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Summary. In the present survey an out- 
line is given of certain recent as well as 
earlier developments in the use of electro- 
nic high-speed computers in algebraic number 
theory. 

Introduction 

The basic task of providing non-trivial 
numerical examples in algebraic number theo- 
ry frequently requires the aid of an elec- 
tronic computer. Such examples serve various 
purposes such as to illustrate known theorems 
or, in many cases, to make up or support con- 
jectures which may finally lead to new theo- 
rems. However, it is often far from easy to 
devise algorithms which are capable of being 
converted into effective computer programs. 
Efforts to invent such algorithms frequently 
yield as by-products new theoretical fin- 
dings which are also per se of interest (see 
e.g. [2~, ~ ) .  

This survey is aimed at sketching by 
means of selected topics what has been done 
toward these directions. The treatment of 
the subject matter is not strictly confined 
to investigations involving the computer but 
rather includes also some researches devoted 
to general computational problems. 

The ten sections of this report are only 
loosely connected. The bibliography is, of 
course, by no means complete but further 
references may often be found in the papers 
quoted. Some of the papers included in the 
bibliography are unpublished manuscripts. 

I wish to take this occasion to express 
my gratitude to those authors who made their 
manuscripts available to me. 

I. Finite fields 

For many number-theoretic applications 
it is of significance that finite fields can 
be constructively handled. Computing in a 
finite prime field GF(p) means simply carry- 
ing out the four rational operations in inte- 
gers modulo p. If, by induction, the Galois 

field GF(q) with q = pm elements is construc- 

tively known its overfield GF(q n) can be con- 
structed by producing an irreducible polyno- 
mial of degree n over GF(q) such that a root 

b yields a basis 1,b,...,b n-1 over GF(q) or, 
more generally, by exhibiting a basis al,a2, 

...,a n of GF(q n) over GF(q) together with a 

multiplication table (cf. [11,[~,[q~,[5~,[6~, 
~for the former, and[2~,[2~,[78]for the 
latter). In Section 3 we shall show in grea- 
ter generality how to find b if a basis a 1, 
a2,...,a n is given. 

Regarding the multiplicative structure 

of GF(pn), a primitive root, i.e. a genera- 

tor of the multiplicative group of GF(pn), 
is to be determined[2~ This task is solved 

by Gauss' method[7~. 

2. Factorization of polynomials 

Procedures for factoring polynomials 
over a finite prime field GF(p) are useful 
in many regards such as, for instance, the 
construction of finite extensions of GF(p) 
(cf. Section 1), the factorization of poly- 
nomials over the ring of all rational inte- 
gers, ~, (see[8~), or the decomposition of 
prime numbers p in finite algebraic number 

To reduce, whenever it is possible, the 
task of factoring a monic separable polyno- 
mial f(x) of degree n over GF(p) to that of 
factoring a polynomial of lower degree one 
makes use of the fact that an irreducible 
factor of degree m of f(x) over GF(p) must 

divide the polynomial xP m - x over GF(p). 
Accordingly, Kempfert[59]suggested to com- 
pute the greatest common divisors over GF(p) 

i n] 
(f(x), x p - x) for i = I,...,[~ . 

However, this process need not yield a proper 
factor of f(x) let alone the complete facto- 
rization of f(x) over GF(p). To obtain the 
complete factorization, an algorithm of Ber- 
lekamp[4]may be applied which essentially 
amounts to the calculation of the null-space 
of a certain matrix. This algorithm, consi- 
sting of several g.c.d.-processes, is very 
efficient for small primes p (or, more gene- 
rally, small powers of p). The null-space 
approach was replaced with a different expli- 
cit construction by Mc Eliece[47~ For large 
primes p, however, the algorithm has to be 
modified in order to retain efficiency. Mo- 
dified versions, which then also permit to 
factor polynomials over GF(q) with large 

p-powers ° = pm are due to Berlekamp[~,[6] 
and Zasse£haus[Sj. 

In general more difficult is the problem 
of factoring a monic separable polynomial 
f(x) of degree n over Z. If C is the maximal 
absolute value attaine~ by the coefficients 
of f(x), the coefficients of a factor g(x) = 

x m + b~x m-1 + ... + b m satisfy the inequali- 

ties Ibjl ~ (~)(C + 1) j (j = 1 ..... m). 

If these bounds are not too large for m{[~] 

the factorization of f(x) over Z can be ac- 
complished by picking a prime p--which is 
greater than the maximal bound and by facto- 
ring then f(x) over GF(p). If need be, this 
process is to be repeated for some more 
suitably chosen p (cf.[4~). 

Zassenhaus[81]turned Hensel's Lemma into 
an effective routine for factoring polyno- 
mials f(x) over Z. Instead of a large prime, 
any prime p not [ividing the discriminant 
d(f) is chosen and a decomposition of f(x) 

into two monic factors modulo pl~] is pro- 
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duced. Clearly, f(x) is irreducible over Z 
if it has no proper decomposition modulo 
p~[x3 • Otherwise the decomposition modulo 
p~Kx3 is lifted to a modulus which involves 
a higher power of p, proceeding inductively 
from 

f(x) ~ fl(x)f2(x) mod pr~[x] 

to 

f(x) ~ f~(x)f~(x) mod p2rz[x]. 

Since this way the p-power contained in the 
modulus will rapidly approach the magnitude 
of the above-mentioned bounds it will be 
possible for a suitable p-power, say the 
s-th power of p, to decide whether or not 

the decomposition of f(x) modulo pSZ'[x3 
gives rise to a decomposition of f(~) over ~. 
This process is to be repeated for all pos- 
sible decompositions of f(x) into two monic 
factors modulo p~3. To obtain the complete 
factorization of f(x) over Z the procedure 
has to be carried on recurs[vely for each of 
the two factors of f(x) over Z which resul- 
ted from the first step. The Weakness of this 
routine becomes apparent when f(x) has way 
more factors modulo pZ[x3 for the prime p 
chosen than it has over Z itself. As for the 
details of this algorithm, we refer to the 
papers~l](in which different bounds for the 
coefficients of factors are used) and ~. 

