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ABSTRACT 

List-processing systems have each allowed 
use of only a single size and configuration of 
list cell. This paper describes a system 
which allows use of arbitrarily many different 
sizes and configurations of list cell, possibly 
not specified until run time. 

i. Introduction 

List-processing systems (e.g., LISP 1.5 
[i0], SLIP [12]) have each allowed use of only 
a single size and configuration of list cell. ± 
This paper describes a system which allows use 
of arbitrarily many different sizes and con- 
figurations of list cells, possibly not 
specified until run time. 

Multiple sizes and configurations of list 
cells are important in many applications where 
the natural quanta of data are not homogeneous 
in size and format. For example, an algebraic 
interpreter might record the following infor- 
mation about each variable known to it: 

implementation of list-processing systems with 
multiple sizes and configurations of cells. 
Sections 3 and 4 describe a technique for 
list-tracing in such systems. 1 

The remainder of the paper is generally 
tutorial, relating the list-tracer of the 
earlier sections to existing problems and 
solutions in list-processing. 

2. The Importance of List Tracing 

Any list-processing system must provide 
means for obtaining single list cells from 
free storage (nucell), for setting and 
examining the contents of the various fields 
of a given list cell (set/look), and for 
returning disused list structure to free 
storage (eraselist). Other services are 
generally defined in terms of these 
primitives. 2 

2.1 Nucell 

reference count 
value 
print name 
pointer to hash-table entry 

The interpreter might also handle floating- 
point numbers as objects. Now, if only a 
single cell-size is allowed, then either 
floating-point numbers will be represented 
with extravagant waste of space, or variables 
will each be chained out into several smaller 
cells, with concomitant waste of both space 
(for spurious pointers linking the cells) and 
time (for following the spurious pointers). 

It will appear (Section 2 below) that 
list-tracing is the primary obstacle to 

1. 
The aborted LISP 2 system Ill was to have 

allowed multiple cell sizes and configurations, 
but only with a bit of "systems programming... 
beyond the domain of the average user" [5, p. 
7] supporting each type of cell. 

Obtaining cells from free storage is a 
relatively well-understood problem, even when 
cells of unpredictable size must be delivered 
[6, pp.435 - 451]. In each traditional list- 
processing system, this service is provided by 
a built-in function; 3 in modern, general- 
purpose programming languages, run-time 
routines are necessarily provided to perform 

I. 
After developing this technique, the 

author became aware of the somewhat related 
work of S. Marshall [8]. 

2. 
Here and below, services not related to 

list processing are ignored. For example, only 
a small portion of LISP is relevant; most of 
LISP is concerned with function-application, 
arithmetic, and other extraneous services. 

3. 
E.g., cons in LISP and nucell in 

SLIP. 
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this service. 1 

2.2 Set/look 

Setting and examining the contents of 
fields within list cells has never been even 
a code-optimization problem. In each tradi- 
tional list-processing system, there are a 
setting function and an examining function for 
each field of the standard list cell. 2 
Adding a new type of cell to such a system 
entails adding a few more setting and examin- 
ing functions to the library. 

In systems embedded within modern general- 
purpose languages, these numberous built-in 
functions are not necessary. Using based- 
structure declarations 3 within such languages, 
fields of arbitrary list cells may be refer- 
enced by mnemonic names, and accessed by in- 
line code. 

2.3 Eraselist 

Returning disused list-structure to free 
storage must be performed by some variation 
of one (or both [13]) of the following two 
methods: 

2.3.1 Garbage collection [9] When free 
storage is in short supply (or, as in [4], 
when it is undesirably scattered), trace all 
list-structure accessible by program, marking 
all cells touched. Then scan the entire 
region of memory from which cells are taken. 
During this scan, place unmarked (= inaccess- 
ible) cells on the free-storage list, and 
remove the marks from marked cells. 

2.3.2 Discard-Scanninq [12] When a piece 
of list-structure is discarded by a user 
program, trace through this structure and re- 
turn all of the cells involved in it to free 
storage. As a refinement (as in [12]), allow 
cells to hold reference counts, and return 
substructures to free storage only when they 
are no longer shared as substructure by non- 
discarded structures. 

procedure for tracing through a list struc- 
ture. 1 Such a procedure must be able to 
accept a pointer to a cell ~ and, using this 
pointer, to explore ~, identifying all of the 
other cells which have C as list-parent. The 
procedure must not be misled by the presence 
in C of irrelevant fields containing floating- 
point numbers, flag-bits, or other non- 
addresses. 

The list-tracing procedure is the only 
essential list-processing service which is 
not routinely provided by modern general- 
purpose languages. 

