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Introduction 

Coverage functions arise frequently in 
fields such as weapon systems analysis, where 
it is often required to evaluate the probabil- 
ity that a randomly distributed point target 
(or a fixed target with a distributed mass) 
will be destroyed by one or more weapons fired 
simultaneously at it. Such a probability of 
destruction (or expected fraction of the tar- 
get destroyed) can generally be expressed in 
terms of a set of multiple integrations whose 
initial integrands contain as factors the den- 
sity distribution of the target, the distri- 
bution of the point of detonation for each 
weapon, and the probability that a weapon det- 
onating at a given point will destroy the 
target (or an element of the distributed tar- 
get) located at another point.** The mathe- 
matical form of this last mentioned condition- 
al probability, often referred to as the 
damage function of the weapon, has a very 
direct bearing on the ease with which the re- 
quired integrations can be performed. Unfor- 
tunately, however, most realistic damage func- 
tions currently in use do not permit the ex- 
pression of these integrals in closed form. 
Consequently their evaluation on a digital 
computer requires approximation or Monte Carlo 
techniques, and the mathematical formulation 
of more complicated problems involving these 
integrals is sometimes difficult. 

This paper deals with a method of evalua- 
ting coverage functions, significantly 
different from existing methods in two re- 
spects: First, the method uses a new set of 
damage functions that are on the one hand 
empirically realistic, and on the other hand 
are sufficiently mathematically tractable to 
allow fairly complicated integrals to be eval- 
uated exactly. Second, the method is imple- 
mented on the computer by means of FORMAC, the 
IBM written symbolic mathematical compiler 
(described in Reference i). This second 
aspect, which will be the primary concern of 
this paper, is an interesting example of how 
FORMAC may be used when the application of a 
mathematical approach to an actual "real world" 
problem requires cumbersome and involved com- 
putations. 

In Section i we discuss the relationship 
of the damage function to the coverage func- 
tion, and mention some of the limitations of 
existing damage functions. Section 2 deals 
(very briefly) with the mathematics of the new 
method, which is due to Mario L. Juncosa of 
The RAND Corporation; a more detailed exposi- 
tion of the method will be forthcoming from 

Dr. Juncosa at a later date. In Section 3 we 
describe the manner in which the method was 
implemented via FORMAC, together with some of 
the difficulties encountered. Finally, 
Section 4 is devoted to a sample problem, in 
which the method was used to determine the 
aimpoint of a pair of weapons that would 
optimize the probability that the target be 
destroyed. 

Before proceeding any further, we estab- 
lish some conventions regarding our notation. 
We shall think in two-dimensional terms, so 
that our targets will be assumed distributed 
in the plane. Moreover, we shall not consider 
factors such as the height above the plane at 
which a weapon detonates, so that the point of 
detonation of a weapon will be a two-dimen- 
sional random vector distributed about the 
aimpoint. Unless otherwise specified, the 
following notation will therefore be in effect: 

X 

llxll = (x12 + x22) ½ 

• f(x)dx 

f(x) P(X E dx) 

will denote the vector 

(Xl,X2); 

will denote the length of 
x (so that llx - Yll is the 
distance between x and 
y); (0.I) 

will denote ~2 f(x)dx = 

~ f((xl,x2))dXldX2; 

will denote ,~f(x)h(x)dx 
when the random variable 
X has the probability 
density function h; 

Any views expressed in this paper are 
those of the author. They should not be 
interpreted as reflecting the views of The 
RAND Corporation or the official opinion or 
policy of any of its governmental or private 
research sponsors. Papers are reproduced by 
The RAND Corporation as a courtesy to members 
of its staff. 

** 
It should be noted that problems in 

other fields can give rise to the same type of 
coverage function considered here. For ex- 
ample, the "weapons" could be radio transmit- 
ters, the "target" could be the population of 
a city, and the "expected fraction of the tar- 
get destroyed" could be the expected population 
reached by the signals. 
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and P (A I B) will denote the condi- 
tional probability of A, 
given B. 

I. Coverage Functions and Damage Functions 

Suppose we fire one weapon at a point 
target whose location is given by the (two- 
dimensional) random variable T, and suppose 
the point at which the weapon detonates is 
given by the random variable W. Then if we 
let D represent the event that the target is 
destroyed, we have 

(i.I) 

P(D) is often referred to as a coverage func- 
tion. 

