
LIST-TRACING IN SYSTEMS ALLOWING MULTIPLE CELL-TYPES*

by

Robert R. Fenichel

Massachusetts Institute of Technology
545 Main Street

Cambridge, Massachusetts 02139

*Work reported herein was supported in part by Project MAC, an
M.I.T. research project sponsored by the Advanced Research Projects
Agency, Department of Defense, under Office of Naval Research
Contract N00014-70-A-0362-0001.

ABSTRACT

List-processing systems have each allowed
use of only a single size and configuration of
list cell. This paper describes a system
which allows use of arbitrarily many different
sizes and configurations of list cell, possibly
not specified until run time.

i. Introduction

List-processing systems (e.g., LISP 1.5
[i0], SLIP [12]) have each allowed use of only
a single size and configuration of list cell. ±
This paper describes a system which allows use
of arbitrarily many different sizes and con-
figurations of list cells, possibly not
specified until run time.

Multiple sizes and configurations of list
cells are important in many applications where
the natural quanta of data are not homogeneous
in size and format. For example, an algebraic
interpreter might record the following infor-
mation about each variable known to it:

implementation of list-processing systems with
multiple sizes and configurations of cells.
Sections 3 and 4 describe a technique for
list-tracing in such systems. 1

The remainder of the paper is generally
tutorial, relating the list-tracer of the
earlier sections to existing problems and
solutions in list-processing.

2. The Importance of List Tracing

Any list-processing system must provide
means for obtaining single list cells from
free storage (nucell), for setting and
examining the contents of the various fields
of a given list cell (set/look), and for
returning disused list structure to free
storage (eraselist). Other services are
generally defined in terms of these
primitives. 2

2.1 Nucell

reference count
value
print name
pointer to hash-table entry

The interpreter might also handle floating-
point numbers as objects. Now, if only a
single cell-size is allowed, then either
floating-point numbers will be represented
with extravagant waste of space, or variables
will each be chained out into several smaller
cells, with concomitant waste of both space
(for spurious pointers linking the cells) and
time (for following the spurious pointers).

It will appear (Section 2 below) that
list-tracing is the primary obstacle to

1.
The aborted LISP 2 system Ill was to have

allowed multiple cell sizes and configurations,
but only with a bit of "systems programming...
beyond the domain of the average user" [5, p.
7] supporting each type of cell.

Obtaining cells from free storage is a
relatively well-understood problem, even when
cells of unpredictable size must be delivered
[6, pp.435 - 451]. In each traditional list-
processing system, this service is provided by
a built-in function; 3 in modern, general-
purpose programming languages, run-time
routines are necessarily provided to perform

I.
After developing this technique, the

author became aware of the somewhat related
work of S. Marshall [8].

2.
Here and below, services not related to

list processing are ignored. For example, only
a small portion of LISP is relevant; most of
LISP is concerned with function-application,
arithmetic, and other extraneous services.

3.
E.g., cons in LISP and nucell in

SLIP.

242

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800204.806293&domain=pdf&date_stamp=1971-03-23

this service. 1

2.2 Set/look

Setting and examining the contents of
fields within list cells has never been even
a code-optimization problem. In each tradi-
tional list-processing system, there are a
setting function and an examining function for
each field of the standard list cell. 2
Adding a new type of cell to such a system
entails adding a few more setting and examin-
ing functions to the library.

In systems embedded within modern general-
purpose languages, these numberous built-in
functions are not necessary. Using based-
structure declarations 3 within such languages,
fields of arbitrary list cells may be refer-
enced by mnemonic names, and accessed by in-
line code.

2.3 Eraselist

Returning disused list-structure to free
storage must be performed by some variation
of one (or both [13]) of the following two
methods:

2.3.1 Garbage collection [9] When free
storage is in short supply (or, as in [4],
when it is undesirably scattered), trace all
list-structure accessible by program, marking
all cells touched. Then scan the entire
region of memory from which cells are taken.
During this scan, place unmarked (= inaccess-
ible) cells on the free-storage list, and
remove the marks from marked cells.