A thorough discussion of effectiveness 
questions regarding the factorization of 
polynomials and other procedures related to 
field theory was carried through by FrShlich 
and Shepherdson @7]j[2~). 

~. Field extensions 

(a) Primitive elements. For finite 
fields k, the question of constructing fini- 
te extensions K of k was already dealt with 
in Section 1. 

Let now k be an arbitrary constructively 
accessible field and K/k a finite separable 
extension of degree n. It is known that 
there exists a primitive element bE K such 
that K = k(b). Given a basis al,...,a n of 

K/k, a primitive element b for K/k can be 
found by a trial-and-error method, forming 

randomly linear combinations~ n i=~ eiai with 

e i = 0 or 1 until a primitive element turns 

up. Sonn and Zassenhaus[60]who proposed this 
method showed that it is bound to work. In 
fact, the probability to catch this way a 
primitive element b for K/k is at worst 

n - 1 
1 - 2n ~ , a number which approaches ~ as 

n tends to infinity. 

(b) Tschirnhausen transformations. The 
p-adic method used for factoring polynomials 
over Z (Section 2) was also successfully em- 
ploye~ by Zassenhaus and Liang[80]to answer 
the following questions Hasse[3~]brought up. 
Let f(x), f'(x) be two polynomials over 
having the real roots b, b'respectively. Sup- 
pose that f(x) and f'(x) are irreducible of 
degree n over the rational number field 2- 
How to decide whether or not b and b'genera- 
te the same field extension over 2, and, if 
the answer is affirmative, how to find a 
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Tschirnhausen transformation expressing b 
and b'in terms of one another? The solution 
of this problem allows at the same time to 
exhibit a generating element of the cyclic 
Galois group G(K/k) of the extension K = k(b) 
generated by b over a certain quadratic 
field k over ~. This answers another question 
posed by Hasse[3~. Both questions play a part 
in the construction of the class field K to 
the quadratic number field k = !(~_z~?) (see 
Section 9). 

(c) Real root calculus. If k is an or- 
dered field (e.g., k = ~) in which the four 
rational operations and, for every field el~ 
ment, the sign determination can be constru~ 
tively performed the question arises of how 
to do the same in an ordered extension K of 
k obtained by adjoining to k the real roots 
(in a real closed algebraic extension of k) 
of a separable polynomial f(x) over k. To 
this end the real roots of f(x) are to be 
numbered by increasing magnitude such that 
every root is uniquely determined by its in- 
dex. The question can then be reduced to the 
case of a simple extension since K/k may be 
broken up into a chain of simple extensions 
by successively adjoining to k the real 
roots of f(x). An affirmative answer to the 
question, based in part on a constructive 
proof of Sturm's Theorem, was given by Holl- 
kott[35]in his doctoral thesis. Subsequently 
Zassenhaus[82]and Kempfert[5$]adapted Holl- 
kott's methods for a computer program called 
"real root calculus" in which the rational 
operations and the sign determination are 
performed in certain real algebraic number 
fields. 

4. Galois Groups 

The problem to be discussed here is how 
to construct the Galois group of the split- 
ting field of a given equation over the ra- 
tional number field ~ and, conversely, how 
to realize certain given groups as Galois 
groups of equations over ~. 

As to the latter question, Trinks[?2] 
verified by the aid of a computer program 
that G168 = PSL(3,GF(2)), the simple group 

of order 168, is materialized as the Galois 
group of the splitting field of the equation 

x 7 - ?x + 3 = 0 over 2- Rowlinson and 
Schwerdtfeger[54]proceed along similar lines 
in a paper in which they discuss the problem 
of finding polynomials whose Galois groups 
satisfy certain prescribed conditions. 

Regarding the first question, an attempt 
to determine the Galois group of a given mo- 
nic separable polynomial f(x) was made by 
Zassenhaus[7?]under the supposition that it 
is possible to decide whether or not the po- 
lynomial f(x) has a root in ~ and, in case 
the answer is affirmative, to exhibit one. 
However, the method cannot be used on a com- 
puter since it is inefficient. 

A more practicable approach to the pro- 
blem relies on an idea of van der Waerden. 
Here, the cycle decomposition patterns of 
elements of the Galois group (as permutation 
~roup) are sampled by looking at the polyno- 
mial f(x) modulo p~[x] for several suitably 
chosen primes p. This way some information 
on the type of the Galois group of f(x) as a 



subgroup of the symmetric group on n letters 
~n can be derived, where n is the degree of 

f(x). The method, if further extended by 
virtue of ~ebotarev's Density Theorem, 
allows a complete determination of the 
Galois groups of polynomials f(x) over ~ of 
degrees up to n = 8. D. Smeltzer, a student 
of Zassenhaus, is working on a corresponding 
computer program. The van der Waerden method 
was already successfully applied by Cockayne 
5]to isolate some elements of the Galois 

groups of various polynomials over ~. 

5. Continued fractions 

Continued fractions offer a wide field 
for computer-assisted computations. Quadra- 
tic irrationalities possess the simplest 
continued fraction expansions since for them 
the partial quotients become periodic. They 
play an important role in unit determination 
and class number computation for real qua- 
dratic number fields (Sections 7, 8). 