3. Pointers and Type Information 

Even though each traditional list- 
processing system allows only a single size 
of cell, none gets by with only a single 
type of cell. In LISP, for example, there 
are atoms and non-atoms. In SLIP, there are 
headers and non-headers. Throughout this 
paper, cell-types are assumed immutable. 

Given a pointer to a cell C, the type of 
C must be computable. In early implementations, 
this necessaz?y type information was recorded 
in C itself. 

In more recent implementations, the type 
information is carried in the pointer to C. 
This use of rich pointers reflects two 
developments in list-processing implementa- 
tion [3]: 

3.1 Immediate values 

If an atomic datum can be expressed in 
as few bits as an address, 2 then it is more 
efficient to copy such a datum than to 
handle it indirectly. But if "pointers" 
sometimes contain immediate data instead of 
addresses, then pointers must also contain 
type information to characterize the data 
they hold. 

3.2 Virtual memories 

Either of these methods requires a Querying type-information is a common 
list-processing operation. 3 In virtual- 

i. 
E.g., The routines supporting ALLOCATE 

statements in PL/i [2] or the FREE (sic) 
routine in AED [ii]. 

2. 
In LISP, for example, the number of 

fields is two, so the system provides two 
examining functions (car and cdr) and two 
setting functions (rplaca and rplacd). 

3. 
This terminology is that of PL/i. 

Users of AED or of SAL [7] declare components. 

1. 
The original SLIP implementatiQn [12] 

spreads the trace out thinly and discontin- 
guously in time. This is in pleasing 
accordance with the engineering principle 
which favors smooth, continual application 
of energy. The total effort is the same, 
however, and the information needed by the 
procedure is unchanged. 

2. 
Truth Values and small-magnitude 

integers exemplify such data. 

3. 
E.g., the functions atom, numberp, 

fixp, etc. in LISP, or namtst in SLIP. 
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memory systems, where memory references may 
be costly, it is economical to place type- 
information in the pointers, so that refer- 
ences to the cells need not be made. 

For given ~ and T, it may be that the 
~th list-descendant of any cell of type T is 
always a cell of type T'. When this is so, 
space in each cell of type T should not be 
taken up with the redundant information that 
the ~th list-descendant is of type T_~. That 
is, each cell of type ~ still needs to carry 
the address of its nth list-descendant, but 
not a full, type-carrying pointer to this 
list-descendant. 

4. An Elementary List-Tracing Procedure 

4.1 Definitions 

4.1.1 A word is a quantity of memory 
sufficient to hold an address. 

4.1.2 A pointer is a two-word object 
consisting of a type-code and an address. 

4.1.3 A cell is a set of one or more 
contiguous words in memory. The requirement 
of contiguity is imposed only so that a 
single address somehow specifies the whole 
cell. 

4.1.4 A word in a cell C may be used 

(a) together with the next word in 
~, to contain a pointer, or 

(b) to contain the address of 
another cell ~, or 

(c) to contain bits (e.g. a float- 
ing-point number) which are neither the 
type-code of a pointer (as in (a)~ nor the 
address of another cell ~ (as in (b)). 

4.1.5 Two cells ~ and C_~ are of the same 
type if and only if 

(a) they are of equal size and 

(b) for each word W in ~, with 
corresponding word W_~ in C_~, 

(b-i) if W, taken together with the 
next word in ~, contains a pointer, then 
so do the corresponding words in C~. 

(b-ii) if W contains the address of 
another cell D, then W_~ contains the 
address of a cell D' which is of the 
same type as D. 

(b-iii) if W contains bits which are 
neither the type-code of a pointer nor 
the address of another cell D, then so 
does W'. 

4.1.6 Two pointers point to cells of the 
same type if and only if they contain the 
same type-code. 

4.2 Templates 

Cell-type ~ can be described with a tem- 
plate of n+l words, where ~ is the number of 
words in each cell of type ~. 

(a) Word 0 contains n. 

(b) For 1 < i < n, 

(i) If words ~ and i+l of each cell 
of type T contain a pointer, then word 

of the template contains ~, a constant 
different from any type-code. 

(ii) If word ~ of each cell of type 
contains the address of a cell of type 

T_~, then word ~ of the template contains 
the type-code of T_~. 

(iii) If word ~ of any cell of type 
T contains bits which are neither the 
type-code of a pointer nor the address 
of another cell D, then word ~ of the 
template contains Z, a constant different 
from P and from any type-code. 

4.3 The Key Idea 

In order to allow a list-tracing program 
to trace a list structure containing cells of 
type ~, the program must, from the pointer to 
a cell of type ~, be able to find the template 
for cells of type ~. The simple, single, 
central idea of this paper is 

The type-code for cells of type T 
may be the address of the template for 
cells of type T. 