2.3.2 Discard-Scanninq [12] When a piece
of list-structure is discarded by a user
program, trace through this structure and re-
turn all of the cells involved in it to free
storage. As a refinement (as in [12]), allow
cells to hold reference counts, and return
substructures to free storage only when they
are no longer shared as substructure by non-
discarded structures.

procedure for tracing through a list struc-
ture. 1 Such a procedure must be able to
accept a pointer to a cell ~ and, using this
pointer, to explore ~, identifying all of the
other cells which have C as list-parent. The
procedure must not be misled by the presence
in C of irrelevant fields containing floating-
point numbers, flag-bits, or other non-
addresses.

The list-tracing procedure is the only
essential list-processing service which is
not routinely provided by modern general-
purpose languages.

3. Pointers and Type Information

Even though each traditional list-
processing system allows only a single size
of cell, none gets by with only a single
type of cell. In LISP, for example, there
are atoms and non-atoms. In SLIP, there are
headers and non-headers. Throughout this
paper, cell-types are assumed immutable.

Given a pointer to a cell C, the type of
C must be computable. In early implementations,
this necessaz?y type information was recorded
in C itself.

In more recent implementations, the type
information is carried in the pointer to C.
This use of rich pointers reflects two
developments in list-processing implementa-
tion [3]:

3.1 Immediate values

If an atomic datum can be expressed in
as few bits as an address, 2 then it is more
efficient to copy such a datum than to
handle it indirectly. But if "pointers"
sometimes contain immediate data instead of
addresses, then pointers must also contain
type information to characterize the data
they hold.

3.2 Virtual memories

Either of these methods requires a Querying type-information is a common
list-processing operation. 3 In virtual-

i.
E.g., The routines supporting ALLOCATE

statements in PL/i [2] or the FREE (sic)
routine in AED [ii].

2.
In LISP, for example, the number of

fields is two, so the system provides two
examining functions (car and cdr) and two
setting functions (rplaca and rplacd).

3.
This terminology is that of PL/i.

Users of AED or of SAL [7] declare components.

1.
The original SLIP implementatiQn [12]

spreads the trace out thinly and discontin-
guously in time. This is in pleasing
accordance with the engineering principle
which favors smooth, continual application
of energy. The total effort is the same,
however, and the information needed by the
procedure is unchanged.

2.
Truth Values and small-magnitude

integers exemplify such data.

3.
E.g., the functions atom, numberp,

fixp, etc. in LISP, or namtst in SLIP.

243

memory systems, where memory references may
be costly, it is economical to place type-
information in the pointers, so that refer-
ences to the cells need not be made.

For given ~ and T, it may be that the
~th list-descendant of any cell of type T is
always a cell of type T'. When this is so,
space in each cell of type T should not be
taken up with the redundant information that
the ~th list-descendant is of type T_~. That
is, each cell of type ~ still needs to carry
the address of its nth list-descendant, but
not a full, type-carrying pointer to this
list-descendant.

4. An Elementary List-Tracing Procedure

4.1 Definitions

4.1.1 A word is a quantity of memory
sufficient to hold an address.

4.1.2 A pointer is a two-word object
consisting of a type-code and an address.

4.1.3 A cell is a set of one or more
contiguous words in memory. The requirement
of contiguity is imposed only so that a
single address somehow specifies the whole
cell.

4.1.4 A word in a cell C may be used

(a) together with the next word in
~, to contain a pointer, or

(b) to contain the address of
another cell ~, or

(c) to contain bits (e.g. a float-
ing-point number) which are neither the
type-code of a pointer (as in (a)~ nor the
address of another cell ~ (as in (b)).

4.1.5 Two cells ~ and C_~ are of the same
type if and only if

(a) they are of equal size and

(b) for each word W in ~, with
corresponding word W_~ in C_~,

(b-i) if W, taken together with the
next word in ~, contains a pointer, then
so do the corresponding words in C~.

(b-ii) if W contains the address of
another cell D, then W_~ contains the
address of a cell D' which is of the
same type as D.

