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The theoretical aspects of operational analysis have been considered 
more extensively than matters of its application in practical 
situations. Since its relationships differ in their applicability, 
they must be considered separately when they are applied. In order to 
do this, the foundations of three such relationships are examined 
from an empirical point of view. 

To further demonstrate the intimate connection between da ta ,  
definitions, and performance models, the problem of measurement 
artifact is considered. 

1.0 Introduction 

A continuing discussion of 
operational analysis has appeared 
in the literature, most recently in 
[2]. For the most part, the 
theoretical structure of the 
methodology has received more 
attention than empirical matters. 
In the developments which follow, 
we consider the relationship of 
operational analysis to its applied 
environment. 

Our discussion weaves around three 
performance relationships that have 
been included in operational 
analysis as defined in [I]. These 
relationships have been named the 
interactive response time formula, 
the utilization law, and and the 
class of homogeneity assumptions. 
Together they provide a large part 
of the power offered by operational 
analysis. We then proceed to a 
brief discussion of the relative 
testability of operational and 
stochastic models. We conclude 
with a consideration of some of the 

consequences of artifact, the 
contamination of data by its 
measurement. 

2.0 Operational Analysis 

Operational analysis consists of 
relationships of different 
strengths and applicability. For 
this reason it is useful to 
consider them separately in 
practical applications. In the 
present treatment we will restrict 
ourselves to the interactive 
response time formula, the 
utilization law, and the class of 
homogeneity assumptions. The 
reader is assumed to be familiar 
with these. 

2.1 The Interactive Response Time 
Formula 

The interactive response time 
formula is an identity which may 
be applied to any collection of 
sets of real numbers. For our 
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purposes, we consider a finite 
collection of finite sets. When we 
construct an interpretation of 
these data, each element represents 
a value of time which forms both 
the beginning of one period 
(response or think) and the end of 
another. Each set can be 
associated with a class or source 
of work units--usually a terminal 
or initiator. In a sense, each 
timestamp represents a penetration 
of a theoretical system 
boumdary[3]. 

For each set we add and subtract 
all the timestamps from the elapsed 
time. We then can identify 
individual responses and think 
times by pairing the differences. 
By adding all such equations and 
carefully defining the mean think 
time and the mean response time, we 
arrive at the interactive response 
time formula. 

This development of the interactive 
response time formula is superior 
to direct application of Little's 
result when considering typeahead 
with negative think times. In 
addition, it illustrates the 
looseness of the connection to the 
measured system. 

Accuracy and precision are not 
issues at this point. In the 
derivation of the interactive 
response time formula we need only 
be concerned with the numbers 
themselves, not what they 
represent. By using different 
measurements of the same system at 
the same time, a new collection of 
real numbers may result which still 
follows the interactive formula. 
These new measurements could 
represent the reality of different 
measurement instrumentation. They 
could represent intrinsic 
variability or erroneous 
measurements. The interactive 
response time formula still holds 
because we have based the 

definitions of all external 
performance metrics on this single 
collection of sets of real numbers. 
There is no requirement for any 
connection to a specific system for 
the indentity to hold. 

In practice, the interactive 
response time formula is extremely 
useful. Its most immediate 
application is to check the 
internal consistency of a set of 
performance data. There have been 
many such data collection errors 
identified in the past. In 
performance prediction it can be 
used to rule out many impossible 
situations. But it is weak when 
used alone. 

It is a sign of both versatility 
and ~makness that data collected 
from any measurement instance must 
always satisfy this relationship. 
The predictive weakness follows 
because although any future 
measurement instance must also fall 
into line, the set of possible 
external metrics is not constrained 
in a very useful way. It is true, 
however, that sometimes 
inconsistent results can be ruled 
out. For example, we may have 
information on some of the 
variables in the formula. We then 
can make deductions with respect to 
the others. But in general, details 
regarding the structure of the 
system must be added in order to 
predict system behavior. 

2.2 The Utilization Law 

The utilization law differs from 
the interactive response time 
formula in both foundation and 
applicability. When supplied with 
an auxiliary assumption, it is 
probably the most widely applied 
performance prediction technique. 
The usual auxiliary assumption is 
that "no resource can be busier 
than all the time." Although this 



may seem axiomatic, when dealing 
with measured data one sometimes 
finds counter-examples arising from 
approximations and errors. 
Generally, though, a strong 
inequality is imposed on each 
measured utilization. These 
constraints a r e  then connected to 
the external performance metrics by 
assuming that the mean service time 
required per work unit can be 
predicted. This connection can 
often be made easily and reliably. 
We then have a strong statement 
about feasible behavior of the 
external performance metrics. In 
fact, these constraints force 
performance models which follow the 
conservation of work to fall into 
the same ballpark of accuracy. This 
is not to say that model accuracy 
is always sufficient for the 
objectives at hand. But it does 
explain somewhat, how the simplest 
models can deliver surprising 
accuracy. 

2.3 Homogeneity and Testability 

Assumptions of homogeneity provide 
another pathway to predictive 
power. When we use them we are led 
to the same predictions we find 
with the class of queuing network 
models with product form solutions. 
Unfortunately, it iJ most unlikely 
that such assumptions hold 
precisely in a given measurement 
instance. 