If instead we simultaneously fire N weap- 
ons such that their points of detonation are 
independent random variables Wi, then we have 
(denoting the event that the target is destroy- 
ed by weapon i as Di, and the event that it is 
not by Di) 

P(D)=i- ~ P(D~ N D~ n ... N D~IT=x) P(T 6 dx) 

e2 

P(W 1 6 dy I ..... W N 6 dYN)I P(T ~ dx) 

12 i=l 2 LI " P(DiIT=x'Wi=Yi)J 

P(W i 6 dYi)~ P(T 6 dx), (1.2) 
J 

the last equality following from the indepen- 
dence of the W i. 

Let us now assume that T has a probability 
density function h, that the W i have probabil- 
ity density functions fi, and that the N weap- 
ons each have the same damage function; i.e., 
P(DilT=x,Wi=Y) = g(x,y) for all i. Then if we 
expand (1.2), we see that the coverage function 
P(D) may be expressed as a linear combination 
of integrals of the form 

n 

cal approach described in the next section only 
requires the assumption of normality of the 

Wi). 

Examination of (1.3) shows the essential 
role that the specification of the damage func- 
tion g plays in calculating the coverage func- 
tion P(D); for g must be not only empirically 
realistic, but also sufficiently mathematically 
tractable to allow this type of multiple inte- 
gral to be calculated efficiently. As an 
illustration, consider the so-called "cookie- 
cutter" damage function given by 

I i IIx-yil ~ R, 
kK(X,Y) 

0 otherwise. 

Using k R for g in (1.3) results in 

[; 
~2 i=l Ilx-yll ~ R 

dx. 

Assuming normally distributed Wi, we see that 
an integral of the type in brackets is equiva- 
lent to the integral of a circular Gaussian 
distribution with mean zero over an offset 

+ ~ . This ellipse a7 a2 

integral (which cannot be expressed in closed 
form) has been tabulated fairly completely for 
the special case a I = a2, and somewhat less com- 
pletely for the case a I # a2 .z Moreover, for 
the case n = i, an interchange of integration 
allows J itself to be expressed as such an el- 
liptical probability coverage. For n > I, how- 
ever, this interchange does not work, and conse- 
quently these tables cannot be used to evaluate 
P(D). Another limitation of kR is its somewhat 
unrealistic assumption of a totally discrete 
damage pattern for the weapon, i.e., its assump- 
tion that every point in the plane is either 
destroyed or not destroyed with probability one. 

In an attempt to overcome these difficul- 
ties, several alternative types of damage func- 
tions have been proposed and used over the 
years; we refer the reader to Reference 3 for a 
comprehensive summary of the literature in this 
field. 

2. A Different Class of Damage Functions 

The class of damage functions and the re- 
suiting approach to the evaluation of coverage 
functions that we describe here are due to 
Mario L. Juncosa of The RAND Corporation. 

where n ~ N. 
Throughout this section we shall fix R > 0 

The assumption that the N weapons have the and let A = ~R 2. We first construct a sequence 
same damage function is fairly con~non; more- of functions gm such that each gm is decreasing 
over, it is also not unusual to assume that the in IIxll, and such that gm ~ kR as m - ~. We 
W i and T are normally distributed. For sim- shall then show that for any m, (1.3) may be 
plicity's sake, we shall make these assumptions evaluated exactly when the damage function g(x, 
throughout this paper (although the mathemati- y) is taken to be gm(x-Y). Thus we shall obtain 
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a class of damage functions that are more re- 
alistic than the discrete "cookie-cutter," 
which nevertheless can be used to approximate 
k R with any degree of accuracy, and which 
allow (1.3) to be expressed in closed form. 

We now define the gm: 

Definition I For m ~ 0, let 

_ ll~mZll2 m 2k 

o Z "%'! = , Z 6 , 

k=0 

where o~ 2 = (re+l) 
m A 

The following lermna summarizes some of the 
properties of the gm: 

Lemma i 

(i) 0 ~ gm~ i- 

(ii) ~ gm(z)dz = A, all m. 
2 

If 0 < Pl < R < P2' then 

(iii) as m-co, gm(Z)-~l uniformly for 

11zll PI' 

and (iv) as m-no, gm(Z) ~0 uniformly 

llzll  P2" 

• (v) gm(Z) is a monotone decreasing func- 

tion of llzll 2. 
(We note that by (v) it suffices to show con- 
vergence for llz]l = Pl and llzll = P2 to prove 
(iii) and (iv)). 