It is also not too difficult to compute 
the simple continued fraction expansion of 
an irrational algebraic number that is the 
only real root of an equation with rational 
integral coefficients[4~. Zassenhaus[7~ de- 
vised a method of dealing with real algebra- 
ic irrationalities which are the roots of 
equations over Z having more than one real 
root. The main ~ifficulty to be overcome 
here is that of keeping apart the distinct 
real roots of the equation in question. Re- 
cently, D. Cantor, P. Galyean and this ([84]) 
autho9 showed how one can cope with this 
difficulty. The Zassenhaus algorithm has 
been programmed by Smith[5~. 

A peculiar phenomenon was discovered by 
Brillhart and his student Morrison. In the 
simple continued fraction expansion of the 
real root of certain cubic equations as, for 

example, x 3 - 8x - 10 = O, among mostly 
small partial quotients there occur also 
very large ones. Stark[62]showed that this 
phenomenon can be explained by means of the 
theory of modular functions. It has, roughly 
speaking, something to do with the fact that 

x 3 - 8x -10 = 0 has the discriminant -4.163 
and that the quadratic field ~(~--163) posse- 
sses the class number one (see Section 8), 
an observation that was made by D.H. Lehmer. 

Extensive investigations were carried 
through by Bernstein regarding the question 
of when the Jacobi-Perron algorithm for the 
generalized continued fraction expansion in- 
volving a basis al,...,a n of an algebraic 

number field K/~ of degree n becomes perio- 
dic. In case periodicity occurs the algo- 
rithm yields a unit of K. Elsner and Hasse 
[2Mused a computer to detect new periodicity 
c a s e s .  

C o n t i n u e d  f r a c t i o n  d e v e l o p m e n t s  o t h e r  
t h a n  s i m p l e  o n e s  o f  r e a l  q u a d r a t i c  i r r a t i o -  
n a l s  h a v e  b e e n  compu ted  by E. F r a n k ~ 2 ~ .  

6. Modules and orders 

(a) Sum and intersection of modules. Let 
M,N be two Z-modules of rank r generated by 
a finite nu[ber, say m,n, respectively, of 
r-columns over ~. A simple algorithm for 

determining the sum J = M + N and intersec- 
tion I = M n N  of the two given Z-modules 
was found independently by Cant~r DY]and by 
Zassenhaus[7~. M and N can be represented 
by an rxm matrix A and an r×n matrix B over 

respectively. If we then transform the 
2r×(m+n) matrix 

I into lower diagonal form 
O Y 

by employing elementary column operations, 
the sum J and intersection I are represented 
by the matrices X and Y respectively. This 
algorithm can be used for solving systems of 
linear Diophantine equations over Z or for 
determining ideals in Z[x] generated by a 
finite number of polyn[mials f1(x),...,fs(X ). 

(b) Embeddin G of an order into a maximal 
order. Given a finite-dimensional commutati" 
De algebra A over ~ and an order o in A it 
is our aim to determine the maxim[l crier 0 
of ~ containing £. All orders in ~ are to ~e 
expressed in terms of a basis al,...,a r of 

over ~. That aim cannot effectively be rea- 
ched by a search procedure which finds 0 
among all (finitely many) orders betwee[ o 
and d'2, where d'is the inverse of the di[- 
criminant d of o. Zassenhaus[7~,[76] sugges- 
ted to construct instead by induction a chain 
of orders 

oil ¢ ...C£m c £m+IC'''c 
utilizing the following fact. Suppose that 
~m ~ i" Then there is a prime p whose square 

divides the discriminant d m of ~m" Moreover, 

the p-radical ~p,m defined by ~p,m = {xE £m/ 
x mod P[m is nilpotent} then gives rise to a 

bigger order £m+I if one takes ~m+1 to be 

the quotient module ~p,m/Rp,m . As soon as an 

intermediary order ~n is found with no prime 

p such that pY/d n the maximal order ~ = £n 

is reached. 

This construction is of particular inte- 
rest in case A = K is a finite algebraic 
number field over ~ since it facilitates the 
determination of the ring of algebraic inte- 
gers ~ in K. 

(c) Fractional ideals in an order. Let 
designate an order in an algebraic number 
field k of finite degree n over ~. Gauss dis- 
covered (in a different form) that, for an 
order o in a quadratic number field k (n = 2~ 
every Tractional ideal of o is invertible in 
the semigroup of all fractional ideals of o. 
On the other hand, Dedekind was aware of tie 
fact that this result does not remain true 
if one considers orders 2 in algebraic num- 
ber fields k of degree n) 2 over ~. It is 
therefore natural to ask how the result for 
n = 2 can be generalized for n> 2. 

Based on some numerical evidence provi- 
ded by a computer the three authors of[2~,~ 
conjectured that in the general case of an 
order R in an algebraic number field k of 
degree n over ~ the (n - 1)-st power and all 
higher powers of every fractional ideal of o 
are invertible in the semigroup of all frac: 
tional ideals of o. This conjecture was in 
fact proven in[22~ In connection with it many 
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other interesting results on ideals in 
were obtained. 

7- Units in alsebraic number fields 

The problem to be dealt with here is, in 
accordance with Dirichlet's Unit Theorem, 
that of determining for a given algebraic 
number field K of degree n over ~ a system 
of r I + r 2 - I fundamental units of K, where 

r I is the number of real and 2r 2 the number 

of complex conjugate fields of K. Any such 
system consists of independent units that 
generate the whole unit group modulo the 
subgroup of the roots of unity in K. 

Basically, the following procedure 
yields a system of fundamental units of K in 
a finite number of steps. Employing Minkows- 
ki's theorem on linear forms one constructs 
a sequence ci,c2,.., of integral elements of 

K satisfying the conditions 

l~(ci)l&lu~} , (i = 1,2,...) (I) 

L(c I) < L(c2)< .... (2) 
where d is the discriminant of K/~ and N the 
norm relative to K/~, while L designates a 
certain linear form involving the logarithms 
of the absolute values of c i and its conju- 

gates. Because of condition (1), the sequen- 
ce ci,c2,.., contains only a finite number 

of prime factors (that i~ of prime ideals 
dividing ci,c2,...). Therefore, there are 

infinitely many indices i,j such that ci/c j 

is a unit of K. Condition (2) then makes it 
possible to construct independent units. 
From them fundamental units in K can be de- 
rived. 

