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Abstract 

We develop a method based on diffusion appro- 

ximations in order to compute, under some general 

conditions, the queue length distribution for a 

queue in a network. Applications to computer net- 

works and to time-sharing systems are presented. 

Introduction 

Though considerable progress has been made in 

obtaining exact solutions for large classes of 

queueing network models [I, 2] , one particularly 

simple type of network, an arbitrary network with 

first-come-first-served (FCFS) service discipline 

and general distribution function of service time 

at the servers, has proved to be resilient to all 

approaches except for approximate solution techni- 

ques. Here our attention is limited to this type 

of queueing network. 

Several approximation methods have been sug- 

gested for its treatment. On the one hand there 

are diffusion approximations [3, 4, 5] applicable 

to two-station networks or to general queueing 

networks [6, 7], and on the other hand we have 

iterative techniques [8]. The convergence of the 

latter to the exact solution is not an established 

fact and we know that th~ former tend, in certain 

simple cases, to the exact solution under heavy 

traffic assumptions. 

Although most of the work published in the li- 

terature has concentrated on evaluating the joint 

probability distribution of queue lengths for all 

the queues in a network, it is seldom possible to 

make use of this complete information. In measure- 

ments on computer systems it is difficult enough 

to collect data on the performance of a single re- 

source, and the measurement of joint data for seve- 

ral resources could become very time and space con- 

suming. The same can be said of simulation experi- 

ments where the task of estimating confidence inter- 

vals for estimated joint statistics becomes imprac- 

tical. Farthermore when it comes to computing ave- 

rage response times it suffices to know the average 

response time ancountered in each individual queue. 

Therefore it would suffice in most cases to be able 

to compute within satisfactory accuracy the proba- 

bility distribution for the queue length in each 

individual queue in the network. 

In this note we present an approximation method 

using a diffusion model to obtain the stationary 

probability of queue length of any given queue in 

an open or closed queueing network composed of FCFS 

service stations, each composed of a single server 

with general service time distribution. The method 

is applied to a simple example of interest and the 

model predictions are compared with simulation re- 

sults. 

The approximation technique we propose is ba- 

sed on assuming that the output from any queue in 

the network forms a renewal process. First consider 

the general network of Figure I in which : 

(i):external arrivals constitute a renewal process 

of rate k ; the variance of the interarrival time 
o 

is V . 
o 

(ii):the transition of customers form one station 

to another is defined by a first order Markov chain 

with transition matrix P=(Pij), Pij' I ~ i, j ~ n+1, 
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being the probability that a customer having ter- 

minated its service at station i then enters station 

j, or leaves the system when j = n+1 ; P is assumed 

to have a single absorbing state n+1. 

(iii) :the service times for successive customers at 

station i are independent and identically distribu- 

ted with common distribution function F (t) ; ser- 
1 

vice times are also independent from one station to 

the other. 

(iv) :customers first entering the network are direc- 

ted to station i with fixed probability Poi" 

Let ei, I <- i <- n, be the solution to the sys- 

tem of equations 

ei = Poi + ~ n I ejPji 

which is unique under the assumtions we have made. 

Then e. is the expected number of visits which a 
i 

customer of the network will make to station i. The 

arrival rate of customers to station i is then ke. 
i 

at steady-state ; also the steady-state probability 

u. that station i contains at least one customer is 
l 

given by 

k e. 
o l 

u. - if ke i < ~i where 

oo 

-I fO (t) = t dF i 

is the average service time for a customer at sta- 

tion i. These facts can be easily established rigo- 

rously ; one way is to treat an open network of this 

kind as a limiting case of a closed network when one 

station is saturated and to apply the work-rate 

theorem [9]. 

Diffusion approximation for a single queue 

In this section we briefly review some material 

on diffusion approximations which will ~e used in 

this paper [3, 4, 5]. 

