
AN APPLICATION OF FORMAC TO THE COMPUTATION
OF COVERAGE FUNCTIONS

Samuel D. Oman *
The RAND Corporation

Santa Monica, California

Introduction

Coverage functions arise frequently in
fields such as weapon systems analysis, where
it is often required to evaluate the probabil-
ity that a randomly distributed point target
(or a fixed target with a distributed mass)
will be destroyed by one or more weapons fired
simultaneously at it. Such a probability of
destruction (or expected fraction of the tar-
get destroyed) can generally be expressed in
terms of a set of multiple integrations whose
initial integrands contain as factors the den-
sity distribution of the target, the distri-
bution of the point of detonation for each
weapon, and the probability that a weapon det-
onating at a given point will destroy the
target (or an element of the distributed tar-
get) located at another point.** The mathe-
matical form of this last mentioned condition-
al probability, often referred to as the
damage function of the weapon, has a very
direct bearing on the ease with which the re-
quired integrations can be performed. Unfor-
tunately, however, most realistic damage func-
tions currently in use do not permit the ex-
pression of these integrals in closed form.
Consequently their evaluation on a digital
computer requires approximation or Monte Carlo
techniques, and the mathematical formulation
of more complicated problems involving these
integrals is sometimes difficult.

This paper deals with a method of evalua-
ting coverage functions, significantly
different from existing methods in two re-
spects: First, the method uses a new set of
damage functions that are on the one hand
empirically realistic, and on the other hand
are sufficiently mathematically tractable to
allow fairly complicated integrals to be eval-
uated exactly. Second, the method is imple-
mented on the computer by means of FORMAC, the
IBM written symbolic mathematical compiler
(described in Reference i). This second
aspect, which will be the primary concern of
this paper, is an interesting example of how
FORMAC may be used when the application of a
mathematical approach to an actual "real world"
problem requires cumbersome and involved com-
putations.

In Section i we discuss the relationship
of the damage function to the coverage func-
tion, and mention some of the limitations of
existing damage functions. Section 2 deals
(very briefly) with the mathematics of the new
method, which is due to Mario L. Juncosa of
The RAND Corporation; a more detailed exposi-
tion of the method will be forthcoming from

Dr. Juncosa at a later date. In Section 3 we
describe the manner in which the method was
implemented via FORMAC, together with some of
the difficulties encountered. Finally,
Section 4 is devoted to a sample problem, in
which the method was used to determine the
aimpoint of a pair of weapons that would
optimize the probability that the target be
destroyed.

Before proceeding any further, we estab-
lish some conventions regarding our notation.
We shall think in two-dimensional terms, so
that our targets will be assumed distributed
in the plane. Moreover, we shall not consider
factors such as the height above the plane at
which a weapon detonates, so that the point of
detonation of a weapon will be a two-dimen-
sional random vector distributed about the
aimpoint. Unless otherwise specified, the
following notation will therefore be in effect:

X

llxll = (x12 + x22) ½

• f(x)dx

f(x) P(X E dx)

will denote the vector

(Xl,X2);

will denote the length of
x (so that llx - Yll is the
distance between x and
y); (0.I)

will denote ~2 f(x)dx =

~ f((xl,x2))dXldX2;

will denote ,~f(x)h(x)dx
when the random variable
X has the probability
density function h;

Any views expressed in this paper are
those of the author. They should not be
interpreted as reflecting the views of The
RAND Corporation or the official opinion or
policy of any of its governmental or private
research sponsors. Papers are reproduced by
The RAND Corporation as a courtesy to members
of its staff.

**
It should be noted that problems in

other fields can give rise to the same type of
coverage function considered here. For ex-
ample, the "weapons" could be radio transmit-
ters, the "target" could be the population of
a city, and the "expected fraction of the tar-
get destroyed" could be the expected population
reached by the signals.

332

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800204.806303&domain=pdf&date_stamp=1971-03-23

and P (A I B) will denote the condi-
tional probability of A,
given B.

I. Coverage Functions and Damage Functions

Suppose we fire one weapon at a point
target whose location is given by the (two-
dimensional) random variable T, and suppose
the point at which the weapon detonates is
given by the random variable W. Then if we
let D represent the event that the target is
destroyed, we have

(i.I)

P(D) is often referred to as a coverage func-
tion.