For a quadratic number field K = ~(3fd) 
with discriminant d, an integral element 

x + $~d is a unit if and only if N(u) 
u = 2 
= +1, that is, if and only if the rational 
~in~egral components x, y of u satisfy the 

so-called Pell equation x 2 - dy 2 = ±#. 

Imaginary quadratic number fields K = 
~(-~-d) (i.e. d< O) have no units aside from 
roots of unity, and the latter are easily 
determined from Pell's equation. If d<-4, 
then +1 are the only roots of unity in K. 

A real quadratic field K = ~('Vrd) (i.e. 
d>O) possesses a unique fundamental unit 
e >I. The unit e can be calculated by sol- 
ving Pell's equation. To this end one needs, 
in general, to apply the continued fraction 
algorithm (Section 5) to'~-d. For a table of 
fundamental units in certain K's we refer to 
Ince[3j. 

In a totally real cubic number field K 
two fundamental units el, e 2 generate the 

infinite part of the unit group. Billevi~[J, 
~]followed essentially the general method in- 
dicated above to determine two fundamental 
units of K, thereby at the same time impro- 
ving Voronoi's Algorithm (cf.[7~). Another 
approach to the unit calculation in totally 
real cubic fields K was proposed by Godwin 
~who employed quadratic expressions rather 
than linear forms L. 

In a cyclic cubic number field K one 

fundamental unit and one of its conjugates 
generate the unit group modulo roots of uni- 
ty. Cohn and Gorn[17]computed such a funda- 
mental unit for several cyclic cubic K's. 

A table of the fundamental unit e of the 

cubic fields K = ~(~) generated by the real 
cube root of the cube-free intergers m in the 
interval 50 6 m~100 was produced by Selmer 

Cohn ~ showed how the information avai- 
lable on fundamental units of real quadratic 
fields can be utilized to construct systems 
of fundamental units in composite real quar- 
tic and octic number fields. 

In an earlier paper[32]Hasse had deve- 
loped an algorithm for finding systems of 
fundamental units in cyclic cubic and biqua- 
dratic number fields. His methods, exploiting 
results from the analytic theory of numbers, 
were generalized by Leopoldt[41],[4~to the 
case of an arbitrary abelian number field K. 

More recently, Billevi~ DO]extended his 
above-mentioned algorithm to arbitrary alge- 
braic number fields K of degree n over ~. 

8. Class numbers of algebraic number fields 

The classical proof of the theorem on the 
finiteness of the class number h for a finite 
algebraic number field K of degree n over 
furnishes at the same time also one possible 
rational procedure for calculating h. It de- 
pends upon the existence of a positive (real) 
constant B, the so-called Minkowski bound, 
such that every ideal class of K contains an 
integral ideal a whose norm satisfies the in- 
equality N(~)~ ~. Explicitly, Minkowski ob- 
tained for B the general expression 

:% r2  Wdt B .~. n' 

where r 2 i~ defined as in Section 7 and d de- 

notes the discriminant of K/~. The task of 
computing h then amounts to setting up a com- 
plete system of inequivalent integral ideals 
a of K (cf.[~) for which it is enough to con- 
~ider only those finitely many !'s with the 
norm condition N(!)$ B. 

As a different powerful tool for compu- 
ting h we mention the analytic class number 
formula. 

It is obvious that any improvement on the 
bound B will make the procedure more effec- 
tive. This can in particular be achieved for 
quadratic number fields (see[$~). Recently 
Newman [5~ and Ordman[51] established class 
number tables for quadratic fields K = ~(~d), 
where d ranges over certain negative prime 
discriminants. ~iso very useful are the tab- 
les Schaffstein[5~and Ince[36]published 
about 40 years ago. 

A statistical study carried through by 
Leopoldt[43]shows a deviation of the compu- 
ted number from the expected number of ima- 
ginary quadratic number fields K= ~(~Fd) with 
prime discriminants d = -p (where p m -I 
(modd); p< 498,000) whose class number h(d) 
is divisible by a given number m. 

For a long time it had been an open que- 
stion whether Gauss' conjecture is true that 
there are only finitely many imaginary 
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quadratic fields K = ~(q-m) with class number 
one. Gauss himself already verified by means 
of his theory of reduced quadratic forms 
that the fields K with m = -I,-2,-3,-7,-11, 
-19,-43,-67,-163 possess class number one. 
Following up the contributions of several 
authors to the question if these fields are 
the only ones having class number unity, 
Heegner (see[6~) in 1952 eventually supplied 
the missing link for a complete affirmative 
answer to that question. 

Class numbers of totally real cubic num- 
ber fields K were computed by Godwin[3~ who 
applied the same device he had already suc- 
cessfully used for unit calculations[3~. 
Godwin listed all those cubic fields K of an 
earlier table[2~which have a discriminant 
d< 20,oo0 and whose class number h is 1,2,3, 
or 4. 

Larger class numbers turned up for some 
pure cubic fields K = ~(~). Specifically, 
Cassels~ found via the algebraic approach 
the class number h = 12 for the real field 

K = ~(~3), and Cohn ~8]obtained by analytic 
methods class numbers between 18 and 27 for 
fields K generated by the real root of big- 
ger integers m. Further tables for pure cu- 
bic fields are provided by Selmer[5~. 