Consid@r a queue with FCFS service and sup- 

pose that at time t = 0 a busy period of the queue 

begins. Interarrival times are independent and iden- 

tically distributed, of mean and variance k -I and 

V , respectively. Service times are independent of 
a 

interarrival times and of each other, and are iden- 

-I 
tically distributed with mean and variance '~ and 

V respectively. Let A(t), D(t) be the total number 
s 

of arrivals and departures up to time t, where t is 

some instant during the busy period beginning at 

t = O. Then for t large enough, A(t), D(t) will be 

approximately normally distributed with mean kt, ~t 

respectively, and variance k3Vat , ~3Vst , r e spec t i -  
ve ly .  Thus N(t), the number in queue at time t, will 

be approximately normal with mean (k-~)t and varian- 

ce (k3V + ~3Vs)t since N(t) = A(t) - D(t). Thus 
a 

N(t) may be approximated by a continuous random va- 

riable X(t) whose probability density function 

f(x, t) dx = Pr[x < X(t) < x + dx] 

satisfies, for X(t) > I the diffusion equation 

~_~_f bSf I 82f 
6t ~x+~ ~ - = 0  @x 2 

where b = ~ - ~, ~ = #V + ?V . For values of X(t) 
a s 

in [0, I] we follow the approach in [5]. Let P(t) 

be the probability that X(t) = 0. Then for X(t) on 

the non-negative real line we have 

~-'~f b @f I ~2f 
~t ~x +~ ~ --+ AP(t) 6(x-I) = 0 

8x 2 

dP(t) 
= - AP(t) + lira + -bf + ~ ~ ~ (I) 

dt 
x~0 

f(o) = o 

where the term containing the Dirac delta funtion 

6(x-I) in the first equation represents an arrival 

to the queue after an idle period of average dura- 

tion A -I . These equations are fully interpreted in 

[5]. Let us mention that they assume that the idle 

time is exponentially distributed with mean A -I ; 

this is not a restriction for our purposes for the 

following reason. It is shown in [10] that the 

steady-state solution to (1) is identical to the 

steady-state probability distribution obtained for 

a more elaborate version of (I) where the idle ti- 

me has the same mean A -I but obeys a general (dif- 

ferentiable) distribution function. The equilibrium 

(steady state) solution to (I) is 

=[R(e-Y-1)e Yx , x ~ I 

f(x) I 
R(1-e Yx) 0 < x I 

P(O) = 1 - A ~ I - R 
A + ~ - k 

2b 
where y =-~- ; the solution exists if Y < 0 as would 
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be expected, since it implies the k < ~. We set 

A = k since it is known that the steady-state proba- 

bility that the queue being modelled is empty is 

(I-k~-I). Thus the solution we adopt is : 

u(e-Y ~ ~ Y x  I -, /e , x ~ 1 
f(x) 

-~u (1 -eYX) , "  O <  x <  1 (2)  
%. 

-1 P(O) = l - u ,  u : x ~ .  

In section 4 we shall choose the parameters ~, 

b, k, ~, in (2) so as to approximate the behavior of 

a single queue in an open queueing network. 

The approach of Reiser and Kobayashi for queueing 

networks : In [6] Kobayashi proposed a ge- 

neralization to an open or closed queueing network 

of arbitrary topology of the results of Gaver and 

Shedler [4]. Kobayashi imposes reflecting boundaries 

to the n-dimensional diffusion process and arrives 

at an equilibrium joint distribution of queue lengths 

which is in product form. He introduces from queueing 

theory the probability of an empty queue for each 

queue to modify the solution of the diffusion eqUa- 

tion so as to obtain a more accurate representation 

of queue length distribution. Reiser and Kobayashi 

[7] have presented a simplified diffusion model 

which necessitates considerably less numerical com- 

putation for obtaining the model parameters but 

which leads to a comparable degree of accuracy. We 

briefly review here their approach. 

The squared coefficient of variation of the in- 

terarrival time to queue i is taken to be 
n 

K(i) = (ki)-I D [(Kj-I)Pji + 1]kjPji (3) 
j=0 

where k. = k e . ,  I _< j _< n, and K .  is the squared 
3 o j j 

coefficient of variation of the service time at 

queue j if j # 0 ; K = k 2V . An equilibrium queue 
o o o 

size distribution 

1-u if m. = 0 

Pifmi~,, = ]. 1 
m-I (4) 

ui(1_~i)^ 1 if m.> 1 Pi l-- 

is proposed for queue i where m. is the i-th queue's 
l 

length, and 

¥i 
Pi =e 

where 

2(~i-~ i) 
yi - (5) 

~iK(i)+~iKi 

The approximation proposed for the joint probability 

distribution is 
n 

p(m I ..... m n) = ~ Pi(mi) (6) 
1:I 

for the n queues in an open network. Obviously the 

result is valid only when k i < hi' I ~ i < n. 

