2, 3, ... R. Furthermore, 

let ~(t) be the number of external new arrivals to class k during time t( = tr+l-tr) according to a 

Poisson process of rate Yk customers per second. We note that class R is an exception in that its 

(r+l) customers are all new arrivals. Thus, conditioning on t and m (r) we have mR r -- ' 

, -s(t+tr) m~r)+ Al(t) m~r)+ A2(t) ~(t) re(r) 
Ur+l(S, Z/tr, m (r)) = E[e z I z 2 ... z R /tr, _ ] 

-St R 4 r) Al(t) A2(t) RAR(t)/M(r) 
= e r(g Zk-I ) E[e -st z I z 2 .... z ]. 

k=2 

The last quantity on the right hand side is (Yl(S,z))M(r)+l because t is the sum of M(r)+- 1 independent 

identically distributed random variables with the moment generating function B (s). The above equation 

can be rewritten as 

, m(r) -st 
Ur+l(S, z/t r, _ ) = Yl(S,~) {e r 

m (r) m~ r) R ] k 

yl  (s ,z) ]I [Zk_ 1 y l  (s ,z)  
k=2 

Unconditioning on t and m (r) , (6) follows. (Q. E. D.) 
r 

Explicit solutions for U (s, z) and T (s) can now be shown. 
r 

* i- p r > 0 
Theorem i. (i) Ur(S , z) = R 

P~.(s) - ~ Qk,r(S)Zk 
k=l 

(7) 

where Pr(S) and Qk,r(S) are polynomials in s given by 

Pr(S) 

Ql,r (s) 

Q2,r (s) 

QR-I,r (s 

QR, r (s) 

s 
(i +7+ pl ) -z 0 0 ... 

yl/~ 0 1 0 

y2/v 0 0 I 

YR_I/P 0 0 ... 

yR/U 0 0 ... 

i 
0 

r . 

0" 1 

0 Pl 

0 P2 

0 

i 

0 

OR-] 

PR 

(8) 
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(ii) T$(s) = I - p R (9) 

Pr (s) -k~ I Qk,r (s) 

Proof• (i) Because of (3) and (5), (7) holds for r = 0 with P0(s) = i and 

Qk,0 (s) = Pk for i < k < R. Assuming that (7) holds for r, we use (6) and (4) to express Ur+l(S, z_) as 

follows. 

* i i - p 

Ur+l(S' i) = R Yi R-I 
l+S+~ 

-- ~--(l-zi) Ql,r (s) - [ Qk+l,r (s) z k 
P i=l Pr(S) - k=l 

I + (s/F) + 
i 1 (Yi/p)(l-zi) 

i - p 

{ (i + ~ + ~ )Pr (s) QI, r(s)} _R~I 7 k YR s _ [~_ Pr(S ) + Qk+l,r(S)]Zk _ ~_ZRPr(S) 
i=l k=l 

Thus, the form of (7) is maintained, and it is evident from the above that 

Pr+l (s) 

Ql,r+l (s) 

QR, r+l (s) 

s 
[i + 7 + Pl ) -i O . . . 

yI/P 0 i 

0 

yR/p ..... 0 

p 

0 Pr(S) 

Ql,r (s) 

0 

1 . 

0 7R,r(S! 

(io) 

The recursion in (i0) started at r = 0 clearly yields (8)• 

(ii) (9) follows from (7) and T*(s) = U*(s, i)" (Q. E. D.) r r 

For r = i, 2 and 3, we show Ur(S , ~) below• 

* 1 - p 
ul(s, A) = R 

s 
i + -~ -k ~=I PkZk 

* i- p 
U2(s, z)  = 

R 

~l(p s s 2 s -k (i + ~) + ~ Pl k + --2Yk) Zk 
P 

* s 3 ~,s.2 + s {~[(I+ ~) + ~--~lJ+[Pi+l ~ p] i UB(S, z) = (l-p)/{(l +~) + z~) Pl ~(P2+ 2Pl + Pl 2) _R~I s 2 s . . ÷Yi+is} z 
i=l 

YR s 2 s 
- ~-- [(i + ~) +--PllZR 

From the above, we obtain Tr(S) for r = i, 2 and 3 by letting z = 1 in Ur(S , z). 

* i- p 
TI(S) 

s 
(i+~) - p 

* i - p 
T2(s) s 2 (i +~) - p 
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* i - p 
T3(s ) = s 3+ s 2 

( i  + ~) p l (~)  - p 

We note that the solutions for Ur(S , _z) and Tr(S) become quite complex if one tries to solve for 

Pr(S) and Qk,r(S) explicitly using the matrix equation (8) when r ~ 4. In what follows, we turn our 

attention to finding the moments of $ . To do so, we need the following result concerning the 
r 

distribution of m (r) 

Theorem 2. For any r ~ 0, m(r) and n have the same stationary distribution. 