Units and class number of an algebraic 
number field K areclosely related. Cohn ~9] 
combined a class number formula of Wada, in- 
volving the index of a certain subgroup in 
the whole unit group, and his results on 
units in quartic and octic fields (Section 7) 
to determine the class number of these 
fields. 

Cyclotomic fields are largely accessible 
to numerical calculations. Bauer[~computed 
the class number of real cyclic subfields K 
of cyclotomic fields with the restrictions 
f < 1OO on the conductor of K and B< 50,000 
on the improved Minkowski-Rodgers bound for 
K. Leopoldt's p-adic class number formula is 
used in the computations and the class num- 
bers 1,2, and 3 are obtained. 

The exponent j(i) of the highest p-power 
dividing the class number hi+ I of the 

pi+1-th cyclotomic field Ki+ I over ~ is, for 

sufficiently large i, given by lwasawa's 
formula 

j(i) = ipi + mpp i + np , 

where p is a prime and ip~O, mp~O, np are 

integers depending only on p. lwasawa and 
Sims[3~used a computer to determine the con- 
stants ip,mp,np for all primes p~ 4,001. The 

striking result of their computations was the 
discovery that mp = 0 for all p's within the 

investigated range. 

9. Class ~roups and class fields of algebra- 
ic number fields 

Once the class number of an algebraic 
number field K of finite degree n over ~ is 
known there arises the usually far more com- 
plicated task of determining the structure 
of the ideal class group as well as the Hil- 
bert class field H of K (H is the largest 
unramified abelian extension of K). 

On the occasion of his class number cal- 

culations for imaginary Quadratic number 
fields K = Q(~d) with prime discriminant d = 
-p ~ 1(mod ~) Leopoldt[4~ (see Section 8) 
also determined all class groups of K for p 
within the interval I ~p~ 504,000 and a 
selection of class groups of K for p in 
304,000 <pg 551,407. In the majority of all 
cases investigated the class groups turned 
out to be cyclic. The non-cyclic class 

• roups found are of the q-types (5,3), (3,9), 
3,27), (3,81), (3,243),-(9,9), (9,27),(5,5), 
(5,25), (7,7), (7,49), (11,11). 

Employing purely arithmetic methods of 
class field theory Hasse[35]numerically con- 
structed the class field H of the quadratic 
number field K = ~(~-47). This field can be 
characterized as the first imaginary quadra- 
tic field whose class number h is divisible 
by 5, namely, h = 5- H/~ is normal with the 
dihedral group of order 2-5 as Galois group, 
and H/K is cyclic of degree 5- The problem 
arises of finding an irreducible polynomial 
of degree 5 over Z such that its real root b 
generates H/K and~ furthermore, of exhibiting 
a cenerator of the cyclic Galois group of 
H/K. The first task is solved via construc- 
ting a radical extension over the field of 
5-th roots of unity, J5) , over K. A solution 
of the second task was achieved by the p- 
adic methods developed in the joint paper[8~ 
of Zassenhaus and Liang who, as we mentioned 
in Section 3 (b), also settled a question 
regarding Tschirnhausen transformations 
which Hasse came across in this connection. 

On establishing class number and prime 
decomposition tables in the real cubic fields 

K = ~(~m) for I g mg 50, Selmer[5~ also dis- 
plays generators of the cyclic ideal class 
groups of these K's. 

In his diploma thesis Matzat[46]consi- 
ders number fields K of degrees 5 and 7 over 

generated by roots of polynomials with in- 
tegral (rational) coefficientsg 5. A compu- 
ter program was designed to determine the 
class number and defining relations for the 
class group of such fields K as well as the 
Galois group of some of the polynomials. It 
was in this connection that the polynomial 
of degree 7 mentioned in Section 4 turned up 
whose Galois group was shown to be G168 by 
Trinks. 

Of great significance for class number 
problems is Hilbert's Theorem 94 (see[69]). 
It states that, for an unramified cyclic 
number field E of odd prime degree p over a 
finite algebraic number field K, there 
exists an ideal in K which is not principal 
in K but which becomes principal in E. This 
implies in particular that the class number 
of K is divisible by p. 

Hilbert's Theorem 94 gives no indication 
as to which ideal classes of K become prin- 
cipal in E. Class field theory reveals that 
all ideal classes of K become principal in 
the Hilbert class field H of K. O. Taussky 
has in several papers (see[70~[7~ and quo- 
tations given there) substantially contri- 
buted to a discussion of the deep question 
as to how the ideal classes of K behave in 
subfields of the Hilbert class field H of K. 
No general law governing this behavior is 
known yet. However, in the case of a number 
field K whose p-class group CG is of the 
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isomorphy type (p,p), where p denotes an odd 
prime, O. Taussky <70~), distinguishing 
between two types of unramified cyclic ex- 
tensions E i of K according as the subgroup 

CG i of CG, pertaining to Ei, becomes princi- 

pal in E i or not, finds certain conditions 

under which one or the other type occurs. 
Also some information on how many ideal 
classes of K become principal in E i is ob- 
tained. 

10. Diophantine equations 

Let 

y2 = x 3 + ax + b (a,b.~) 

designate an elliptic curve over the ratio- 
nal number field ~. By Mordell's Theorem, 
the group of rational points of this curve 
over ~ is finitely generated, and, according 
to Siegel's Theorem, the curve has at most 
finitely many points with coordinates in ~. 

Quite a few computer-assisted computa- 
tions (of which we cite here only a modest 
selection) have been carried out to deter- 
mine all points over ~ of certain elliptic 
curves of the above type and to find genera- 
tors of the infinite part of their rational 
point groups over ~. In these computations 
use is made of the information available on 
class numbers and units of quadratic, cubic 
and quartic number fields (Sections 7 and 8). 