(b-iii) if W contains bits which are
neither the type-code of a pointer nor
the address of another cell D, then so
does W'.

4.1.6 Two pointers point to cells of the
same type if and only if they contain the
same type-code.

4.2 Templates

Cell-type ~ can be described with a tem-
plate of n+l words, where ~ is the number of
words in each cell of type ~.

(a) Word 0 contains n.

(b) For 1 < i < n,

(i) If words ~ and i+l of each cell
of type T contain a pointer, then word

of the template contains ~, a constant
different from any type-code.

(ii) If word ~ of each cell of type
contains the address of a cell of type

T_~, then word ~ of the template contains
the type-code of T_~.

(iii) If word ~ of any cell of type
T contains bits which are neither the
type-code of a pointer nor the address
of another cell D, then word ~ of the
template contains Z, a constant different
from P and from any type-code.

4.3 The Key Idea

In order to allow a list-tracing program
to trace a list structure containing cells of
type ~, the program must, from the pointer to
a cell of type ~, be able to find the template
for cells of type ~. The simple, single,
central idea of this paper is

The type-code for cells of type T
may be the address of the template for
cells of type T.

4.4 The Algorithm

A list-tracing procedure is displayed
in Appendix A in a bastard form of PL/1. As
given, this procedure retraces shared sub-
structures, loops indefinitely on reentrant
structures, and is highly recursive.

5. Some Elaborations of the Elementary Procedure

5.1 Immediate Data (cf. Section 3.1 above)

As shown in Appendix A, the elementary
procedure almost allows templates with ~ = 0.
The only necessary change is to make the call
of ~ conditional upon ~ > 0.

For added efficiency, of course, the loop
could be elaborated so as to avoid spurious
self-calls for processing of descendant
pointers which contain immediate data in the
place of addresses.

Z44

5.2 Classes of Types

Certain operations at higher levels of
the system may involve classes of types. For
example, numbers, arrays, and variables are
all "atoms" to LISP. It may be useful to add
a word of flag bits to each template so that
classes of types may be easily distinguished.

5.3 Re-entrant Lists and Shared Substructure

The elementary procedure will exert re-
dundant effort on shared substructure, and
it will exert unbounded effort on reentrant
lists. Sometimes these cases may be avoided
by using simplified templates; at other times,
marking will be necessary.

5.3.1 Simplified Templates By the defin-
ition of reentrant implicit in Section 4.1
above, many structures are reentrant even
though they would not ordinarily be so
described. For example, consider any
structure in which pointers are matched by
back-pointers, as in SLIP. Such a structure
is its own list-grandchild, and reentrant for
purposes of the elementary procedure.

This superficial reentrancy is not noticed
in traditional systems since hand-tailored
list-tracers have always been sensible enough
to follow only one set of pointers. To
establish this restriction here, the back-
pointer words of the appropriate templates
can be set to Z ("this is not an address"),
even though the corresponding words in the
cells do really contain addresses.

5.3.2 Markin@ When true reentrancy is
possible, the list-tracing procedure must
mark traced lists so that they are not traced
again as their own list-descendants. Marking
may also be desirable to avoid redundant
tracing of shared substructure.

5.3.2.1 It may happen that cells of
certain types are never the roots of reentrant
or shared structures. Cells of these types
need never be marked.

5.3.2.2 If the list-tracer is making use
of marking, it will interrogate a bit in the
template to see if this cell should be marked.

5.3.2.3 If cells of this type should be
marked, then the location of the mark must be
determined. The location may be set by con-
vention (e.g., any cell which is marked is
marked in its first word) or by the presence
of a special code (like P and Z) in the
corresponding word of the template.

If this cell is already marked, then the
list-tracer returns. Otherwise, the list-
tracer marks this cell and traces its sub-
structure.

Each use of a marking list-tracer may

need to be followed by a list-trace to reset
the marks. Alternately, if a broad field is
used for marking, then each trace can use a
new bit-pattern (say, consecutive integers)
as the mark. 1

5.3.3 Reference Counts The use of refer-
ence counts for storage management [12] is
formally similar to the use of marking. In
particular, the considerations of paragraphs
5.3.2.1-3 are all applicable to reference

counts.