Proof: (i) is obvious. For (ii) we have upon 
conver t ing  to po la r  coo rd ina t e s  t h a t  

m 2 2 
~ - ~  r 

I 1 ~ e m (~mr)2kr dr gm(z)dz = 2~ ~! 0 
R 2 k=O 

m 

k!2~ 2 
k=0 m 

m 

A Z 1 • k~ 
= m+l ~.' 

k=0 

=A. 

To show (iii) and (iv) we let t = and 
R = 

m 

write gin(z) = e -(m+l)t Z [(m+l)t]k 
k! 

k=0 

For the case t < i we note that 

oo 

gin(z) = I - e-(m+l)t I [(m+l)t]k 
k! 

k=m+l 

and that 
ao 

e- (m+l)t Z [ (~m~. 'l) t~k 
k=m+l 

¢o 

k 
tm+le" (m+l) t I (m~ ,i) 

k=m+l 

tm+le- (m+l) t e (re+l) 

= e(m+l)(l-t + log t) 

Since log t < t - I for t ~ i, we have proven 
(iii). 

For t > i we note that 

m (re+l) k 
gm (z) ~ tme'(m+l)t I k~ 

k=0 

e-log t e(m+l)(l-t+log t) 

which establishes (iv). 

Finally, (v) follows from 

d gm(Z) I (m+l) m [ (m+l) t ] k 
d(llzl] 2) = 7 e -  t [  -m ~ k~ 

k=O 

_ [(m+ml!t]m ] 

~0. 

Graphs of the gm are given in Fig. i; as can be 
seen, relatively small values of m provide 
fairly reasonable damage functions. 

We now describe the type of integration 
that allows (1.3) to be evaluated exactly: 

Elliptical and rectangular "cookie- 
cutters" (i.e., set-indicator functions for 
ellipses and rectangles) can also be approxi- 
mated by functions similar to the gm; moreover, 
such functions (and sums of them) can be used 
to approximate target distributions as well as 
damage patterns. Although we shall not use 
these facts, the reader should note that the 
results given here hold in this more general 
case as well. 
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Lemma 2 Let p be a polynomial in Xl, x_, 
X_~n~ let q be a negative definite quadratic 
n 
form in Xl, x2, ..., Xn. Then 

~ P(Xl,X 2 ..... Xn)eq(Xl'X2'''''Xn)dXl = 

r (x 2 ..... Xn) e s (x2 ..... Xn) , 

where r is again a polynomial and s is a neg- 
ative definite quadratic form. 
(We recall that a negative definite quadratic 

is a function ~ Z x.a..x. form in Xl, "''' Xn i j i l 3 j 

that is strictly negative for all values of 

x I ..... Xn.) 

Proof: Denote the integral in question by I. 
2 

We may write q(xl,...,Xn) = ax I + bx I + c 
where a < 0 (otherwise q could be made non- 
negative by a suitable choice of Xl). We then 
obtain by "completing the squares" that 

-b 2 ~ 2 

^ 4a + c ~ ax I XlJdxl ' I = ~, pje e 

j -~ 

where pj is the coefficient of x13 in p(x I - 
b ^ 
~a,X2,...,Xn); we note that each pj is thus a 

polynomial in x2,...,x n. 

Since a < 0 guarantees that each integral 
in the summation is a finite number, we need 

_b 2 
only show that -~ + c is a negative definite 

quadratic form in x2, ..., x n. It is easily 
_b 2 

verified that ~a + c is a quadratic form in 

x2, ..., Xn, so it suffices to prove that it 

is always negative. Suppose n~t. Then there 
~ -b 

exist x2, n 2 ..., x such that -~- + c is non- 

negative; in other words, the equation ax I + 

bx I + c = 0 has~ ~a real ~r°°t' say Xl" But this 

means that q(xl,x 2 .... ,Xn) = O, a contradic- 

_b 2 
tion. Hence -~ + c must always be negative. 

We are now in a position to express (1.3) 
in closed form: 

Theorem I Fix m ~ 0. If gm is as defined in 

Definition i, and if h, fl, "'', fn are normal 
density functions, then 

(2. i) 
may be evaluated exactly by successive integra- 
tions. 