If instead we simultaneously fire N weap-
ons such that their points of detonation are
independent random variables Wi, then we have
(denoting the event that the target is destroy-
ed by weapon i as Di, and the event that it is
not by Di)

P(D)=i- ~ P(D~ N D~ n ... N D~IT=x) P(T 6 dx)

e2

P(W 1 6 dy I W N 6 dYN)I P(T ~ dx)

12 i=l 2 LI " P(DiIT=x'Wi=Yi)J

P(W i 6 dYi)~ P(T 6 dx), (1.2)
J

the last equality following from the indepen-
dence of the W i.

Let us now assume that T has a probability
density function h, that the W i have probabil-
ity density functions fi, and that the N weap-
ons each have the same damage function; i.e.,
P(DilT=x,Wi=Y) = g(x,y) for all i. Then if we
expand (1.2), we see that the coverage function
P(D) may be expressed as a linear combination
of integrals of the form

n

cal approach described in the next section only
requires the assumption of normality of the

Wi).

Examination of (1.3) shows the essential
role that the specification of the damage func-
tion g plays in calculating the coverage func-
tion P(D); for g must be not only empirically
realistic, but also sufficiently mathematically
tractable to allow this type of multiple inte-
gral to be calculated efficiently. As an
illustration, consider the so-called "cookie-
cutter" damage function given by

I i IIx-yil ~ R,
kK(X,Y)

0 otherwise.

Using k R for g in (1.3) results in

[;
~2 i=l Ilx-yll ~ R

dx.

Assuming normally distributed Wi, we see that
an integral of the type in brackets is equiva-
lent to the integral of a circular Gaussian
distribution with mean zero over an offset

+ ~ . This ellipse a7 a2

integral (which cannot be expressed in closed
form) has been tabulated fairly completely for
the special case a I = a2, and somewhat less com-
pletely for the case a I # a2 .z Moreover, for
the case n = i, an interchange of integration
allows J itself to be expressed as such an el-
liptical probability coverage. For n > I, how-
ever, this interchange does not work, and conse-
quently these tables cannot be used to evaluate
P(D). Another limitation of kR is its somewhat
unrealistic assumption of a totally discrete
damage pattern for the weapon, i.e., its assump-
tion that every point in the plane is either
destroyed or not destroyed with probability one.

In an attempt to overcome these difficul-
ties, several alternative types of damage func-
tions have been proposed and used over the
years; we refer the reader to Reference 3 for a
comprehensive summary of the literature in this
field.

2. A Different Class of Damage Functions

The class of damage functions and the re-
suiting approach to the evaluation of coverage
functions that we describe here are due to
Mario L. Juncosa of The RAND Corporation.

where n ~ N.
Throughout this section we shall fix R > 0

The assumption that the N weapons have the and let A = ~R 2. We first construct a sequence
same damage function is fairly con~non; more- of functions gm such that each gm is decreasing
over, it is also not unusual to assume that the in IIxll, and such that gm ~ kR as m - ~. We
W i and T are normally distributed. For sim- shall then show that for any m, (1.3) may be
plicity's sake, we shall make these assumptions evaluated exactly when the damage function g(x,
throughout this paper (although the mathemati- y) is taken to be gm(x-Y). Thus we shall obtain

333

a class of damage functions that are more re-
alistic than the discrete "cookie-cutter,"
which nevertheless can be used to approximate
k R with any degree of accuracy, and which
allow (1.3) to be expressed in closed form.

We now define the gm:

Definition I For m ~ 0, let

_ ll~mZll2 m 2k

o Z "%'! = , Z 6 ,

k=0

where o~ 2 = (re+l)
m A

The following lermna summarizes some of the
properties of the gm:

Lemma i

(i) 0 ~ gm~ i-

(ii) ~ gm(z)dz = A, all m.
2

If 0 < Pl < R < P2' then

(iii) as m-co, gm(Z)-~l uniformly for

11zll PI'

and (iv) as m-no, gm(Z) ~0 uniformly

llzll P2"

• (v) gm(Z) is a monotone decreasing func-

tion of llzll 2.
(We note that by (v) it suffices to show con-
vergence for llz]l = Pl and llzll = P2 to prove
(iii) and (iv)).