5.4 Linear Lists

Linear lists are common in list-processing
applications. In other words, it is common
for each cell of a given type to utilize a
given word for the address of another cell of
the same type. To indicate the end of the

list, a distinctive bit-pattern (e.g., all
zero) is used.

It may be economical to use a bit in the
template to indicate that the associated cells
are members of linear lists. Then, the list-
tracer can use a high-speed loop instead of a
self-call for each cell of linear list.

5.5 Other Special Cases

In certain applications, the list-tracing
program may need to take account of idio-
syncratic properties of certain cell-types.
For example, suppose that a list-scanner is
being used to scan discarded structures
(Section 2.3.2 above) in an algebraic inter-
preter which includes cells of type variable.
One of these cells should be returned to free

storage only if

(a) its reference count has gone to zero
and

(b) there is no value associated with
this variable.

Some variables may additionally be specially
protected from disappearance.

The interpreter may have all of the
variable cells chained to an identifier hash
table. If this is so, then when a variable
cell is to be returned to free storage, the
hash-table chain must be patched.

The various actions of this example
might all be triggered by a bit in the tem-
plate of cells of type variable. Diffidence
about giving this sort of application-dependent
information to the list-processing routines
may be offset by the arguments of Section 7
below.

I.
This technique is due to Martin Richards.

' 2 4 5

6. Non-Recursive List Scanning

In some environments, it will be economi-
cal to rewrite the list-scanner so as to avoid
recursive calls.

6.1 Local Stacking

If memory usable as a stack is available,
each recursive call of the list-scanner can be
replaced with a "push" operation of the
pointer argument. Then the list-scanner code
is all surrounded by a loop which takes
pointers from the stack until the stack is
empty.

6.2 The Deutsch-Schorr-Waite Algorithm

If a stack is not available, the list-
scanning technique of Deutsch, Schorr and
Waite I may be appropriate. The Deutsch-
Schorr-Waite (DSW) technique uses the scanned
list itself for temporary storage during the
scan.

6.2.1 The Algorithm Consider a list
structure consisting (in part) of a grand-
parent cell ~, a parent cell ~, and a child
cell ~. To scan cell ~, the list-scanner
needs

(a) the type of ~, and

(b) the address of ~, and

(c) an index which will range over the
words of C.

da ta
The DSW list scanner also remembers these
for cell P.

from
When the DSW list-scanner returns to P
~, it must

(a) discard its data concerning C, and

(b) replace its data concerning ~ by
its data concerning ~, and

(c) somehow replace its data concerning
by the corresponding data

concerning G.

These data concerning ~ are retrieved
from a word of cell ~, where they were stored
when the DSW scanner was about to move from P
down to C. The word used for these data is
simply that word of ~ containing the address
of ~. Since the data concerning ~ are kept
alive within the DSW program during operations
on ~, continuous storage of these data in
is not essential. Of course, these data must
be restored to ~ upon return from ~, before
they are "discarded" as suggested just above.

i.
It is credited to them in [6], p. 417.

z46

6.2.2 Applicability of the Algorithm The
DSW scheme may require that a spare word or two
be present in every cell. This is so because
although three data (type, address, and
internal index) concerning the grandparent
cell must be temporarily stored in the parent
cell, only one datum (address) concerning the
child cell may be there to be overwritten. At
best, the child cell will have been identified
with two words (type and address), and the
grandparent's internal index will still be
homeless.

In practical cases, there are frequently
a few extra bits available in each cell. It
might be noted, moreover, that the internal
index may be representable with as little as
one bit; this was its size in the original
DSW implementation.

7. On Subroutines and Technical Communication

Most of the various list-processing
techniques described above have been implement-
ed for use in an algebraic interpreter. The
interpreter uses cells of seven different
sizes and about fifty different types. This
paper, instead of being wholly devoted to
discussion of the underlying techniques,
might have more concerned itself with the
modularization, calling-sequences, and other
black-box details.