For a closed network, the following treatment 

has been suggested in [7]. Suppose ~. is the utili- 
z 

zation of server i ; the joint probability distribu- 

tion is taken to be (for M customers in the network): 
n 

9(m I . . . . .  m n) = O' [ Pi(mi) (7) 
i=I 

where 

I 1-di, m i = 0 

Pi(mi) =I.^ , ^ ,^mi-1 (8) 

[ui<1-pi~p i , m i = I, 2 ..... M 

and G' is a normalizing constant. Several methods 

are suggested for choosing u.. The simplest seems 
l 

to be to assume that M is sufficiently large so that 

there exists a "bottle-neck" queue (say k) whose 

utilization is I. Then 

ni~ k 
~. - (9) 
l ~i 

where Hi, ~ are the equilibrium probabilities that 

a customer will be at station i, k, respectively. 

This is, of course, an application of the work-rate 

theorem [9]. 

This approach has some obvious shortcomings in 

certain cases. Consider for instance the sequence 

of two FCFS service stations shown on Figure 2. Sup- 

pose station I has constant service time and that 

arrivals to the system are Poisson of rate k. Assu- 

me also that we wanted to compute the queue length 

distribution at station 2 using (4). We would then 

have from (2) 

K (2) = i 

k 
using u I - . This would mean that we would be 

using a diffusion model for station 2 in which it 

is assumed that arrivals to station 2 are Poisson, 

which is only true when u I = 0. When u I is close 
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to I, which is when the diffusion approximation for 

station I works well, we have nearly constant inter- 
/ % 

arrival times to station 2 (K [2) s 0) which is very 

different from what the model predicts. 

Diffusion Approximation to the Behavior of a Single 

Queue in an Open Network 

The approach we develop in this section is ba- 

sed on the following assumption which in general is 

Unjustified : the departure process from any station 

in the open network is a renewal process, i.e. times 

between successive departures are independent and 

identically distributed. This assumption is valid 

in the open network with Poisson arrivals and expo- 

nentially distributed service times. It is also va- 
koei 

lid for the output of station i when - - >  I, or 

when all u. -~ O. Let Ci, I > i > n, be the squared 
3 

coefficient of variation of the interdeparture ti- 

mes at station i, and denote by A. the interarrival 
1 

the service time, by A. the idle time, time, by S i z 

and by ~. the interdeparture time° We shall define 
1 

C = K in order to maintain an uniform presenta- 
O O 

tion. 

Then for t large enough, and assuming that the 

output processes from each individual queue are in- 

dependent, the total number of arrivals to station 

i in the interval [0, t] will be normally distribu- 

ted with mean k t and variance 
1 

n 

D [(Cj-1)Pji + I] kjpjit (10) 
j=0 

Here we have used the fact that the sum of indepen- 

dent normal random variables is normal with varian- 

ce being the sum of individual variances. In the 

usual diffusion equations for approximating the 

length of queue i (equations (I)) the following pa- 

rameters will be chosen : 

tb i=~'i-~i' A i:x i 
n (~I) 

~iKi +D [(Cj-1)Pji + 1]kjPji 
j=0 

where the subscript i refers to the parameters of 

the equation for the i-th queue. The value of ~. 
l 

used by Reiser and Kobayashi (see (4) and (5)) is 
n 

~! = ~iKi +~ [(Kj-I)Pji + 1]kjPji z j=O 

In order to complete the development we must 

obtain Ci, I < i < n. We shall assume that ~. is a 
..... i 

service time S. with probability u or an interar- 
l 1 

rival time plus a service time A. + S. with proba- 
1 l 

bility (1-ui). We then have 

-1 -1 k -1 
E{~i } = ui~i + (1-ui)(ki -I + ~i ) = i 

as would be expected, and 

~,{-%2}=(ki-~)2(1+C i )  = ~ , {S i2 }+(1 -u i ) (E{A i  21 + 

+ 2ENi}E{si}) 

so that 

ki2E 2}+2ui )  C.1 + I = u.2(Ki+lm ) '+(1-u i ) (  {Ai (12) 