Proof: (i) is obvious. For (ii) we have upon
conver t ing to po la r coo rd ina t e s t h a t

m 2 2
~ - ~ r

I 1 ~ e m (~mr)2kr dr gm(z)dz = 2~ ~! 0
R 2 k=O

m

k!2~ 2
k=0 m

m

A Z 1 • k~
= m+l ~.'

k=0

=A.

To show (iii) and (iv) we let t = and
R =

m

write gin(z) = e -(m+l)t Z [(m+l)t]k
k!

k=0

For the case t < i we note that

oo

gin(z) = I - e-(m+l)t I [(m+l)t]k
k!

k=m+l

and that
ao

e- (m+l)t Z [(~m~. 'l) t~k
k=m+l

¢o

k
tm+le" (m+l) t I (m~ ,i)

k=m+l

tm+le- (m+l) t e (re+l)

= e(m+l)(l-t + log t)

Since log t < t - I for t ~ i, we have proven
(iii).

For t > i we note that

m (re+l) k
gm (z) ~ tme'(m+l)t I k~

k=0

e-log t e(m+l)(l-t+log t)

which establishes (iv).

Finally, (v) follows from

d gm(Z) I (m+l) m [(m+l) t] k
d(llzl] 2) = 7 e - t [-m ~ k~

k=O

_ [(m+ml!t]m]

~0.

Graphs of the gm are given in Fig. i; as can be
seen, relatively small values of m provide
fairly reasonable damage functions.

We now describe the type of integration
that allows (1.3) to be evaluated exactly:

Elliptical and rectangular "cookie-
cutters" (i.e., set-indicator functions for
ellipses and rectangles) can also be approxi-
mated by functions similar to the gm; moreover,
such functions (and sums of them) can be used
to approximate target distributions as well as
damage patterns. Although we shall not use
these facts, the reader should note that the
results given here hold in this more general
case as well.

334

Lemma 2 Let p be a polynomial in Xl, x_,
X_~n~ let q be a negative definite quadratic
n
form in Xl, x2, ..., Xn. Then

~ P(Xl,X 2 Xn)eq(Xl'X2'''''Xn)dXl =

r (x 2 Xn) e s (x2 Xn) ,

where r is again a polynomial and s is a neg-
ative definite quadratic form.
(We recall that a negative definite quadratic

is a function ~ Z x.a..x. form in Xl, "''' Xn i j i l 3 j

that is strictly negative for all values of

x I Xn.)

Proof: Denote the integral in question by I.
2

We may write q(xl,...,Xn) = ax I + bx I + c
where a < 0 (otherwise q could be made non-
negative by a suitable choice of Xl). We then
obtain by "completing the squares" that

-b 2 ~ 2

^ 4a + c ~ ax I XlJdxl ' I = ~, pje e

j -~

where pj is the coefficient of x13 in p(x I -
b ^
~a,X2,...,Xn); we note that each pj is thus a

polynomial in x2,...,x n.

Since a < 0 guarantees that each integral
in the summation is a finite number, we need

_b 2
only show that -~ + c is a negative definite

quadratic form in x2, ..., x n. It is easily
_b 2

verified that ~a + c is a quadratic form in

x2, ..., Xn, so it suffices to prove that it

is always negative. Suppose n~t. Then there
~ -b

exist x2, n 2 ..., x such that -~- + c is non-

negative; in other words, the equation ax I +

bx I + c = 0 has~ ~a real ~r°°t' say Xl" But this

means that q(xl,x 2 ,Xn) = O, a contradic-

_b 2
tion. Hence -~ + c must always be negative.

We are now in a position to express (1.3)
in closed form:

Theorem I Fix m ~ 0. If gm is as defined in

Definition i, and if h, fl, "'', fn are normal
density functions, then

(2. i)
may be evaluated exactly by successive integra-
tions.

Proof: If we let v = (vl,v2,vq,v 4) = (Xl,X 9,

yl,Y2) , we see that gm(X:y) = p(v)eq(v) and ~

f.(y) = c.e ri(v) , where p is a polynomial in

the vj, c~ are constants, and q and the r i are
non-positive definite quadratic forms. But
ri(v) = 0 only if Yl = Y2 = 0, and q(v) = 0
only if x I = Yl and x 2 = Y2; hence q(v) + ri(v)
is negative definite.