This technique-oriented description is
the result of a view about the state of
programming. A few years ago, list-
processing was an arcane and difficult
business. Users were not interested in the
internal techniques, any more than, a few more
years ago, they had been interested in the
internal techniques of floating-point
interpretive routines.

Today, the techniques once used only
within specialists' floating-point routines
are coded in-line by everyone. Similarly,
list-processing code is today more often
tailored than bought off the rack.

The listing-lovers, no doubt, would be
in touch with the author no matter what he did.

8. Acknowledgements

The author is indebted to Prof. J. Moses
for his encouragement, to C. Hewitt, M. D.
McIlroy, and G. Sussman for their comments on
an early draft, and to Prof. Arthur Evans,
Jr., for bringing the work of S. Marshall [8]
and Martin Richards to the author's attention.

Appendix A References

list scan: procedure(type code,cell address,f);
declare (typecode, celladdress) address,

f external entry (address, address);

/*Apply the function 'f' to every cell of the
list structure whose root is a cell of type
'type code' at location 'cell_address'. */

declare cellword(n) address
based (celladdress),

1 template based (type code),
2 n fixed,
2 template word(n) address,

i local fixed,

(P, Z) external address;

i.

2.

3.

4.

i=l; 5.
do while (i ~ n);

if template word(i) = Z then
/* Corresponding word in the cell is
a bit-pattern which does not specify
a list-child of the cell. In other 6.
words, the corresponding word of the
cell is irrelevant to list-tracing. */

end;

i = i+l /* Skip past the irrelevant
word */;

else if template word(i) = p then
/* Corresponding word in the cell is
a type-code, and the following word
in the cell is an address. Together
these specify a list-child of the
cell. */

do;
call list scan (cell word(i) ,

cell word(i+l) , f) ;
i = i+2;

end;

else
/* Corresponding word in the cell is
the address of a list-child cell
whose type is given by this word in
the template. */

Abrahams, Paul W. et al. "The LISP 2
Programming Language and System,"
AFIPS Proceedings, XXIX (Fall,
1966), pp. 661-676.

do;
call list scan (template word(i) ,

cell word(i) , f) ;
i = i+l;

end;

Anonymous. PL/I Reference Manual (IBM
Corporation, 1968).

call f(type code, cell_address);
return;

Bobrow, Daniel G., and Murphy, Daniel L.
"Structure of a LISP System Using
Two'Level Storage," CACM, X, 3,
(March, 1967), pp. 155-159.

end listscan;

Fenichel, Robert R., and Yochelson,
Jerome C. "A LISP Garbage Collector
for Virtual-Memory Computer Systems,"
CACM, XII, Ii (November 1969),
pp. 611-612.

Hawkinson, L. "LISP 2 Internal Storage
Conventions." System Development
Corporation Tech Memo TM-3417/550/00
(Santa Monica, 1967).

Knuth, Donald E. Fundamental Algorithms
(Reading, Massachusetts: Addison-
Wesley, 1968).

7. Lang, Charles A. "SAL-Systems Assembly
Language," AFIPS Proceedings,
XXXIV (Spring, 1969), pp. 543-557.

8. Marshall, S. "An Algol 68 Garbage
Collector." Kiewit Computation
Center Technical Memorandum TM011
(Hanover, New Hampshire: Dartmouth
College, 1969).

9. McCarthy, John. "Recursive Functions of
Symbolic Expressions and Their
Computation by Machine - I," CACM,
III, 4 (April, 1960), pp. 184-195.

10. et al. LISP 1.5 Programmer's
Manual (Cambridge: MIT Press, 1965).

ii. Ross, D. T. AED-O Programming Manual
(Hectographed, 1964).

12.

13.

Weizenbaum, J. "Symmetric List Processor,"
CACM, vI, 9 (September, 1963),
pp. 524-544.

"Recovery of Reentrant List
Structures in SLIP," CACM, XII, 7
(July, 1969), pp. 370-372.

Z47

