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Abstract 

The problem of recognizing when a com- 
plicated mathematical expression equals zero 
has great importance in symbolic mathematics. 
This paper gives two algorithms which can be 
applied to many such problems, and discusses 
two concrete examples. 

The algorithms are based on the recogni- 
tion that many interesting functions (such as 
exponentlation) are eigenvectors of well 
studied transformations (such as differentia- 
tion). 

I. Introduction 

The problem of dealing with general 
mathematical expressions by $omputer2has been 
intensively studied. Brown, ± Moses, and 
Risch o all define environments in which some 
success can be obtained in doing arithmetic 
operations and integration within certain 
classes of functions. On the other hand, 
Richardson 4 and Cavlness5 have shown that the 
problem of recognizing when a mathematical 
expression is identically zero is undecidable 
for certain other classes of functions. 

The aim of this paper is to state and 
prove two algorithms which can be applied to 
many such problems, and to discuss several con- 
crete examples. The algorithms are concerned 
with deciding when complex mathematical 
expressions are identically zero. This 
problem is important in symbolic mathematics 
for several reasons: 

(I) Formal division by an expression equal to 
zero can lead to incorrect results. 

(2) Subexpresslons equal to zero tend to 
proliferate exponentially if not found 
and removed. 

(3) The general problem of simplification is 
closely connected with the problem of 
recognizing zero. 

The algorithms will be stated in a 
general mathematical context. This leads to 
some difficulties of exposition, as the lan- 
guage of vector spaces is not well adapted to 
dealing with questions of effective comput- 
ability and algorithm definition. Whenever 
there was a conflict between mathematical 
rigor and clarity of exposition, an attempt 
was made to yield to clarity. 

2. Theory 

This section is devoted to some vector 
space theory which will be applied to the 
remaining sections. The reader may find it 
profitable to read this section in parallel 
with the next two sections. 

We shall assume that K is a field whose 
structure is known completely for our 

purposes. In particular, we shall assume that 
we can recognize zero in K. 

We shall also assume a commutative ring R 
which contains K, and a mapping @ : R ~ R. 

Definition: An element u ~ R, u ~ O, is 
an eigenvector of ~ if there is an element 
a c K with 

~(u) = an. 

a is called the eigenvalue of u. 

We shall denote by E the set of elgen- 
vectors of ~. 

At this point, we need to make a practical 
convention; when we write u c E, we shall mean 
that we know not only u but also its elgen- 
value. This has considerable practical 
importance, since the elgenvalue is in K, 
which we assume is well known. 

Throughout the following, we will assume 
that @ satisfies these three axioms: 

Axiom I: ~(u+v) = ~(u) + ~(v), all u,v ~ R 

Axiom 2: ~(K) C K, and ~(i) = 0 

Axiom 3: If u e E, then u is invertible and 
u -I e E. If u,v c E, then vue E. 

Recall that Axiom 3 implies, not merely 
that we know that u -1 and uv are elgenvectors, 
but also that we can construct their 
elgenvalues. 

We now draw some simple consequences from 
the axioms, which can be quickly proved by the 
interested reader. 

Axiom 1 implies that ~(0) = 0. Moreover, 
Axiom 2 implies that every nonzero element of 
K is an eigenvector. By Axiom 3, we thus 
deduce that 

and thus 

KE C E ~ {0}, 

Thus, if u is an eigenvector, ~(u) is either 0 
or another eigenvector, whose elgenvalue can 
be computed. 

Moreover, if ~(u) = 0 then the eigenvalue 
associated with u must be 0. Thus we can 
decide, for any eigenvector, whether ~(u) = 0 
just by examining the elgenvalue. 

The set of all u in R with ~(u) = 0, the 
kernel of ~ (denoted ker(~)), is of central 
importance in this work. Notice that every 
nonzero element of ker(~) is an eigenvector 
with elgenvalue = O. There is no necessary 
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relationship, however, between ker(~) and K 
except that they both contain I. 

We now describe the first zero recogni- 
tion algorithm: 

Algorithm I 

Suppose we have some algorithm for decid- 
ing, given u e ker(qp), if u = 0. Then, given 

n 

a sum S = ~ ui, with u i e E, i = l,...,n, 

i=l 
we may decide if S = 0 as follows: 

Step I: If n = I, then S @ O. Return. 

Step 2: If n > I, then compute 

T = ~(S/Un) 

and test it for zero. (See details below.) 

Step 3: If T ~ 0 then S ~ 0. Return. 

Step 4: If T = 0, then S/u n e ker(~). 

By assumption, we can test if S/u n = 0. 