We may thus apply L emma 2 twice to inte-
grate each factor in the product in (2.1) with
respect to y, thereby obtaining

We again may show that the exponent in
the integrand is a negative definite quadratic
form in (Xl,X2), so applying Lemma 2 two more

times completes our proof.

We note here that P_ will be of the form
s u

re , where r is a polynomial in the coeffi-
cients of the polynomials defining gm' fi' and
h.

3. The FORMAC Implementation

Although our damage functions gm allow
(1.3) to be evaluated exactly, the necessary
computations very quickly become very involved;
the reader may verify this for himself by
attempting to compute, for example,

r J ~ xlmx2neq(Xl'X2)dXldX2 ,

when q is a quadratic involving an xlx 9 term.
Application of the method described ~n=the
last section therefore requires the use of a
symbolic compiler. An attempt was made at
RAND several years ago using the ALTRAN com-
piler, but this attempt failed due to size
limitations. This problem of expression
"blow-up" was overcome, however, in the FORMAC
application we describe:

The first point to note is that the den-
sity and damage functions discussed in the last
section can each be represented by two poly-
nomials. Thus gm(x-y) = p(x-y)eq(x-Y), may be
represented by tKe polynomials p and q in the
variables Xl, x2, Yl, Y2; similarly the normal

fi(Y) = Pi(Y) eqi(y) may be represented by the
quadratic,polynomial qi and the constant poly-
nomial Pi. The coefficients in these poly-
nomials may either be numeric constants or
polynomial expressions (in other variables)
themselves; for example, in the problem discus-
sed in Section 4, the coefficients in qi were

This is also true of the approximations
cookle-cutters , to elliptical and rectangular "

mentioned in the footnote in Section 2.
335

polynomials in ~, where ~ was a parameter used
in specifying the aimpoint of the i-th weapon.
These polynomials are easily generated in
FORMAC (the quadratics are especially easy to
generate by using the EVAL routine).

We next note that multiplying our func-
tions is then just a matter of "minding our
p's and q's"; i.e., if fl is represented by
PI' ql and f2 by P2' q2' then flf2 is repre-

sented by plP2 , ql + q2" These elementary
polynomial operations are, of course, trivial
in FORMAC (although multiplication does tend
to produce large expressions).

I (j-l) (j-3)"... "I (j=2,4),

Fj = I (j =0).

These formulas are easily verified by
"completing the square" in Q and evaluating

the integrals lj = ~ eaV2VJdv, as indicated

in the proof of Lermna 2. For odd j, lj Cy0;
for even j, lj is evaluated recursively

integration by parts and equals [-~--~½ Fj
\-aJ(_2a)J/2

From the proof of Theorem I, it should be
clear that the only operations necessary in
order to evaluate (1.3) are multiplication and
integration; and as we have just indicated,
all functions arising in our computations are
easily multiplied in FORMAC. Regarding the
integration, we first observe that all the
integrands which will arise in our computa-
tions can be integrated by the same algorithm.
That is, all integrands will be of the form
peq, and hence can be evaluated by an integra-
tion subroutine which accepts as input the
(FORMAC polynomial) expressions P and Q in the
(FORMAC) variable V, and returns as output the
expressions R and S such that

• PeQdv = Re S. (3.1)

We therefore programmed a FORM~C routine
(INTEGRA) to perform this integration. Since
it is natural to integrate with respect to
pairs of variables (x I and x2, Yl and Y2, etc.)
etc.), we also programmed a "driver" routine
DBINT which performs these double integrations
simply by calling INTEGRA twice, once with
respect to each variable.

INTEGRA was coded to calculate R and S in
(3 . 1) as f o l l o w s : l e t P(V) = PO + P l V + " ' " +

9 n
pn V and Q(V) = air" + bV + c. Then

and

where

_ b 2
S = 4-~+c

j=0 (-2a) J/2

j even

, (3.2)

is the largest even integer not
exceeding n,

pj is the coefficient of V j in
e(v + d),
-b

d=
2a

and

As a first attempt, INTEGRA wasNpro-
grammed to compute the coefficients pj by
using the FORMAC routine EVAL to substitute
V + d for V in P. This program worked fine
when d was a numeric constant but rapidly ran
out of core when d was a polynomial. Unfor-
tunately, this will generally be the case.
For example, d will always be a polynomial

when computing ~gm(X-y)f(x)dx: for when first

integrating with respect to Xl, the coeffi-
cient of x I in the exponent Q will be a linear
function o~ y~ (and also of x2, if the princi-
pal axes of the variance-covariance matrix of
the normal distribution described by f are not
parallel to the x I and x 2 axes). Also, after
integrating out xl, the coefficient of x 2 in
the resulting exponential will still be a
linear function of YI" Moreover, if any of
the parameters of thg distribution are vari-
able (for example the aimpoint, or mean of the
distribution specified by f), then these will
be additional variables in d, and will still
be present in the exponential even during the
final two integrations of (1.3).