Proof: If we let v = (vl,v2,vq,v 4) = (Xl,X 9, 

yl,Y2) , we see that gm(X:y) = p(v)eq(v) and ~ 

f.(y) = c.e ri(v) , where p is a polynomial in 

the vj, c~ are constants, and q and the r i are 
non-positive definite quadratic forms. But 
ri(v) = 0 only if Yl = Y2 = 0, and q(v) = 0 
only if x I = Yl and x 2 = Y2; hence q(v) + ri(v) 
is negative definite. 

We may thus apply L emma 2 twice to inte- 
grate each factor in the product in (2.1) with 
respect to y, thereby obtaining 

We again may show that the exponent in 
the integrand is a negative definite quadratic 
form in (Xl,X2), so applying Lemma 2 two more 

times completes our proof. 

We note here that P_ will be of the form 
s u 

re , where r is a polynomial in the coeffi- 
cients of the polynomials defining gm' fi' and 
h. 

3. The FORMAC Implementation 

Although our damage functions gm allow 
(1.3) to be evaluated exactly, the necessary 
computations very quickly become very involved; 
the reader may verify this for himself by 
attempting to compute, for example, 

r J ~ xlmx2neq(Xl'X2)dXldX2 , 

when q is a quadratic involving an xlx 9 term. 
Application of the method described ~n=the 
last section therefore requires the use of a 
symbolic compiler. An attempt was made at 
RAND several years ago using the ALTRAN com- 
piler, but this attempt failed due to size 
limitations. This problem of expression 
"blow-up" was overcome, however, in the FORMAC 
application we describe: 

The first point to note is that the den- 
sity and damage functions discussed in the last 
section can each be represented by two poly- 
nomials. Thus gm(x-y) = p(x-y)eq(x-Y), may be 
represented by tKe polynomials p and q in the 
variables Xl, x2, Yl, Y2; similarly the normal 

fi(Y) = Pi(Y) eqi(y) may be represented by the 
quadratic,polynomial qi and the constant poly- 
nomial Pi. The coefficients in these poly- 
nomials may either be numeric constants or 
polynomial expressions (in other variables) 
themselves; for example, in the problem discus- 
sed in Section 4, the coefficients in qi were 

This is also true of the approximations 
cookle-cutters , to elliptical and rectangular " 

mentioned in the footnote in Section 2. 
335 



polynomials in ~, where ~ was a parameter used 
in specifying the aimpoint of the i-th weapon. 
These polynomials are easily generated in 
FORMAC (the quadratics are especially easy to 
generate by using the EVAL routine). 

We next note that multiplying our func- 
tions is then just a matter of "minding our 
p's and q's"; i.e., if fl is represented by 
PI' ql and f2 by P2' q2' then flf2 is repre- 

sented by plP2 , ql + q2" These elementary 
polynomial operations are, of course, trivial 
in FORMAC (although multiplication does tend 
to produce large expressions). 

I (j-l) (j-3)"... "I (j=2,4 .... ), 

Fj = I (j =0). 

These formulas are easily verified by 
"completing the square" in Q and evaluating 

the integrals lj = ~ eaV2VJdv, as indicated 

in the proof of Lermna 2. For odd j, lj Cy0; 
for even j, lj is evaluated recursively 

integration by parts and equals [-~--~½ Fj 
\-aJ(_2a)J/2 

From the proof of Theorem I, it should be 
clear that the only operations necessary in 
order to evaluate (1.3) are multiplication and 
integration; and as we have just indicated, 
all functions arising in our computations are 
easily multiplied in FORMAC. Regarding the 
integration, we first observe that all the 
integrands which will arise in our computa- 
tions can be integrated by the same algorithm. 
That is, all integrands will be of the form 
peq, and hence can be evaluated by an integra- 
tion subroutine which accepts as input the 
(FORMAC polynomial) expressions P and Q in the 
(FORMAC) variable V, and returns as output the 
expressions R and S such that 

• PeQdv = Re S. (3.1) 

We therefore programmed a FORM~C routine 
(INTEGRA) to perform this integration. Since 
it is natural to integrate with respect to 
pairs of variables (x I and x2, Yl and Y2, etc.) 
etc.), we also programmed a "driver" routine 
DBINT which performs these double integrations 
simply by calling INTEGRA twice, once with 
respect to each variable. 