Quadratic fields are involved in Podsy- 
panin's[52]calculations of generators for 
2 x 3 y = - D with O(IDI(90. Cassels~redu- 

ces the problem of determining solutions of 
infinite order of this equation over ~ to 
computations in cubic fields and produces 
tables for 0~IDI~50, thereby correcting 
several errors in[5~. Hemer employed similar 
methods to extend existing tables of several 
authors, with a few exceptions, to O(IDI~IO0 
(see ~, [57~). Further completions of 
those tables were accomplished by Ljunggren 
[4~ who worked in quartic number fields and, 
recently, by Stephens[64]who referred again 
to cubic number fields. 

In conclusion, we mention here the fa- 
mous conjectures of Birch and Swinnerton- 
Dyer (~,[6~,[6~) relating the number of 
generators g of the rational point group of 
an elliptic curve over ~ to a certain global 
L-series of the curve. The conjectures that 
are supported by a convincing amount of 
numerical evidence have entailed many fur- 
ther explicit calculations as well as theo- 
retical investigations and generalizations 
by several authors (e.g.,[6~,[6~). 

REFEPENCES 

1. J.D. Alanen and D.E. Knuth, A table of 
minimum functions for generating Galois 

of GF(pn). Sankhy~ Set. A 2_~ (1961), 128. 
MR 28 ## 4756. 

2. , Tables of 
finite fields. Sankhy~ Ser. A 26 (1964), 
305-328. MR 32 f# 4122. 

3. H. Bauer, Numerische Bestimmung von Klas- 

senzahlen reeller zyklischer ZahlkSrper. 
J. Number Theory ~ (1969), 161-162. MR 39 
~ f  1426 

4. E.R. Berlekamp, Factoring polynomials over 
finite fields. Bell System Tech. J. 46 (19675 
1853-1859. MR 36 If 2314. 

5. , On the factorization of 
polynomials over very large finite fields. 
Bell Telephone Lab., Inc., Murray Hill, New 
Jersey, 1968. 

6. , How to find the factoriza- 
tion of polynomials over very large finite 
fields. Bell Telephone Lab., Inc., Murray 
Hill, New Jersey, 1968. 

• . v 

7. K.K. Blllevlc, On units of algebraic 
fields of third and fourth degree. Mat. Sb., 
N.S., 40 (82) (1956), 123-136. MR 19, 533. 

8. , Letter to the editors. Mat. 
Sb., N.S., 4_8 (90) (1959), 256. 

9. , On the equivalence of two 
ideals in a~ algebraic field of order n. Mat. 
Sb., R.S., ~ (100) (1962), 17-28. MR 25 
#~ 5049. 

10. , A theorem on unit elements 
of algebraic fields of order n. Mat. Sb., N. 
S., 6__~. (106) (1964), 145-152. MR 29 ## 1201. 

11. B.J. Birch and H.P.F. Swinnerton-Dyer, 
Notes on elliptic curves I, II. J. Reine 
Angew. Math. 212 (1963), 7-25. MR 26 ~3669; 
218 (1965), 7~-108. MR 31 #J 3419. 

12. D.G. Cantor, An algorithm for finding 
the intersection of two Z-modules. Manus- 
cript, Univ. of Calif., ~os Angeles, 1970. 

13. J.W.S. Cassels, The rational solutions 
of the Diophantine equation y2 = x 3 _ D. 

Acta Math. 82 (1950), 243-273. MR 12, 11; 
84 (1951), ~9. MR 12, 481. 

14. J.A. Chang and H.J. Godwin, A table of 
irreducible polynomials and their exponents. 
Proc. Cambridge Philos. Soc. 6__5 (1969), 513- 
522. MR 38 ## 3249. 

15. E.J. Cockayne, Computation of Galois 
group elements of a polynomial equation. 
Math. Comp. 2~ (1969), 425-428. MR 39 ~3733. 

16. H. Cohn, Some experiments in ideal fac- 
torization on the MIDAC. J. Assoc. Comp. 
Mach. 2 (1955), 111-116. MR 16, 866. 

17. and S. Gorn, A computation of 
cyclic cubic units. J. Res. Nat. Bur. Stan- 
dards 59 (1957), 155-168. MR 19, 732. 

18. , A numerical study of Dedekind's 
cubic class number formula. J.Res. Nat. Bur. 
Standards 5__9 (1957), 265-271. MR 19, 944. 

19. __~____, A numerical study of units in 
composlte real quartic and octic fields. 
Atlas Sympos. No. ~, Oxford, England, 1969. 

20. J.H. Conway, Tabulation of some informa- 
tion concerning finite fields. "Computers in 
Math. Research", North-Holland, Amsterdam, 
1968, 37-50. MR 38 ## 5749. 
21. E.C. Dade, O. Taussky and H. Zassenhaus, 
On the semigroup of ideal classes in an order 
of an algebraic number field. Bull. Amer. 
Math. Soc. 67 (1961) ,  305-308. MR 25 #~ 65. 

22. 
On the theory of orders, in particular on 



the semigroup of ideal classes and gene- 
ra of an order in an algebraic number 
field. Math Ann. 148 (1962), 51-64. MR 
25 16 3962. 

25. E.C. Dade and H. Zassenhaus, How pro- 
gramming difficulties can lead to theo- 
retical advances. Proc. Sympos. Appl. 
Math. XV, Amer. Math. Soc., Providence, 
R.I., 1965, 87-94. MR 28 II 2662. 

24. H. Davenport, Bases for finite fields. 
J. London Math. Soc. 4~ (1968), 21-59. 
MR 57 ## 2729. 

25. L. Elsner und H. Hasse, Numerische Ergeb- 
nisse zum Jacobischen Kettenbruchalgo- 
rithmus in rein-kubischen Zahlk6rpern. 
Math. Nachr. ~_4 (1967), 95-97. MR 56 66 
2589. 