Step 5: If S/u n ~ 0, then S ~ O. Return. 

Step 6: If S/u n = 0, then S = 0o Return. 

It remains to explain step 2. We have: 

n 

S/u n = ~ ui/Un 
i=l 

n-I 

= i + ~ ui/u n 
i=l 

By Axiom 3, we may find the elgenvalues 
bl,...,bn_ I for ui/u n. If any of the b i are 

O, delete the corresponding terms of the sum. 
If all the b i are zero, then T = ~(S/un) = O. 
Otherwise T is a sum of at most n - 1 eigen- 
vectors with known eigenvalues, and we may 
apply algorithm 1 recursively to decide 
whether T = 0. 

We may in fact go even farther in this 
direction. Suppose, as above, that we can 
decide when elements of ker(qp) are zero. Let 
Ai,...,A n E R have the property that 
qp(A ) e E ~{0}, i = I ..... n. (Note that all i 
elements of E have this property.) Then we 
may use the following algorithm to decide if 

n 

S = ~ A i is zero: 

i=l 

Algorithm 2 

Use Algorithm I to decide if 
n 

q~(S) = }i q~(Ai) is zero. If qp(S) @ 0 then 

i=l 
S @ O. If qp(S) = O, then S is in ker(qp), so 
we can decide if it is zero by assumption. 

Clearly, this process may be extended to 
n 

us to decide when a sum ~ A i is allow 

i=l 
zero, provided only that each A i can be trans- 
formed to a finite sum of elgenvectors by a 
finite number of applications of qp. 

3. An Application 

Let R be a field, and let ~ be a 
derivation on R; that is, ~ satisfies: 

(i) Addition Law: ~(a+b) = ~(a) + ~(b) 

(2) Multiplication Law: ~(ab) = a~(b) + b~(a) 

The most common case of a derivation is 
when R is a field of infinitely differentiable 
functions, and ~ is differentiation. 

Let K be a subfield of R with ~(K) C K. 
Then we have 

Theorem: The axioms of section two hold 
for ~. 

Proof: Axiom i is precisely the addition 
law. -~x~f~m 2 follows because ~(K) C K and 

~ ( l . 1 )  = 1.~(1) + 1.~(1) 

or 

~(1) = ~(1) + ~(1) 

SO 

~( i )  = o. 

Axiom 3 requires a bit of computation. 
Let u and v be eigenvectors with eigenvalues a 
and b. Then 

~(uv) = ~(u)v + u~(v) 

= (a+b)uv 

~(u -I) = -u-2~(u) = _u-2au 

= (-a)u -I 

Thus uv and u -I are eigenvectors, and we can 
compute their eigenvalues. 

The eigenvectors of ~ are a very inter- 
esting class of functions. They include 

(1) Rational functions. 

(2) aeb~ with a and b rational functions. 

(3) b ~, with b a rational function and a any 
real number. 

Algorithm 2 enables us to deal with 
functions A such that ~(A) is an elgenvector; 
that is, indefinite integrals of eigenvectors. 
Thus we may include functions such as 

(4) log b, b a rational function. 
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(5) arctan x, arcsin x. 
x 2 

(6) erf(x) = ~ e -x dx. 
0 

and many more. 

The larger the class of functions 
examined, the larger ker(~) is likely to be; 
this problem will be discussed in the next 
section. 

4. Recognizing When an Element of ker(~) is 0 

The algorithms in Section 2 both depend 
strongly on being able to tell when an element 
of ker(~) is in fact zero. 

When ~ is a derivation, ker(~) is usually 
called the field of constants. When ~ is 
ordinary differentiation, an element of ker(~) 
must be constant on every interval on which it 
is defined. Thus we can frequently replace 
the problem of deciding when a constant func- 
tion is zero by the problem of deciding when a 
constant expression, obtained by substitution, 
is zero. (As done in (4)7. 

For example, in the application of 
algorithm I we might find that differentiation 
of e 2x - eX.e x yields O. The problem is then 
to decide if e 2x - eX.e x e ker(~) is zero. 
Since all the functions are continuous and 
defined on the real~ne, the constant function 
is identically zero if and 0nly if it attains 
the value zero at the point x = O. Using the 
formula e 0 = I, we see that the expression is 
in fact zero. 