Finally we use (10) in the following manner ; we as- 

sume it is the variance of the number of arrivals 

in [O,t], for large t, of a renewal process. There- 

fore 
n 

[ ( C j - 1 ) P j i + l ] k j p j i  = k i 3 ( E { A i 2 l - ( k z  -1. )2) 
j=0 

and for I ~ i < n, taking 

n 

C i = u i 2 ( K i + l ) + ( 1 - u i ) [ 2 u i  + l+k i  -1 D [ ( C j - 1 ) P j i + l ]  
j=0 

kjpji ] - I (13) 

The values of the Ci, I < i< n, to be used in (11) 

are the solutions to the system of equations (13). 

In the case of a queueing network with expo- 

nentially distributed service times and Poisson ar- 

rivals, setting K = I we see that (13) has the uni- 
l 

que solution C. = I, I < i < n. In the case of the 
l 

example of Figure 2 we would have 

C1 = u12 + (1 -u l )  [2u 1 + 1 + k-1 .k] -1 = 1 - u12 

as the squared coefficient of variation of inter- 

arrival times to station 2, rather than the value 

K k2J = I which would have been obtained by the me- 

thod of Reiser and Kobayashi. 

Validation : Comparison with Theoretical Results 

Since there is no exact meihod of solution for 

the type of network considered in this paper, most 

of the material on validation of our approximation 

will be based on simulation results ; these will be 

presented in the next section. In this section we 

shall concentrate on comparing the few available 
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results on departure processes from queues in order 

to determine the conditions under which our choice 

for the squared coefficient of variation of inter- 

arrival times, given in the previous section, is of 

sufficient accuracy. 

As mentioned above, in the case of Poisson ex-o 

ternal arrivals and exponential service times at all 

stations our predictions for the ~i' I < i ~ n, 

from (13) are exact. It has been shown in [11, 12] 

that for FCFS service interdeparture times are ex- 

ponentially distributed only if interarrival times 

and servie times are exponential° 

- The output of an M/D/I queue has been exa- 

mined in considerable detail [13] so that all moments 

of the interdeparture time distribution are availa- 

ble. We may apply this information to the system of 

Figure 2 when arrivals to the first queue are 

Poisson and its service times are constant. For that 

case equation (13) predicts C I = 1-u~ for the depar- 

tures from the first queue ; the value obtained 

from Pack [13] is exactly the same. Thus squared 

coefficient of variation or interarrival times to 

2 
the second queue/~is 1-u I . The Neiser-Kobayashi [7] 

model predicts K ~yj = I for the same quantity. 

-- The output process of an M/G/I queue has 

been studied [14] by means of a Wiener-Hopf facto- 

risation to obtain the Laplace-Stieltjes transform 

of the interdeparture times distribution. In [15] 

the variance of interdeparture times has been com- 

puted explicitly for the system M/G/I/N, i.e. with 

finite population N ; the results of interest to us 

are obtained by setting ~. In this case too we 

are see that our predictions are exact. The varian- 

ce of interdeparture times from the first queue 

of the system in Figure 2 if service time is gene- 

ral and external arrivals are Poisson is comput@d 

from [15] as being [ (1 -~) /k  2 - .  + K1/P? ].  ; t h e  value 

C1/k 2 obtained from equation (13) is of exactly 

this value. 

Application to the Analysis of 

a Packet-Switching Network 

In this section we shall apply the new diffu- 

sion approximation method introduced in section 4 

to the analysis of the packet-switching sub-network 

CICALE of the computer network CYCLADES [16]. 

The CIGALE topology is shown on Figure 3 ; no- 

des A through G are minicomputers used for packet 

buffering and switching. The numbers on the arcs 

connecting the nodes refer to output queues ; thus 

3 refers to the queue which contains packets being 

transfered from node B to node ~, while 5 is the 

queue of packets proceeding in the opposite direc- 

tion. Traffic moving in the two opposite directions 

along an are is non-interfering. Each node receives 

external traffic at a rate of k. (i = A, B,...,G) 
l 

packets per second. We assume that a packet arriving 

from the outside of the network to any node i has 

equal probability of having any of the other six 

nodes as a final destination. A packet arriving at 

its final destination is instantaneously destroyed 

there. Packet routing is fixed and summarized in 

Table I. 