26. E. Frank, Computer use in continued frac- 
tion expansions. ~!ath. Comp. 2~ (1969), 
429-455. MR 59 #I 6815. 

27. A. Fr~hlich and J.C. Shepherdson, On the 
factorization of polynomials in a finite 
number of steps. Math. Z. 62 (1955), 
551-554. MR 17, 119. 

28. , Effec- 
tive Drocedures in field theory. Philos. 
Trans. Roy. Soc. London, Ser. A 248 
(1956), 407-~52. MR 17, 570. 

29. H.J. Godwin and P.A. Samet, A table of 
real cubic fields. J. London Math. Soc. 
~_~ (1959), 108-110. MR 20 II 7009. 

50. , The determination of units 
in totally real cubic fields. Proc. Cam- 
bridge Philos. Soc. 5__6 (1960), 518-321. 
MR 22 #I 7998. 

51. , The determination of the 
class-numbers of totally real cubic 
fields. Proc. Cambridge Philos. Soc. 
(1961), 728-730. MR 23 16 A 5733. 

52. H. Hasse, Arithmetische Bestimmung von 
Grundeinheit und Klassenzahl in zykli- 
schen kubischen und biquadratischen 
ZahlkSrpern. Abh. Deutsch. Akad. Wiss. 
Berlin, Math.-Nat. KI. (1948)~(1950), 
95 pp. MR 11, 5O5. 

55- , ~ber den Klassenk~rper zum 
quadratischen ZahlkSrper mit der Diskri- 
minante -47. Acts Arith. 9 (1964), 419- 
454. MR 50 II 5082; 16 (1~69), 89-97. 
MR 40 61 4237. 

54. O. Hemer, Notes on the Diophantine equa- 

tion y2 _ k = x 5. Ark. Mat. ~ (1954), 
67-77. MR 15, 776. 

55- A. Hollkott, Finite Konstruktion geord- 
neter algebraischer Erweiterungen von 
geordneten GrundkSrpern. Dissertation, 
Hamburg, Germany, 1941. 

56. E.L. Ince, Cycles of reduced ideals in 
quadratic fields. Brit. Assoc. Advance- 
ment Sci., Math. Tables IV (1954). Zbl 
10, 292. 

57- K. lwasawa and C.C. Sims, Computation of 
invariants in the theory of cyclotomic 
fields. J. Math. Soc. Japan 18 (1966), 
86-96. MR 54 ## 2560. 

58. H. Kempfert, On sign determination in 
real algebraic number fields. Numer. 
Math. 11 (1968), 170-174. MR 37 61 1355. 

178 

39. H. Kempfert, On the factorizat~on of po- 
lynomials. J. Number Theory ! (1969), 
116-120. MR 38 61 6764. 

40. S. Kuroda, ~ber die Zerlegung rationaler 
Primzahlen in gewissen nicht-abelschen 
Galoisschen KSrpern. J. Math. Soc. Japan 

(1951), 148-156. MR 13, 442. 

41. H.W. Leopoldt, Ober Einheitengruppe und 
Klassenzahl reeller abelscher ZahlkSrper. 
Abh. Deutsch. Akad. Wiss. Berlin, Math- 
Nat. K1. (1953)~(1954), 48 pp. MR 16,799. 

42. , Uber ein Fundamentalpro- 
b~em der The6rie der Einheiten algebra- 
ischer ZahlkSrper. Bayer. Akad. Wiss., 
Math.-Nat. Ki., S.-B.,1956, 41-48 (1957). 
M~ 19, 395. 

43. , Klassenzahlen und Klassen- 
gruppen imagin~r-quadratischer ZahlkSr- 
per mit Primzahldiskriminante q ~ -1 mod 
4. Manuscript, Univ. (TH) Karlsruhe, 
Germany. 

44. W. Ljunggren, On the Diophantine equa- 

tion y2 _ k = x 3. Acts Arith. 8 (1962/63 
451-463. MR 28 If 2082. 

45. D.B. Lloyd, The use of finite polynomial 
rings in the factorization of the gene- 
ral polynomial. J. Res. Nat. Bur. Stan- 
dards, Sect. B 6__9 (1965), 189-212. MR 32 
II 5645. 

46. H. Matzat, Zahlentheoretische Programme 
und einige Ergebnisse. Manuscript, Univ. 
(TH) Karlsruhe, Germany, 1969. 

47. R.J. Mc Eliece, Factorization of polyno- 
mials over finite fields. Math. Comp. 2~ 
(1969), 861-868. 

48. J.v. Neumann and B.~ Tuckerman, Continued 
fraction expansionJof 21/5. Math. Tables 
Aids Comp. ~ (1955), 25-24. MR 16, 961. 

49. M. Newman, Bounds for class numbers. 
Proc. Symp. Math. VIII, 1965, Amer. 
Math. Soc., 70-77, Providence, R.I. 
MR 5111 4778. 

50. , Tables of the class number 
h(-p) for p prime, p ~ 5 (mod 4), 
101,987~ pg 166,807. UMT 50, Math. Comp. 
2~ (1969), 685. 

51. E.T. Ordman, Tables of class numbers for 
negative prime discriminants. UMT 29, 
Math. Comp. 2~ (1969), 458. 

52. V.D. Podsypanin, On the indeterminate 
equation x 5 = y2 + Az 6. Mat. Sb., N.S., 
2_~ (66) (1949), 391-403. MR 11, 81. 

55- K.P. Popovi~, Integral polynomials irre- 
ducible mod p. Rev. Math. Pure Appl. 4 
(1959), 569T579. MR 22 16 4704. 

54. E. Rowlinson and H. Schwerdtfeger, Poly- 
nomials with certain prescribed condi- 
tions on the Galois group. Canadian J. 
Math. 2~ (1969), 262-273. MR 58 II 5755. 