4.4 The Algorithm 

A list-tracing procedure is displayed 
in Appendix A in a bastard form of PL/1. As 
given, this procedure retraces shared sub- 
structures, loops indefinitely on reentrant 
structures, and is highly recursive. 

5. Some Elaborations of the Elementary Procedure 

5.1 Immediate Data (cf. Section 3.1 above) 

As shown in Appendix A, the elementary 
procedure almost allows templates with ~ = 0. 
The only necessary change is to make the call 
of ~ conditional upon ~ > 0. 

For added efficiency, of course, the loop 
could be elaborated so as to avoid spurious 
self-calls for processing of descendant 
pointers which contain immediate data in the 
place of addresses. 
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5.2 Classes of Types 

Certain operations at higher levels of 
the system may involve classes of types. For 
example, numbers, arrays, and variables are 
all "atoms" to LISP. It may be useful to add 
a word of flag bits to each template so that 
classes of types may be easily distinguished. 

5.3 Re-entrant Lists and Shared Substructure 

The elementary procedure will exert re- 
dundant effort on shared substructure, and 
it will exert unbounded effort on reentrant 
lists. Sometimes these cases may be avoided 
by using simplified templates; at other times, 
marking will be necessary. 

5.3.1 Simplified Templates By the defin- 
ition of reentrant implicit in Section 4.1 
above, many structures are reentrant even 
though they would not ordinarily be so 
described. For example, consider any 
structure in which pointers are matched by 
back-pointers, as in SLIP. Such a structure 
is its own list-grandchild, and reentrant for 
purposes of the elementary procedure. 

This superficial reentrancy is not noticed 
in traditional systems since hand-tailored 
list-tracers have always been sensible enough 
to follow only one set of pointers. To 
establish this restriction here, the back- 
pointer words of the appropriate templates 
can be set to Z ("this is not an address"), 
even though the corresponding words in the 
cells do really contain addresses. 

5.3.2 Markin@ When true reentrancy is 
possible, the list-tracing procedure must 
mark traced lists so that they are not traced 
again as their own list-descendants. Marking 
may also be desirable to avoid redundant 
tracing of shared substructure. 

5.3.2.1 It may happen that cells of 
certain types are never the roots of reentrant 
or shared structures. Cells of these types 
need never be marked. 

5.3.2.2 If the list-tracer is making use 
of marking, it will interrogate a bit in the 
template to see if this cell should be marked. 

5.3.2.3 If cells of this type should be 
marked, then the location of the mark must be 
determined. The location may be set by con- 
vention (e.g., any cell which is marked is 
marked in its first word) or by the presence 
of a special code (like P and Z) in the 
corresponding word of the template. 

If this cell is already marked, then the 
list-tracer returns. Otherwise, the list- 
tracer marks this cell and traces its sub- 
structure. 

Each use of a marking list-tracer may 

need to be followed by a list-trace to reset 
the marks. Alternately, if a broad field is 
used for marking, then each trace can use a 
new bit-pattern (say, consecutive integers) 
as the mark. 1 

5.3.3 Reference Counts The use of refer- 
ence counts for storage management [12] is 
formally similar to the use of marking. In 
particular, the considerations of paragraphs 
5.3.2.1-3 are all applicable to reference 

counts. 

5.4 Linear Lists 

Linear lists are common in list-processing 
applications. In other words, it is common 
for each cell of a given type to utilize a 
given word for the address of another cell of 
the same type. To indicate the end of the 

list, a distinctive bit-pattern (e.g., all 
zero) is used. 

It may be economical to use a bit in the 
template to indicate that the associated cells 
are members of linear lists. Then, the list- 
tracer can use a high-speed loop instead of a 
self-call for each cell of linear list. 

5.5 Other Special Cases 

In certain applications, the list-tracing 
program may need to take account of idio- 
syncratic properties of certain cell-types. 
For example, suppose that a list-scanner is 
being used to scan discarded structures 
(Section 2.3.2 above) in an algebraic inter- 
preter which includes cells of type variable. 
One of these cells should be returned to free 

storage only if 

(a) its reference count has gone to zero 
and 

(b) there is no value associated with 
this variable. 

Some variables may additionally be specially 
protected from disappearance. 

The interpreter may have all of the 
variable cells chained to an identifier hash 
table. If this is so, then when a variable 
cell is to be returned to free storage, the 
hash-table chain must be patched. 

The various actions of this example 
might all be triggered by a bit in the tem- 
plate of cells of type variable. Diffidence 
about giving this sort of application-dependent 
information to the list-processing routines 
may be offset by the arguments of Section 7 
below. 