The p. were therefore expressed in terms
of the p. 3and d by means of the binomial ex-
pansion,Jso that INTEGRA was left with comput-
ing S as in (3.2), and

F. n

: Pk ° io)
j=O (-2a) k=j

j even (3.3)

when d # 0. Variables in d produced no prob-
lems with regard to size when this formula was
used.

All that was then necessary in order to
solve a problem was to represent the desired
functions by generating the appropriate poly-
nomials, and then to integrate combinations of
these functions by repeatedly calling DBINT.

4. An Example

The method we have described was used to
solve a targeting problem, which we now discuss.

336

This example illustrates how the analytical
results of Section 2 may be applied using the
FORMAC methods discussed in Section 3.

We consider the following problem: We
are given a point target with an elliptical
normal distribution with density function h
about the origin, such that the major and
minor axes of its distribution are parallel to
the x 1- and x2-axes respectively. We attempt
to de§troy it-with two weapons, fired indepen-
dently, each with the same circular "cookie-
cutter" damage function k R. The point of det-
onation W i of each weapon is also elliptically
normally distributed, and we assume further-
more that both W i have the same variance-
covariance matrix, with axes parallel to the
x I and x$ axes. The aimpoint of the first
weapon (i.e., the mean of Wi) is the point
(4,0), and the mean of W 2 is the point (-4,0)
(See Fig. 2)• All the parameters except k of
the distributions are given constants; our
objective is to choose that value of X (which
we shall denote by k*) which will maximize the
probability PD(k) that the target is destroyed•
We denote the density function of W I by fk,
that of W 2 by f_h•

Intuitively we would expect 4" to be posi-
tive and PD(X) to be first monotone increasing
• *
in [0,4), and then monotone decreasing in *
[4 ,~). For as k increases from 0, each weap-
on becomes less effective because it will tend
to detonate at a point further away from the
area where the target is most likely to be
found• On the other hand, it is clear that
the larger ~, the less the "lethal circles" of
the two weapons will tend to overlap, and
hence the area covered by their circles will
tend to be greater• We would therefore expect,
due to this second factor, that a small in-
crease from 0 of k would result in a higher
probability of destroying the target. But too
great an increase would result, because of the
first factor, in a lower probability•

This problem was solved in the following
manner: For a given m we I) generated the
damage function gm as described in Section 2,
2) used gm to compute the probability the tar-
get would be destroyed, Pm(k), by (1•2), and
3) obtained the A m which maximized Pm by set-

d
ting ~ P = O• This procedure was done for A m
m = I, 2, ..., until the k m converged•

Two simplifications immediately arose
from the synmnetry of the problem. First, P
(target destroyed by weapon I) = P(target de-
stroyed by weapon 2). Second, if we let
• ~((xl,x~)) = ~(x) = P(target is destroyed by
w~apo~ i-IT = x~, then ~l((Xl,X2)) = ~((-Xl,
x2)). Determining Pm was therefore reduced to
the following set of computations:

~l(X) = ~fx(y)gm(X-y)dy ,

~2((Xl,X2)) = ~l((-Xl,X2)) ,

Pone = ~h(x) ~I (x) dx,

Pboth = ~h(X)~l(X)~2(x)dx'

(4.1)

and P : 2P - m one Pboth "

The second computation was done with the FORMAC
routine EVAL, so that DBINT only needed to be
used three times• Computational simplifica-
tions similar to these can generally be ex-
pected to arise from the nature of the specific
problem being considered.

The computations (4.1) were done for m =
i, 2, 3 and 4. The general form of P was

m

Pm(X) : [2Pone(X) j - [Pboth(X)]

2m

: [l
j:0

[e_Ymk 2 ~m 6mkk2k] "

k=0

Values of Pm(k) for k = O, .I, .2 1.0
are given in Table i. Table 2 has the opti-
mizing % and the corresponding maximum

m •
probabilltles Pm(km).