INTEGRA was coded to calculate R and S in 
( 3 . 1 )  as  f o l l o w s :  l e t  P(V) = PO + P l  V + " ' "  + 

9 n 
pn V and Q(V) = air" + bV + c. Then 

and 

where 

_ b 2 
S = 4-~+c 

j=0 (-2a) J/2 

j even 

, (3.2) 

is the largest even integer not 
exceeding n, 

pj is the coefficient of V j in 
e(v + d), 
-b 

d= 
2a 

and 

As a first attempt, INTEGRA wasNpro- 
grammed to compute the coefficients pj by 
using the FORMAC routine EVAL to substitute 
V + d for V in P. This program worked fine 
when d was a numeric constant but rapidly ran 
out of core when d was a polynomial. Unfor- 
tunately, this will generally be the case. 
For example, d will always be a polynomial 

when computing ~gm(X-y)f(x)dx: for when first 

integrating with respect to Xl, the coeffi- 
cient of x I in the exponent Q will be a linear 
function o~ y~ (and also of x2, if the princi- 
pal axes of the variance-covariance matrix of 
the normal distribution described by f are not 
parallel to the x I and x 2 axes). Also, after 
integrating out xl, the coefficient of x 2 in 
the resulting exponential will still be a 
linear function of YI" Moreover, if any of 
the parameters of thg distribution are vari- 
able (for example the aimpoint, or mean of the 
distribution specified by f), then these will 
be additional variables in d, and will still 
be present in the exponential even during the 
final two integrations of (1.3). 

The p. were therefore expressed in terms 
of the p. 3and d by means of the binomial ex- 
pansion,Jso that INTEGRA was left with comput- 
ing S as in (3.2), and 

F. n 

: Pk ° io) 
j=O (-2a) k=j 

j even (3.3) 

when d # 0. Variables in d produced no prob- 
lems with regard to size when this formula was 
used. 

All that was then necessary in order to 
solve a problem was to represent the desired 
functions by generating the appropriate poly- 
nomials, and then to integrate combinations of 
these functions by repeatedly calling DBINT. 

4. An Example 

The method we have described was used to 
solve a targeting problem, which we now discuss. 

336 



This example illustrates how the analytical 
results of Section 2 may be applied using the 
FORMAC methods discussed in Section 3. 

We consider the following problem: We 
are given a point target with an elliptical 
normal distribution with density function h 
about the origin, such that the major and 
minor axes of its distribution are parallel to 
the x 1- and x2-axes respectively. We attempt 
to de§troy it-with two weapons, fired indepen- 
dently, each with the same circular "cookie- 
cutter" damage function k R. The point of det- 
onation W i of each weapon is also elliptically 
normally distributed, and we assume further- 
more that both W i have the same variance- 
covariance matrix, with axes parallel to the 
x I and x$ axes. The aimpoint of the first 
weapon (i.e., the mean of Wi) is the point 
(4,0), and the mean of W 2 is the point (-4,0) 
(See Fig. 2)• All the parameters except k of 
the distributions are given constants; our 
objective is to choose that value of X (which 
we shall denote by k*) which will maximize the 
probability PD(k) that the target is destroyed• 
We denote the density function of W I by fk, 
that of W 2 by f_h• 

Intuitively we would expect 4" to be posi- 
tive and PD(X) to be first monotone increasing 
• * 
in [0,4 ), and then monotone decreasing in * 
[4 ,~). For as k increases from 0, each weap- 
on becomes less effective because it will tend 
to detonate at a point further away from the 
area where the target is most likely to be 
found• On the other hand, it is clear that 
the larger ~, the less the "lethal circles" of 
the two weapons will tend to overlap, and 
hence the area covered by their circles will 
tend to be greater• We would therefore expect, 
due to this second factor, that a small in- 
crease from 0 of k would result in a higher 
probability of destroying the target. But too 
great an increase would result, because of the 
first factor, in a lower probability• 

This problem was solved in the following 
manner: For a given m we I) generated the 
damage function gm as described in Section 2, 
2) used gm to compute the probability the tar- 
get would be destroyed, Pm(k), by (1•2), and 
3) obtained the A m which maximized Pm by set- 

d 
ting ~ P = O• This procedure was done for A m 
m = I, 2, ..., until the k m converged• 

Two simplifications immediately arose 
from the synmnetry of the problem. First, P 
(target destroyed by weapon I) = P(target de- 
stroyed by weapon 2). Second, if we let 
• ~((xl,x~)) = ~(x) = P(target is destroyed by 
w~apo~ i-IT = x~, then ~l((Xl,X2) ) = ~((-Xl, 
x2)). Determining Pm was therefore reduced to 
the following set of computations: 

~l(X) = ~fx(y)gm(X-y)dy , 

~2((Xl,X2)) = ~l((-Xl,X2)) , 

Pone = ~h(x) ~I (x) dx, 

Pboth = ~h(X)~l(X)~2(x)dx' 

(4.1) 

and P : 2P - m one Pboth " 

The second computation was done with the FORMAC 
routine EVAL, so that DBINT only needed to be 
used three times• Computational simplifica- 
tions similar to these can generally be ex- 
pected to arise from the nature of the specific 
problem being considered. 