55. K. Schaffstein, Tafel der Klassenzahlen 
der reellen quadratischen ZahlkSrper mit 
Primzahldiskriminante unter 12,000 und 
zwischen 100,000-101,O00 und 1,O00,000- 
1,OO1,000. Math. Ann. 9_~ (1928), 745- 
748. 

56. E.S. Selmer, Tables for the purely cubic 
field K(~m). Avh. Norske Vid. Akad. Oslo I 



1955, No. 5 (1956), 38pp. MR 18, 286. 

57. E.S. Selmer, On Cassels' conditions for 
rational solubility of the Diophantine 

equation~2 = ~5 _ D. Arch. Math. Natur- 
vid. ~ (1956), 115-137. MR 18, 285. 

58. , The rational solutions of 

the Diophantine equation ~2 = ~3 _ D for 
~Dk<lO0. Math. Scand. _4 (1956) ~, 281-286. 
MR 19, 120. 

59. D.L. Smith, The calculation of simple 
continued-fraction expansions of real al- 
gebraic numbers. Master Thesis, Ohio 
State Univ., Columbus, 1969. 

60. J. Sonn and H. Zassenhaus, On the theo- 
rem on the primitive el-ement. Am@r. Math. 
Monthly 74 (1967), 407-410. MR 35 f/ 4201 

61. H.M. Stark, On the "gap" in a theorem of 
Heegner. J. Number Theory I_ (1969), 16- 
27. MR 39 f/ 2724. 

62. , An explanation of some exotic 
c~~--fractions found by J. Brillhart 
Atlas Sympos. No. 2, Oxford, England, 
1969. 

65. N.M. Stephens, The Diophantine equation 

X 3 + y3 = DZ 3 and the conjectures of 
Birch and Swinnerton-Dyer. J. Reine An- 
gew. Math. 2~1 (1968), 121-162. MR 37 
ff 5225. 

64. , Completion of tables for 
2 x 3 y = + k (-lO0~k(O) by a method of 

Ljunggren. Atlas Sympos. No. _2, Oxford, 
England, 1969. 

65. J.D. Swift, Construction of Galois fields 
of characteristic 2 and irreducible po- 
lynomials. Math. Comp. ~ (1960), 99-103. 
MR 22 / f  2602.  

66. H.P.F. Swinnerton-Dyer, An application of 
computing to class field theory."Alge- 
braic Number Theory". Proc. Instructional 
Conf., Brighton, 1965, 280-291, Thompson, 
Washington D.C., 1967. MR 36 ff 2595. 

67. , The conjectures 
of Birch and Swinnerton-Dyer, and of 
Tare. Proc. Conf. Local Fields, Drieber- 
gen, 1966, 152-157. Springer, 1967. MR 
37 ff 6287. 

68. J. Tate, On the conjectures of Birch and 
Swinnerton-Dyer and a geometric analog. 
Sem. Bourbaki 506 (1966), 1-26. 

69. O. Taussky, Some computational problems 
in algebraic number theory."Survey of 

• il 

numerical analysls, ed. J. Todd, 549- 
557. Mc Graw-Hill, New York, 1962. MR 24 
ff A 3149. 

70. , A remark concerning Hilbert's 
Theorem 94. J. Reine Angew. Math. 2~9/ 
240 (1969), 435-~38. 

71. , Hilbert's Theorem 94. Atlas 
Sympos. No. 2, Oxford, England, 1969. 

72. W. Trinks, Ein Beispiel eines ZahlkSr- 
pets mit der Galoisgruppe PSL(3, IF 2) 

dber ~. Diploma Thesis, Univ. (TH) Karls- 
ruhe, Germany, 1968. 

73. J.V. Uspensky, A method for finding 
units in cubic orders of a negative dis- 
criminant. Trans. Amer. Math. Soc. 

179 

(1931), 1-22. Zbl 1, 121. 

74. H. Zassenhaus, The sum intersection 
method. Manuscript, Ohio State Univ., 
Columbus, 1966. 

75. and H. Kempfert, The modi- 
fied algorithm for the maximal order 
over a commutative order. Manuscript, 
Ohio State Univ., Columbus. 

76. , Ein Algorithmus zur Be- 
rechnung einer Minimalbasis Gber gegebe- 
ner Ordnung. ISNM ~ (1967), 90-103. MR 
57 ~f 2720. 

77. , The group of an equation. 
Nachr. Akad. Wiss. G6ttingen II, Math.- 
Phys. Ki., 1967, Nr. 3J_, 147-166. MR 57 
ff 5191. 

78. , ~ber die Fundamentalkon- 
struktionen der endlichen KSrpertheorie. 
Jahresber. Deutsch. Math. Vet. ~ (1968), 
177-181. MR 39 fl 175. 

79. , Continued fraction deve- 
lopment of irrational real algebraic 
numbers. Manuscript, Ohio State Univ., 
Columbus, 1968. 

80. and J. Liang, On a problem 
of Hasse. Math. Comp. 2~ (1969), 515- 
519. MR 40 ff 122. 

81. , On Hensel factorization,l. 
J. Number Theory ~ (1969), 291-311. MR 
39 ff 412o. 

82. , A real root calculus. 
"Computational problems in abstract alge- 
br~ ed. J. Leech. 383-392. Pergamon, 
Oxford and New York, 1969. 

83. H.G. Zimmer, Factorization of polyno- 
mials according to a method of Zassenhaus. 
Manuscript, Univ. of California, Los An- 
geles, 1969. 

Additional reference: 

84. D.G. Cantor, P.H. Galyean, and H.G. Zim- 
mer, A continued fraction algorithm for 
real algebraic numbers. To appear. 