$ ~ r c e  Dest luat iou  Via Node 

C Y 

C F 

~,D B 

A,S ~ 

Table ] 

The routes which are not indicated on Table I 

are chosen by shortest line transit time ; this ti- 

me is 0.4 seconds for a packet on all lines but I, 2 

3, 5 which are faster (0.3 seconds for one packet). 

This assumes in fact that all packets are of the sa- 

me length (1000 bits). The assumption concerning fi- 

xed packet length is not realistic but was chosen 

because more realistic information was unavailable ; 

the same can be said about the assumption concerning 

the choice of destinations. The fixed routes are fair- 

ly realistic and so are the line transit times, and 

the order of magnitude of packet length. All queues 

are assumed to be of infinite capacity ; this is not 

the case in practice. 

The network can be represented as the queueing 

network of Figure 4 which is a special case of the 

one of Figure I. Service times at each queue are 

constant of value indicated on Figure 4. Routing 
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probabilities have been computed from the routing 

data given in Table I and in the text. We have assu- 

med, both in the simulations and the model that ex- 

ternal arrivals of packets to each node are Poisson 

for lack of more realistic information ; the arri- 

val rates (identical to those used in [17])are cho- 

sen from practical considerations. The model has 

been simulated in order to obtain the average 

length of each queue at equilibrium ; the simulation 

results are compared with the diffusion approxima- 

tion method introduced in Section 4, with the method 

of Reiser and Kobayashi [7] for the case where ex- 

ternal arrivals to each node are Poisson (for want 

of real data on traffic). The accuracy with which 

our method predicts average queue lengths is stri- 

king. Somewhat less accurate results are obtained 

by the approach of Reiser and Kobayashi, while the 

assumption of exponentially distributed transit ti- 

mes and the application of Jackson's [I] formula is 

the least acc ttrate approach. 

Queue 

% 

2 

4 
5 
6 
"? 

B 

9 

10  

11 

t 2  

13 

14 

Using diffusion 
expected queue length 
(~-P method) 

0,515 

1,040 

I~388 

G,346 

1,495 

1,862 

0.547 

1,155 

6,Z~4 

1,913 

0.491 
O, 257 

0,647 

o9312 

0,491 

1,913 

Average queue length 
by simulation 

0,530 

0,945 

0,340 
I~397 

1,903 

0,560 

1,273 

6,568 

RIO08 

O, 497 

0,351 

O, 658 

0,342 

0,506 

1,923 

Application to a Model of an Interactive System 

The model shown on Figure 5 represents an in- 

teractive computer system examined by Anderson and 

Sargent [18]. It was used by Reiser and Kobayashi 

[7] as an example to illustrate there approach ; we 

shall use their parameters in order to compare our 

approach to theirs. Jobs arrive to the system accor- 

ding a Poisson process of parameter N0. After passing 

through server I they leave the system with probabi- 

lity 1-e I or enter the queue of server 2 with pro- 

bability e I. Server I and 2 can be used to repre- 

sent a CPU and an I/0 device, respectively. 

Assuming ~0 = 0.5, e I = e 2 = 0.5 we obtain u- 

sing the method introduced in Section 4 the average 

queue lengths tabulated on Table 2(a-d) which we 

compare with the simulation and diffusion approxi- 

mation results in [7]. The results marked R-K cor- 

respond to the results of Reiser and Kobayashi, whi- 

le G-P indicates our approach. On Table 2(a) and 

(b) we see that the R-K or G-P results can be more 

accurate, depending on the parameters and the queue 

considered. The error in the G-P results never ex- 

ceeds 8 °/o, however, while that in the R-K model 

predictions can be as high as 15 °/o. The G-P ap- 

proach is applied to the network in which all ser- 

vers are exponential on Table 2(c) and (d) ; the 

error here never exceeds 5 °/o. 

Finally on Table 3 we apply our approach to 

the case where e 2 = 0 for constant service time at 

Server 2 and hyper-exponential service time at Ser- 

ver I ; N0' ~I are varied while ~2 is kept fixed at 

~2 = I. The squared coefficient of variation of ser- 

vice time at server I is kept at K I = 2, and our 

results are compared with the simulations carried 

out at IRIA by M. Badel. The accuracy of our re- 

sults is such that the error in average queue length 

never exceeds 8 %, and is mostly in the range of 

2 to 3 °/°. 