The computations (4.1) were done for m = 
i, 2, 3 and 4. The general form of P was 

m 

Pm(X) : [2Pone(X) j - [Pboth(X)] 

2m 

: [ l 
j:0 

[e_Ymk 2 ~m 6mkk2k] " 

k=0 

Values of Pm(k) for k = O, .I, .2 ..... 1.0 
are given in Table i. Table 2 has the opti- 
mizing % and the corresponding maximum 

m • 
probabilltles Pm(km). 

We note several facts about each Pm" 
First, Pm has the shape (increasing in [0,km) , 
decreasing in [km,~)) we expected, confirming 
our intuition• Second, P is extremely flat 
in the interval [O,Xm). ~n attempt to produce 
a steeper curve by "stretching" the target 
(i.e., increasing the variance of its distri- 
bution in the x I direction), although in- 
creasing P to around .4 in [0,4 ), still 
resulted i~ a flat curve there. U~The flatness 
of Pm thus may stem more from the nature of 
the problem than the parameters of the parti- 
cular distributions involved• 

0•0 
.i 
.2 
.3 

4 
5 
6 
7 
8 
9 

1.0 

Table i 

VALUES OF Pm(k) 

Pl (4) P2 (4) P3 (4) P4 (~) 

•2889 
.2901 
.2929 
.2958 
.2968 
.2941 
.2870 
.2756 
.2608 
.2437 
.2253 

2904 .2910 
2919 2927 
2956 2969 
2994 3012 
3011 3033 
2988 3013 
.2915 2940 
.2796 .2817 
.2640 .2657 
.2462 .2474 
.2272 .2281 

.2913 

.2932 
•2977 
.3024 
.3048 
.3028 
.2955 
.2830 
.2666 
.2482 
.2286 
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Table 2 

OPTIMIZING PARAMETERS A AND 
m 

CORRESPONDING OPTIMUM PROBABILITIES Pm(Am) 

A m Pm(Am ) 

m 

I .3813 .2968 
2 .3983 .3011 
3 .4063 .3034 
4 .4109 .3048 

This flatness is somewhat disappointing 
since it shows that spreading the weapons out 
a bit produces no dramatic increase in the 
probability of destroying the target. On the 
other hand, such information could be useful. 
For example, if the two weapons were missiles, 
the knowledge that they could just as effec~ 
tively be both aimed at the same point might 
simplify guidance considerations. 

If we examine Table I, we see that the 
values of Pm at each A do not change much with 
respect to m; in fact, the difference between 
the maximum probability for m = I and m = 4 is 
less than .008. Thus, although gl certainly 
is not shaped much like kR(see Fig. I), it 
still may be used to compute a fairly good 
approximation to PD. This is because the dif- 
ference between gl and k R is "smoothed out" 
when the function§ are multiplied by probabil- 
ity density functions and then integrated. 

Regarding the optimal aimpoint A*, we see 
that the A m converge to A* fairly rapidly; in 
fact, the "smoothing out" process is suffi- 
ciently strong in this case tha$ even A I pro- 
vides a good approximation to A-. The fact 
that Amincreases in m is to be expected. The 
gm arebecoming more like k R and hence tend to 
o~erlap more, so that it is desirable to in- 
crease the distance between the aimpoints of 
the two weapons. 

In Table 3 we have presented figures 
showing the number of cpu seconds and the 
amount of core storage required to do the cal- 
culations (4.1) for m = I, 2, 3 and 4. Also 
presented, for purposes of comparison, are the 
time and space required for the "fixed aim- 
point case", i.e., for the case in which A was 
set at the beginning of the program to a 
numeric constant (.5), instead of being carried 
throughout the calculations as a FORMAC atomic 
variable. Table 4 shows the same data for m = 
2, 3, 4 with the time and core necessary for 
the case m = I subtracted; this gives a rough 
measure of the requirements to process the 
problems, less "overhead". These figures were 
obtained on an IBM System 360/65. 

