
EXACT SOLUTION OF LINEAR EQUATIONS

by

Stanley Cabay

DEPARTMENT OF COMPUTER SCIENCE
University of Toronto
Toronto 181, Ontario

Abstract

The congruential method of obtaining the
exact solution of a system of linear equations
with integral coefficients is critically
reviewed. A new and efficient test for check-
ing that a sequence of residue solutions
determines the correct integer solution of the
system of equations is presented. Also dis-
cussed is an improved method for finding the
adJoint of a singular matrix.

i. Introduction

The numerous proposed methods for find-
ing the approximate solution to a system of n
linear equations, Ax = b, are inadequate when
exact solutions are required, or when the
coefficient matrix, A, is "ill-conditioned".
Methods for obtaining the exact solution of a
system of equations with integral coefficients
(solving systems with rational or floating-
point coefficients can be reduced to solving
systems with integer coefficients by appro-
priate scaling) fill this gap. Since research
on exact methods has been of a rather indepen-
dent and scattered nature, a review of the
literature is justified.

The components of the exact solution of a
system of equations with integral coefficients
will normally be rational numbers with large
numerators and denominators. This suggests
that multiple-precision operations are
inherent in exact methods. Since multiple-
precision operations are relatively slow, it
should be the intent of exact methods to
minimize the use of such operations.

Non-congruential methods fall far short
of this goal. Elimination of variables by
cross-multiplication only aggravates the pro-
blem since this causes a tremendous growth of
the size of intermediate results (see
Rosserl6). Rosser develops an alternative
method which controls the growth of inter-
mediate results but which introduces many more
computations on, now smaller, multiple-
precision numbers. Briefly, his technique of
eliminating a variable corresponds to finding
the greatest common divisor of the n multiple-
precision coefficients of that variable. The
algorithm of Blankinship3 which eliminates the
rows, rather than the columns, of the
augmented matrix suffers from the same defects
as does Rosser's.

The fraction-free (integer-preserving)
method described by Bodewig4 and by Fox8 is a
significant attempt to minimize the size of
intermediate results. The method is

essentially that of Gaussian elimination,
except that at each stage of the elimination
a common factor is systematically removed
from the transformed matrix. Luther and
Guseman 14 basically rediscover the fraction-
free technique for computing the adjoint of
an integer matrix. More recently, Barelss 1
has described a variant of the method which
by eliminating two variables at-a-tlme
(rather than one) improves the efficiency of
the elimination considerably. The fraction-
free method, however, still requires multiple-
precision arithmetic for most of the
computation.

The significant computational advantages
accruing from the congruential approach of
obtaining the exact solution of a system of
linear equations were discussed by Takahasi
and Ishibashil8 in 1961. More recently,
Borosh and Fraenkel5, and Newmanl5 have culti-
vated the approach and suggested improvements.
The congruential method permits the effective
removal of all multiple-precision computations
except at the initial and final steps of the
process.

The method consists of converting the
given system of linear equations with integral
coefficients to a system of congruences modulo
a number of primes. Multiple-precision
computations will be necessary to perform this
step if the coefficients of the augmented
matrix are larger than the capacity of the
accumulator. A solution is then obtained for
each system of congruences, using a modified
Gaussian elimination process. Only single-
precision computations are required by the
elimination process if the primes are selected
to be within the capacity of the accumulator.
Having computed Xl, x2,...,Xk_ 1 the solution

of the system of congruences (mod pk) with the

aid of the Chinese Remainder theorem (see
Knuthl2), determines at the kth stage another
term, Xk, of the mixed-radix representation

(see Knuthl2) of x:

x = x I + Pl x2 + "" " + Pl P2"''Pm-i Xm" (i.I)

Evaluation of the expression (i.i), the final
step, may again require multiple-preclslon
computation.

392

2. Description of the Method

Let A be an n x n nonsingular integral
matrix, and b an integral n x i vector.
Denote the determinant of A by d and the

adjolnt of A by A adj, so that

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800204.806310&domain=pdf&date_stamp=1971-03-23

AadJA = AA adj = dl. (2.1)

Then A adj is also an integral matrix, and

y = AadJb (2.2)

is an integral vector. The solution of the
system of linear equations

Ax = b (2.3)

is then

x = y/d. (2.4)

Before continuing, let us introduce some
notation. Given an integer z, the barred
variable, ~, refers to the residue of z
(mod pk); that is,

Zk ~ z (mod pk). (2.5)

The unbarred variable, z. , refers to the kth
coefficient of the mixed~radix representation
of z:

z = z I + PlZ2 + ... + plP2...Pm_iZm . (2.6)

Given a sequence of distinct prime
numbers {p : k = 1,2,...,m}, a corresponding
sequence o~ solutions {(yk,~k): k = 1,2 m}
is computed such that

A~k ~ ~k b (mod pk), (2.7)

where

~k ~ d (mod pk),

Yk ~ y (mod pk). (2.8)

In section 4, we shall see that only single-
precision computations are required to find
the solutions (y~,~.) in the Galois field
GF(p~), except p~rh~ps during the conversion
of tNe system Ax = b to the system of
congruences (mod pk). Using the Chinese
Remainder theorem, we can then construct the
solution (y,d) of Ay = db, provided that the
solutions (~k,~k) of the system of congruences
(mod pk) have been found for a sufficient
number of primes pw. Since the solution (y,d)
may have negative Values, it is desirable to
represent GF(Pk) symmetrically about zero,
namely by

GF(Pk) = {(l-Pk)/2 -i,0,i (Pk-l)/2}.