We note several facts about each Pm"
First, Pm has the shape (increasing in [0,km) ,
decreasing in [km,~)) we expected, confirming
our intuition• Second, P is extremely flat
in the interval [O,Xm). ~n attempt to produce
a steeper curve by "stretching" the target
(i.e., increasing the variance of its distri-
bution in the x I direction), although in-
creasing P to around .4 in [0,4), still
resulted i~ a flat curve there. U~The flatness
of Pm thus may stem more from the nature of
the problem than the parameters of the parti-
cular distributions involved•

0•0
.i
.2
.3

4
5
6
7
8
9

1.0

Table i

VALUES OF Pm(k)

Pl (4) P2 (4) P3 (4) P4 (~)

•2889
.2901
.2929
.2958
.2968
.2941
.2870
.2756
.2608
.2437
.2253

2904 .2910
2919 2927
2956 2969
2994 3012
3011 3033
2988 3013
.2915 2940
.2796 .2817
.2640 .2657
.2462 .2474
.2272 .2281

.2913

.2932
•2977
.3024
.3048
.3028
.2955
.2830
.2666
.2482
.2286

337

Table 2

OPTIMIZING PARAMETERS A AND
m

CORRESPONDING OPTIMUM PROBABILITIES Pm(Am)

A m Pm(Am)

m

I .3813 .2968
2 .3983 .3011
3 .4063 .3034
4 .4109 .3048

This flatness is somewhat disappointing
since it shows that spreading the weapons out
a bit produces no dramatic increase in the
probability of destroying the target. On the
other hand, such information could be useful.
For example, if the two weapons were missiles,
the knowledge that they could just as effec~
tively be both aimed at the same point might
simplify guidance considerations.

If we examine Table I, we see that the
values of Pm at each A do not change much with
respect to m; in fact, the difference between
the maximum probability for m = I and m = 4 is
less than .008. Thus, although gl certainly
is not shaped much like kR(see Fig. I), it
still may be used to compute a fairly good
approximation to PD. This is because the dif-
ference between gl and k R is "smoothed out"
when the function§ are multiplied by probabil-
ity density functions and then integrated.

Regarding the optimal aimpoint A*, we see
that the A m converge to A* fairly rapidly; in
fact, the "smoothing out" process is suffi-
ciently strong in this case tha$ even A I pro-
vides a good approximation to A-. The fact
that Amincreases in m is to be expected. The
gm arebecoming more like k R and hence tend to
o~erlap more, so that it is desirable to in-
crease the distance between the aimpoints of
the two weapons.

In Table 3 we have presented figures
showing the number of cpu seconds and the
amount of core storage required to do the cal-
culations (4.1) for m = I, 2, 3 and 4. Also
presented, for purposes of comparison, are the
time and space required for the "fixed aim-
point case", i.e., for the case in which A was
set at the beginning of the program to a
numeric constant (.5), instead of being carried
throughout the calculations as a FORMAC atomic
variable. Table 4 shows the same data for m =
2, 3, 4 with the time and core necessary for
the case m = I subtracted; this gives a rough
measure of the requirements to process the
problems, less "overhead". These figures were
obtained on an IBM System 360/65.

We first note that "expression swell", the
generation of large expressions in the inter-
mediate steps of the computations, was not a
significant problem. From Table 4 we see that

the amount of core required increased approxi-
mately linearly with m, the rate of increase
being slightly faster in the variable than in
the fixed aimpoint case. The increase with m
in time, however, was much more rapid. In the
fixed aimpoint case, the cpu seconds required
increased approximately as m 5. The following
rather tentative reasoning, although not pur-
porting to be an explanation of this rapid
increase, may offer some insight into what is
going on. Equation (3.3) shows that much of
the computing time will be spent in adding
expressions together, and this in turn involves
comparing the terms in the expressions. That
is, if we wish to add a I + a 2 + ... + a r to
b I + b 2 + ... + b s in such a manner that the
terms in the result are combined whenever pos-
sible (which we need to do in order to prevent
our expressions from becoming too large), then
we need to compare each a~ with each b4 to see j
if they can be combined into one term; this
requires rs comparisons. Now if the expres-
sions we are adding have, say, mr and ms terms
each, then there will be m2rs comparisons to
be made. Moreover, if the results of two such
additions each result (due to a lack of simpli-
fication) in m2rs terms, then again adding
these two results together will necessitate
m4(rs) 2 comparisons. Since the amount of core
required increases linearly with m, it may be
safe to assume that the expressions to be added
in (3.3) will typically satisfy these condi-
tions, so that the double summation in (3.3)
could account for an increase in time on the
order of m 4.