We first note that "expression swell", the 
generation of large expressions in the inter- 
mediate steps of the computations, was not a 
significant problem. From Table 4 we see that 

the amount of core required increased approxi- 
mately linearly with m, the rate of increase 
being slightly faster in the variable than in 
the fixed aimpoint case. The increase with m 
in time, however, was much more rapid. In the 
fixed aimpoint case, the cpu seconds required 
increased approximately as m 5. The following 
rather tentative reasoning, although not pur- 
porting to be an explanation of this rapid 
increase, may offer some insight into what is 
going on. Equation (3.3) shows that much of 
the computing time will be spent in adding 
expressions together, and this in turn involves 
comparing the terms in the expressions. That 
is, if we wish to add a I + a 2 + ... + a r to 
b I + b 2 + ... + b s in such a manner that the 
terms in the result are combined whenever pos- 
sible (which we need to do in order to prevent 
our expressions from becoming too large), then 
we need to compare each a~ with each b4 to see j 
if they can be combined into one term; this 
requires rs comparisons. Now if the expres- 
sions we are adding have, say, mr and ms terms 
each, then there will be m2rs comparisons to 
be made. Moreover, if the results of two such 
additions each result (due to a lack of simpli- 
fication) in m2rs terms, then again adding 
these two results together will necessitate 
m4(rs) 2 comparisons. Since the amount of core 
required increases linearly with m, it may be 
safe to assume that the expressions to be added 
in (3.3) will typically satisfy these condi- 
tions, so that the double summation in (3.3) 
could account for an increase in time on the 
order of m 4. 

Table 3 

TIME AND SPACE REQUIREMENTS. TIME IS 
GIVEN IN SECONDS, STORAGE IN UNITS 

OF 102410 BYTES 

Fixed Aimpoint 

CPU Time Core Storage 
m 

I 5 154 
2 15 160 
3 67 168 
4 298 186 

Variable Aimpoint 

CPU Time Core Storage 
m 

i 5 154 
2 33 170 
3 254 204 
4 1517 286 

Examination of Table 4 also reveals that 
for each m a 2, the time used in the variable 
aimpoint case was approximately (m+l) times 
the time required for the fixed aimpoint case. 
Equation (3.3) would at first lead one to be- 
lieve that this is due to the fact that the 
presence of A in the expression d will result 
in d containing more terms when k is a FORMAC 
atomic variable than when A is a constant, and 
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that this difference will be magnified when d 
is raised to a power. As it turns out, how- 
ever, this is not the case: in all the inte- 
grations to be performed, the expression d 

-b 
(which is equal tOga ,2where the integrand 

has the exponential e av + bv + c) will have 
the same number of terms, regardless of whether 

is a numeric constant or an unassigned vari- 
able. This ratio of the variable aimpoint time 
to the fixed aimpoint time must therefore be 
due to some factor other than the number of 
terms in d. One possible explanation would be 
that the comparisons just described take longer 
when some of the terms are variables than when 
they are constants. 

Table 4 

ADJUSTED TIME AND SPACE REQUIREMENTS. 
TIME IS GIVEN IN SECONDS, STORAGE 

IN UNITS OF 102410 BYTES 

Fixed Aimpoint 

CPU Time Core Storage 
m 

2 i0 6 
3 62 14 
4 293 32 

Variable Aimpoint 

CPU Time Core Storage 
m 

2 28 16 
3 249 50 
4 1512 132 

Although the time required to compute Pm 
became prohibitive as m increased, we may be 
encouraged by two aspects of this particular 
application of our FORMAC approach: first, 
the frequently encountered phenomenon of 
"expression swell" did not prove to be a sig- 
nificant problem. Second, our results for the 
case m ~ I provided a fairly good approximation 
to the final answer; and the core storage and 
cpu time required to obtain these results were 
minimal. It remains to be seen whether this 
will be true of other applications as well. 
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Fig. 2--Contours of equal probability for the random variables 
T, Wi, and W 2. Each variable is normal with the following 
parameters: 

T W I W 2 

Mean (0 ,0)  (X ,0) (-X ,0) 

Wriance-- [: 04] E 164 :] atrixCOVariance " I /06  ] 
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