We give a comparison with the interactive com- 

puter system that may be modeled by the queueing 

system of Anderson and Sargent [18] represented on 

Figure 5. 

Let be the input exponential, with rate ~o = 0.5 

and e I = 0.5 and @ 2 = 0.5. So 

= % e l  = 1 / ( 1 - e l )  = k 1 

e 1 
x 2 = % e 2 = ( 1 _ e l )  ( 1 _ e 2 )  = 1 

The following set of parameters was chosen : 

Case I : Server I : 2 stage Erlang K I = 0.5 

Server 2 : Constant Service K 2 = 0 

,Case Z : Server I : Exponential K I = I 

Server 2 : Exponential K 2 = I 
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And for the two cases we take 2 values for ser- 

vice time 

A : ~I = 0.9 ~2 = 0.84 

B : ~I = 0.95 ~2 = 0.89 

We obtain the following tables of results for 

the average queue size. 

Case I-A : ~I = 0.9 C I = 0.5 ~2 = 0.84 K 2 = 0 

s l m a l a t i o n  

diffusion 
Relser and 
gobayashl  

e r r o r  of R-K 

d ~ f f u s i o n  G-P 

e r r o r  of G-P 

queue I queue  2 

6 , 8 4  

6 , 7 6  

1 ,3  g 

6 , 6 5  

2 , 5  Z 

3,22 

2 ,70 

15 g 

2,95 

8 i 

Tab le  2(a) 

~I : 0.95 K I = 0.5 ~2 = 0.89 K 2 = 0 

s i m u l a t i o n  

diffusion R-K 

e r r o r  R-K 

diffusion G-P 

e r r o r  G-P 

queue 1 queue 2 

13,3 

14,3  

7,5 g 

12,62 

5 Z 

T a b l e  2 ( b )  

4,5 

4 ,52 

I X 

4,39 

2 ,5  X 

Case II-A : ~I = 0.9 K I = I ~2 = 0.84 k 2 = I 

Using JacksonWs 
results 

diffusion G-P 

error G-P 

Case II-B : ~I 

queue I queue  2 

9 5,25 

9,46 5,3 

5 Z I 

T a b l e  2(c)  

= 0.95 K = I ~^ = 0.89 K 

R e s u l t s  ~ackson 

d i f f u s i o n  G-P 

e r r o r  G-P 

queue I queue 2 

19 

19 ,53  

2 , 5  Z 

9 

8,65 

3 ,5  Z 

g 

= 1 

T a b l e  2 ( d )  

We see that the error with the new method is 

always under 8 0/o. 

We compare now always with the same system but 

with 82 = 0. We take an hyperexponential service 

for server I and constant service for server 2. The 

simulations were done at IRIA by M. Badel we obtain 

the following results for the mean number of custo- 

mers : 

PO 

0.25 

0 .25 

0 .25 

0 .25 

o. 20 

0.20 

0.20 

O. 20 

0 . 1 5  

0 . 1 5  

0.15 

0 . 1 5  

0.8  

0.75 

0 .5  

0 .23 

0 .8  

0 .75 

0 .5  

0.25 

0 .8  

0.73 

0 .5  

0.25 

s l m u l a t i o n  

g I 

1 . 4 0  

} .33 

1 .05  

0 . 8 8  

1.21 

1 .18  

1 . 0 0  

0.89 

1.10 

1.09  

0.98 

0.91 

d l f f u l i o n  

E 2 E I E 2 

0 . 3 2  1.41 0 . 3 0  

0 . 3 2  1 .35  0 . 3 0  

0 . 3 1  1 .09  0 , 3 0  

0.31 0 .90  0 .30 

0 . 2 4  1 .25  0 . 2 3  

0 . 2 4  1 . 2 0  0 . 2 3  

0 . 2 4  I .OI 0 . 2 3  

0.24 0 .90  0.23 

O.18 1 .12  0.17 

0 . 1 8  1 . 1 0  0 . 1 7  

0 . 1 7  0.94 0.17 

0.17 0 .84 0.17 

Table 3 

I . 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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