I. 
This technique is due to Martin Richards. 
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6. Non-Recursive List Scanning 

In some environments, it will be economi- 
cal to rewrite the list-scanner so as to avoid 
recursive calls. 

6.1 Local Stacking 

If memory usable as a stack is available, 
each recursive call of the list-scanner can be 
replaced with a "push" operation of the 
pointer argument. Then the list-scanner code 
is all surrounded by a loop which takes 
pointers from the stack until the stack is 
empty. 

6.2 The Deutsch-Schorr-Waite Algorithm 

If a stack is not available, the list- 
scanning technique of Deutsch, Schorr and 
Waite I may be appropriate. The Deutsch- 
Schorr-Waite (DSW) technique uses the scanned 
list itself for temporary storage during the 
scan. 

6.2.1 The Algorithm Consider a list 
structure consisting (in part) of a grand- 
parent cell ~, a parent cell ~, and a child 
cell ~. To scan cell ~, the list-scanner 
needs 

(a) the type of ~, and 

(b) the address of ~, and 

(c) an index which will range over the 
words of C. 

da ta 
The DSW list scanner also remembers these 
for cell P. 

from 
When the DSW list-scanner returns to P 
~, it must 

(a) discard its data concerning C, and 

(b) replace its data concerning ~ by 
its data concerning ~, and 

(c) somehow replace its data concerning 
by the corresponding data 

concerning G. 

These data concerning ~ are retrieved 
from a word of cell ~, where they were stored 
when the DSW scanner was about to move from P 
down to C. The word used for these data is 
simply that word of ~ containing the address 
of ~. Since the data concerning ~ are kept 
alive within the DSW program during operations 
on ~, continuous storage of these data in 
is not essential. Of course, these data must 
be restored to ~ upon return from ~, before 
they are "discarded" as suggested just above. 

i. 
It is credited to them in [6], p. 417. 
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6.2.2 Applicability of the Algorithm The 
DSW scheme may require that a spare word or two 
be present in every cell. This is so because 
although three data (type, address, and 
internal index) concerning the grandparent 
cell must be temporarily stored in the parent 
cell, only one datum (address) concerning the 
child cell may be there to be overwritten. At 
best, the child cell will have been identified 
with two words (type and address), and the 
grandparent's internal index will still be 
homeless. 

In practical cases, there are frequently 
a few extra bits available in each cell. It 
might be noted, moreover, that the internal 
index may be representable with as little as 
one bit; this was its size in the original 
DSW implementation. 

7. On Subroutines and Technical Communication 

Most of the various list-processing 
techniques described above have been implement- 
ed for use in an algebraic interpreter. The 
interpreter uses cells of seven different 
sizes and about fifty different types. This 
paper, instead of being wholly devoted to 
discussion of the underlying techniques, 
might have more concerned itself with the 
modularization, calling-sequences, and other 
black-box details. 

This technique-oriented description is 
the result of a view about the state of 
programming. A few years ago, list- 
processing was an arcane and difficult 
business. Users were not interested in the 
internal techniques, any more than, a few more 
years ago, they had been interested in the 
internal techniques of floating-point 
interpretive routines. 

Today, the techniques once used only 
within specialists' floating-point routines 
are coded in-line by everyone. Similarly, 
list-processing code is today more often 
tailored than bought off the rack. 

The listing-lovers, no doubt, would be 
in touch with the author no matter what he did. 
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Appendix A References 

list scan: procedure(type code,cell address,f); 
declare (typecode, celladdress) address, 

f external entry (address, address); 

/*Apply the function 'f' to every cell of the 
list structure whose root is a cell of type 
'type code' at location 'cell_address'. */ 

declare cellword(n) address 
based (celladdress), 

1 template based (type code), 
2 n fixed, 
2 template word(n) address, 

i local fixed, 

(P, Z) external address; 

i. 

2. 

3. 

4. 

i=l; 5. 
do while (i ~ n); 

if template word(i) = Z then 
/* Corresponding word in the cell is 
a bit-pattern which does not specify 
a list-child of the cell. In other 6. 
words, the corresponding word of the 
cell is irrelevant to list-tracing. */ 

end; 

i = i+l /* Skip past the irrelevant 
word */; 

else if template word(i) = p then 
/* Corresponding word in the cell is 
a type-code, and the following word 
in the cell is an address. Together 
these specify a list-child of the 
cell. */ 

do; 
call list scan (cell word(i) , 

cell word(i+l) , f) ; 
i = i+2; 

end; 

else 
/* Corresponding word in the cell is 
the address of a list-child cell 
whose type is given by this word in 
the template. */ 
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