Table 3

TIME AND SPACE REQUIREMENTS. TIME IS
GIVEN IN SECONDS, STORAGE IN UNITS

OF 102410 BYTES

Fixed Aimpoint

CPU Time Core Storage
m

I 5 154
2 15 160
3 67 168
4 298 186

Variable Aimpoint

CPU Time Core Storage
m

i 5 154
2 33 170
3 254 204
4 1517 286

Examination of Table 4 also reveals that
for each m a 2, the time used in the variable
aimpoint case was approximately (m+l) times
the time required for the fixed aimpoint case.
Equation (3.3) would at first lead one to be-
lieve that this is due to the fact that the
presence of A in the expression d will result
in d containing more terms when k is a FORMAC
atomic variable than when A is a constant, and

338

that this difference will be magnified when d
is raised to a power. As it turns out, how-
ever, this is not the case: in all the inte-
grations to be performed, the expression d

-b
(which is equal tOga ,2where the integrand

has the exponential e av + bv + c) will have
the same number of terms, regardless of whether

is a numeric constant or an unassigned vari-
able. This ratio of the variable aimpoint time
to the fixed aimpoint time must therefore be
due to some factor other than the number of
terms in d. One possible explanation would be
that the comparisons just described take longer
when some of the terms are variables than when
they are constants.

Table 4

ADJUSTED TIME AND SPACE REQUIREMENTS.
TIME IS GIVEN IN SECONDS, STORAGE

IN UNITS OF 102410 BYTES

Fixed Aimpoint

CPU Time Core Storage
m

2 i0 6
3 62 14
4 293 32

Variable Aimpoint

CPU Time Core Storage
m

2 28 16
3 249 50
4 1512 132

Although the time required to compute Pm
became prohibitive as m increased, we may be
encouraged by two aspects of this particular
application of our FORMAC approach: first,
the frequently encountered phenomenon of
"expression swell" did not prove to be a sig-
nificant problem. Second, our results for the
case m ~ I provided a fairly good approximation
to the final answer; and the core storage and
cpu time required to obtain these results were
minimal. It remains to be seen whether this
will be true of other applications as well.

References

I.

2.

Tobey, R., et al, "PL/i FORMAC Symbolic
Mathematics Interpreter," IBM Contri-
buted Prosram Library, 360D-03.3.004,
Hawthorne, New York, September 1969.

Ury, H. K.,"Approximate Methods for Com-
puting Elliptical Probability Coverages,"
Civil Defense Research Project, CDRP-
182-110, University of California--
Berkeley Institute of Engineering
Research, November 1962.

3. Guenther, W. C. and P. J. Terragno, "A
Review of the Literature on a Class of

339

Coverage Problems," Annals of Mathematical
Statistics, No. I, Vol. 35, 1964 (March),
p. 232.

O

fM

O

II

• O

II

it

I I I I I I I I
o.. 0o ~ -O Lr) ~ co oM

• J • •

o.

e0

r~

~O

fo

O
• L-

D~

OO

O

r~

O

"O

O

Lr~

O

OO

O

O

O

O
ED

f f l

-r-.I

1-4

~-~

O

,--4

4J
4J

U
I

-,-I

O
O
U

>¢

I I

h

(9

co

r - -

CM

L---

0 0
E~ L ...j li

,--4

0
• ,.4 v
.L I I

• ~ II

0 ~ .

i
i

r -4

. ,-.I

3 4 0

, I ~1

w2 I I I I w~

0

I I I

Fig. 2--Contours of equal probability for the random variables
T, Wi, and W 2. Each variable is normal with the following
parameters:

T W I W 2

Mean (0 ,0) (X ,0) (-X ,0)

Wriance-- [: 04] E 164 :] atrixCOVariance " I /06]

341