Also, it is known that this class 
of models is excellent in some 
applications, and inadequate in 
others. For example, experience 
from queuing network models 
indicates that homogeneity 
assumptions may be inappropriate 
when the physical memory of a 
system is overcommitted or when 
requests are blocked in an I/O 
subsystem. Therefore our deductions 
are weaker than those based on the 
relationships discussed above. The 

question then is what inaccuracy 
are we led to by assumptions of 
homogeneity. In a given situation, 
we may choose not to make such 
assertions. 

Let us turn briefly, now, to 
stochastic models. Surely, no 
measured computer system is an 
exact instance of a continuous time 
stochastic model. Finite precision 
and several other reasons argue 
otherwise. The question then, is 
how accurately can future 
measurements be predicted by the 
model. 

Even without assuming an overall 
stochastic mechanism to explain 
system behavior, it is useful to 
account for measurement variability 
by treating observations as random 
variables. We then have at our 
disposal powerful statistical 
methods such as Analysis of 
Variance and Regression Analysis 
[4]. 

When we test a stochastic model we 
determine if the observed results 
are predicted to represent a rare 
event. If so, the model is 
discarded. If not, we say that the 
data do not contradict the 
assumptions used in building the 
model. We do not prove that the 
model exactly represents the real 
system. The model can achieve 
credibility only as it is used. We 
must quantify both accuracy and 
domain of usability. 

The testability advantage of the 
homogeneity assumptions is a moot 
point. In principle, we can test 
the assumptions by measurement, but 
in practice massive amounts of data 
must be collected--thereby per- 
turbing the system. 

We must keep in mind that we are 
trying to predict performance. When 
applied in performance prediction, 
we can test ,  in pr inc ip le ,  

17 



18 

assumptions such as homogeneity if 
we have access to a real system. 
But even if we can confirm them in 
an existing environment, we still 
must reassert them in the untested 
environment. 

Just as the existence of a 
stochastic mechanism is never 
proved empirically, the confirma- 
tion of homogeneity in one 
measurement instance does not prove 
that it will occur in any other, 
including a replication of the 
first. Even in operational analysis 
these generalizations are 
inductive. Once we have made or 
extended an assumption of 
invarianee or homogeneity we may 
proceed deductively in the 
predicted environment. 

As far as proving the existence of 
a specific mechanism in the real 
system, neither modelling approach 
is testable. Credibility is 
established only by successful 
application. 

3.0 Artifact 

There is a surprising degree of 
lattitude that exists when 
measurement instrumentation is 
implemented. What was thought to 
be a well-defined theoretical 
entity often leads to a choice of 
several implementations -- none of 
which is exactly what is desired. 

This situation arises both from the 
realities of data collection and 
from a mismatch between the 
theoretical model and the real 
system. For example, finite 
buffering, approximations, measure- 
ment overhead, output device 
limitations, and design errors, are 
properties of data collection which 
may modify the data itself. Time 
sequences and the system's 
resistance to measurement, perhaps 
due to interrupt disablement, can 

force the instrumentation to 
compromise the data being 
collected. One example is that 
many accounting measurement 
routines cannot charge the 
interrupt handling overhead of the 
system to the proper account 
because of the intolerable overhead 
that would be required. The result 
is that without applying a crude 
correction factor, the resource 
time accounted-for falls far short 
of that actually used. Clearly, the 
data actually delivered to the 
model are products of both system 
and instrumentation. 

There are two different remedies to 
the corruption of data by the 
instrumentation. We can remove the 
artifact and leave the model 
unchanged, or we can redefine our 
performance metrics and modify the 
model to account for the artifact. 
These alternatives are represented 
in figure I. In figure IA we have 
the uncorrected situation. The 
instrumentation gets in the way so 
that we cannot see the system as it 
really exists. Figure IB shows our 
first alternative. We apply 
artifact corrections to the data 
and deliver the transformed data to 
the original model. This approach 
may be preferable when internal 
metrics like utilizations are 
measured. The objective is to 
return to a characterization of the 
original system boundary as closely 
as possible. In practice, known 
synthetic workloads and independent 
measurements are useful in the 
quantification of artifact. 

The second approach is represented 
in figure IC. Here we create a new 
model with redefined performance 
metrics. In this case, the 
• realities of measurement are 
included in the performance model. 
We have expanded the theoretical 
extent of the system leading to a 
different definition of performance 
metrics. As discussed above, this 
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presents no problem with respect to 
the applicability of operational 
relationships. Although the new 
metrics are different from the old, 
they preserve their internal 
consistency. This redefinition of 
extent may be preferable to 
artifact removal when external 
performance metrics like response 
times and think times are measured. 

[4] Cox, S. W., "Performance 
Constraints from Regression 
Analysis", Proc CMG XI, 1980, pp. 
75-85. 

4.0 Conclusions 

Operational analysis is not a 
completely unified structure. The 
major relationships within it have 
varying strengths and 
applicability. Because of this we 
must consider them separately when 
we apply them. 

From an empirical point of view we 
cannot separate our understanding 
of system behavior from the 
measurements by which we achieve 
that understanding. Regardless of 
the modelling approach, we do not 
study the system independently of 
the measured data. In fact, it is 
often desirable to adjust our 
definitions and models to reflect 
the realities of measurement. 
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