In general, the algebrale, or evene linea ~ 
independence of numbers such as e, ~, e , and 
so on, Is not mathematically established at 
this time. Thus in many practical systems one 
is forced to make approximations or assump- 
tions, and take the resultant risk (hopefully 
very small) of obtaining incorrect results 
based on incomplete mathematical knowledge. 
One example is the work of Brown, ~ where ~ and 
e were conjectured to be independent in a 
stronger sense than algebraically independent 
in order to obtain a simplification algorithm. 
Thus a failure of Brown's algorithm implies a 
very important mathematical theorem! An 
alternative approach might involve approximate 
evaluation of the constant function at a num- 
ber of points using interval arithmetic, which 
would indicate immediately in most cases when 
the result was not identically O. Constant 
functions which appeared to be 0 in all of 
these tests might be printed out, and then 
assumed to be 0 in later calculations. 

5. Another Application 

Let F be a field of rational functions 
over the integers. Let K be the field of 
rational functions over F in one variable m. 
Let R be a field of functions from the non- 
negative integers to F such that R includes K. 
Define ~ : R ~ R as 

~(u)(m) = u(m+l) - u(m), u e R, m any integer 

that is, ~ is the first difference function. 

We define 

Definition: A function u(m) e R is 
factential if there is a rational function 
a(m) with 

u(m+l) = a(m)u(m) 

Note that 2 m, m!, and (m) are factential, but 
2 m + I and (m2)! are noB. The name "facten- 
tial" describes the fact that both factorial 
and exponential functions are factential. 

We leave to the reader the following 
simple proposition. 

Theorem: 

(I) All rational functions are factential. 

(2) Factential functions are closed under the 
operations of taking inverses and multi- 
plication. 

(37 The nonzero factential functions are pre- 
cisely the eigenvectors of ~; if 
u(m+l) = a(m)u(m), then the eigenvalue of 
u is a(m) - I. 

(4) $ satisfies the three axioms. 

(57 ker($) = F C K, since if u e ker($), 
u(m) = u(O) s F, for all m. 

Because ker(~) is a rational function 
field over the rational numbers, we may tell 
immediately when an element of ker(~) is zero. 
Thus algorithm 1 can be used to allow us to 
tell when sums of factentlals are identically 
zero. 

Moreover, algorithm 2 allows us to deal 
with functions 

m-I 

A(m) = >: u(i) 
i=O 

where u(m) is factential, since ~(A) = u(m). 

6. An Example 

A short example of factential function 
simplification should give the flavor of the 
application of these algorithms. 

{Tn-I i/ 
We shall show that \ f-J2i-O - 2n +I= S(n) 

is identically O. We use only that 

(a) 2 n+l = 2-2 n (The factential definition) 

(b) 2 o = 1 

Applying algorithm 2, we have 

T(n) = ~(S(n)) = 2 n - (2-1)2 n + (I-I) 

= 2 n _ 2 n 

Being particularly stupid, we treat this 
as a sum of two eigenvectors. Applying 
algorithm I, we have 
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~/T(n)h : ~(i) /2nh 

2 n 
--is an eigenvector of ~, whose eigenvalue 
2 n 

can be computed knowing only the eigenvalue of 

2 n 
2 n. The eigenvalue of ~ is in fact 0. Thus 

/ h : T(n) 2 n 
~ T(n). O, so = I - is in ker(9); 
\ 2 n / 2 n 

and 

T(n) T(O) 2 0 1 
----~--= i- = I - -- = O. 

2 n ~'2 ~ 2q~ 1 

Thus T(n) is identically O, so S(n) e ker(~). 
Thus, as before 

S(n) e S(O) m 0 - i + I = 0 

Thus S(n) is identically O. 

7. An Open Problem 

Sums such as 

m-I 

f u(i), 
i=O 

with u(i) factential, are of some practical 
use; however, it would be much more interest- 
ing if m could appear inside the summation as 
well as being a limit. 

For example, in the last section we 
proved 

m-I 

2 m - I = f 2 i 

i=O 

but we cannot prove 

m 

i=O 

Most of the interesting binomial identi- 
ties are of this second type. 

This problem seems very difficult. For 
example, examine 

m-I 

S(m) = f u(m,i) 

i=O 

with u(m,i) rational in m and i. Then for 
which functions u is S rational? Clearly if 
there is a rational function v(m,i) with 

v(m,i+l) v(m,i) : u(m,i) 

then 

m-I 

S(m) = f (v(m,i+l) -v(m,i)) = v(m,m) - v(m,O) 

i=O 

is rational. 

We conjecture that S(m) is rational if 
and only if there is such a rational v(m,i); 
a general proof seems quite difficult. 

Special cases of this problem include 
inquiring if, for any rational function u(m), 
the functions 

m-I m-I m-I 

Z f f i+u , V77 7 ' or 
i=O i=O i=O i2+u(m) 

are rational. A number of methods have been 
successful in these cases and others, however. 
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