That is 
(r) ~r) (r) 

, m I m m R , 
Ur(O, ~) = E[Zl z 2 .... z R ] = p (~) (11) 

Proof. By (5), (ii) holds true for r = 0. Assume that (ii) holds true for some r so that 

Ur(0, ~) = P (~). By (3), (6) and the induction hypothesis, 

* l-p : l-p 
Ur+l(0' i) = Yl (0'!) " R 

i - I Pk Yk (0'~) i R~I 
k=l Yl (0'~) (Pl+k =I Pk+l Zk) 

l-p l-p = = 

R y_ R-1 : R 

1 +i=l ~ ~-z (l_zi) _ Pl -k~l pk+l z k i - ~ Pk Zk 
k=l  

* 

which i s  P ( z ) ,  The l a s t  e q u a l i t y  i s  o b t a i n e d  u s i n g  the  f o l l o w i n g  r e l a t i o n s h i p s :  

X k 
%1 R Yi and Pk = ~-- + Pk+l for i < k < R-I. 

Pl =~-=~I 1.= T 
(Q. E. D.) 

The moments of t 
r 

can be obtained from the moment generating function of t 
r 

8 n , 

E[trn] = (-i) n U (s, z) 1 
r as n s = 0, z :i 

~n , 
= (-i) n 

as n Ur(S,Z,Z .... ' z) l s = 0, z = 1 

Theorem 3. The conditional mean response time is 

r/~ 
E[tr] = i - p 

and m (r) as follows. 

(12) 

(13) 

The above theorem is proved by first expressing E[tr+l] in terms of E[tr] using (6), (11) and 

(12). (13) is then obtained by induction starting with E[to] = 0. (See [ii] for details of Proof.) 

Theorem 4. The second order statistics of the conditional response time can be found recursively using 

Var(tr+l ) = Var(tr ) + 1 - 2pr + 2 p2(l_p)2 ~ E[trM(r)] (14) 

.(r+Z) 1 R _. (r+l) 
E[tr+im J = ~ ~[tr+im i ] 

i=l 
(15) 
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and 

(r+l) ] 2Pi rYi Yi (r) 
+ - -  +-- E[trM(r)] + E[t r mi+ I] i< i< R (16) E [tr+im i J ~ (i-0) 2 p2 (l-p) 

(r)  ] 
where Var(tr) is the variance of t r and E[t r mR+ 1 is zero, with the initial condition 

Var(t0) = 0 

E[t0 m(0) 1 0 for I < i < R i J = 

The above theorem is proved by taking derivatives of (6), using the moment generating properties of 

transforms; (ii) and (13) are used to simplify the resulting expressions. (See [ii] for details of 

proof.) 

3. DISCUSSIONS AND NUMERICAL EXAMPLES 

The conditional mean response time result in Theorem 3 is analogous to results from analyses of a 

processor-sharing queue [2,3]. The mean response time 

r/~ 
E[tr] = l-p 

of a type r job varies linearly as its (expected) service requirement r/~. 

The contribution of this paper is the derivation of higher order statistics for the response times 

of different types of jobs; also the service requirements (in number of rounds of service) of each type 

of jobs can have a general probability distribution. 

By assuming that each round of service is exponentially distributed, the multi-class feedback queue 

considered is an open queueing network satisfying local balance. Each type of jobs corresponds to 

customers following a fixed path. The key idea in our solution approach is to develop a recursive 

relationship between the response time of a path and the response time of the same path extended by one 

more transition. 

To illustrate our results, we apply the recursive algorithm in Theorem 4 to calculate the standard 

deviation of t for the following two examples. 
r 

Example i. The service requirements of customers have a small coefficient of variation. 

of a customer requiring r rounds of service is 

a =~i/3 r = 19, 20, 21 

r ~0 otherwise 

Example 2. The service requirements of customers have a large coefficient of variation. 

of a customer requiring r rounds of service is 

80/99 r = i 
ar = 19/99 r = i00 

0 otherwise 

The standard deviation of t 
r 

for different values of r. 

The probability 

The probability 

is plotted versus p in Figures 2 and 3 for Examples I and 2 respectively, 
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For comparison, we have plotted two additional curves in Figures 2 and 3. One is the standard 

deviation of the response time versus p of an arbitrary job for our feedback queue (a round-robin system). 

The other is the standard deviation of the response time of an arbitrary job in a FCFS system (no 

feedback; a customer requiring r rounds of service gets all of them at the same time). 

In both examples, the FCFS system gives rise to a smaller standard deviation for the response time 

of an arbitrary customer than the round-robin system. 

In Figure 2, note that all customers require r=19,20 or 21 rounds of service. (The r=l and r=lO 

curves correspond to no customers.) Therefore, FCFS gives rise to a smaller standard deviation for the 

response time of all customers than round-robin. 

In Figure 3, the standard deviation of t for small values of r is smaller than the FCFS standard 
r 

deviation at the same P. The exact crossover point depends upon P. 
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Fig. 2. Standard deviation of response time 
versus p for service requirements 
with a small coefficient of variation. 
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