Given the residues Zk (l~kl N (p -1)/2)
for k = 1,2,...,m of an integer z, tha~ is

~k E z (mod pk), (2.9)

z can be reconstructed using the Chinese
Remainder theorem as follows. Suppose that

Jz I ~ (plP2...Pm-l)/2. (2.10)

A sequence {su: Isul < (plP2.)/2} is
obtained whicN satisfies "'Pk-i

z ~ s I (mod pl)

z E s 2 (mod plP2)

(2.11)

z E s m (mod plP2...pm).

But since the Chinese Remainder theorem
guarantees the uniqueness of residues, the
bound (2.10) implies that z = s .

m
v Starting with Sl = Zl = ~i' the s k s are

generated recursively for k = 2,3,...,m by

=)-l(zk-s k i) (mod pk), (2.12) z k (P l P 2 " ' ' P k _ i _

s k = Sk_ I + PlP2...Pk_iZk (2.13)

= z I + PlZ2 + ... + plP2...Pk_iZk •

The proof follows by induction. The initial
step, z ~ s I (mod pl) is obvious. Assuming

that z ~ Sk_ 1 (mod plP2...Pk_l), then

z = Sk_ 1 + cPlP2...Pk_l (2.14)

for some integer c; and z ~ ~k (mod pk)
implies that

(plP2 Pk_l)-I -- (mod pk) (2.15) c ... (Zk-Sk_ I) .

Let z k be the right-hand side of (2.15), and

let s k = Sk_ 1 + plP2...Pk_iZk . Then

s k ~ Sk_ 1 (mod plP2...Pk_l)

Sk ~ ~k (mod pk).

(2.16)

That z ~ s. mod p.p p. follows by the
k ± k

Chinese Remainder t~eorem.

Various methods, one of which is the
recursion (2.12) - (2.13), of reconstructing a
number from its residues are available.
Detailed descriptions of these methods and
their relative efficiencies are discussed by
Lipson 13. It is shown that the recursion
(2.12) - (2.13) is the best method with
respect to storage requirements and the total
number of operation needed.

393

Takahasi and Ishibashi 18 have implemented
the recursion for solving systems of linear
equations. In their paper, the recursion
(2.13) for s k is accumulated as a multiple-
precision sum. Multiple-precision
computations are then also required for the
calculation of z k in (2.12).

If instead the zi, i = 1,2,...,k-l, are
made available, the computation of z. is
reduced to a sequence of single-prec~slon
multiplications and additions in GF(Pk). None
of the multiple-precision numbers, Sk, need be
computed except for the last one, s , which is
the desired multiple-precision number z.
Although this approach does not significantly
reduce the total computation time, it permits
the effective removal of a large proportion of
multiple-precision calculations. Furthermore,
the storage required for the z 's is not
restrictive if the algorithm i~ written for a
compiler with dynamic storage allocation
capabilities. While expanding the mixed-radix
representation (2.11) for z = s , the storage

m
required by the Zk'S may simply be freed as we
evaluate successive terms of the
representation.

3. Terminating the Recursion

A crucial problem in the described
algorithm is that the correct number of
primes pl,P2,...,p m that should be used is
not known. If a sufficiently large number of
primes is used, so that

Idl, IYl ~ (PlPm--.Pm-i)/2 (3.i)

(IYl refers to the absolute value of each
element of the vector y), a unique solution
(y,d) is guaranteed by the Chinese Remainder
theorem; but needless computations will be
performed if the bound is too large.

The approach taken by Borosh and
Fraenkel 3 in overcoming the problem is to
continue computing terms, y. and d. , for the

k
mixed-radix representation of y an~ d:

Y = Yi + PlY2 + "'" + PiP2"''Pk-lYk + "'"

(3.2)

d = d I + Pld2 + ... + plP2...Pk_idk + ...

until, for some m d .4 = 0 and y .i is the
' m ~ ± " tha~± " zero vector. The probabllity successlve

terms Yk and d k for k = m+2, m+3,.., are also
zero is then extremely high since the primes,
p. , are large numbers. However, in order to

K
guarantee that

Y = Yl + PlY2 + "'" + PlP2"''Pm-lYm

(3.3)

d = d I + Pld2 + ... + plP2...Pm_ldm

is the required solution, a substitution
check is made and more primes are used if
Ay ~ db.

Since the solution (y,d) will normally
be composed of large multlple-preclsion
numbers, the substitution check is a very
undesirable feature. The main result of this

paper is the following theorem which yields a
method for completely avoiding this multiple-
precision check.

Theorem: Assume that the primes are ordered
such that Pl < P2 < p3 < Suppose that
A = (aij), an n ^ n matrix, is such that

n

lalj I -< plPm...pt, (3.4)
j=l

and b = (b i) is such that

Ibll -< plP2...pt, i = 1,2 n. (3.5)

If the mixed-radix representation of (y,d) is

Y = Yl + PlP2 " "'Pm "0 + "'" + PlP2"''Pm+t-i "0

+ PIP2. • .Pm+t'y R

(3 .6)

d = d I + plP2...Pm.0 + ... + plP2...Pm+t_l.0

+ plP2...Pm+t'dR,

where

Yl = Yl + PlY2 + "'" + PlP2"''Pm-lYm

d I = d I + Pld2 + ... + PlP2..-Pm_iYm ,

then

(3 .7)

Ay I = dlb. (3.8)

Proof: Suppose the contrary; that is
Ay T - dTb ~ 0. Then for some element of
Ay ~- db~(say, (Ay - db).), there exists an
integer c z 0 ((AYR-dRb~ i = c) such that

0 = (Ay-db) i = (AYl-dlb) i + c plP2...pm+t.

(3 .9)

Thus,

I (AYl-dlb)il e plP2...Pm+t. (3.i0)

But, using the bounds (3.4) and (3.5), and the

fact that lyll ~ (el-l)/2, Idi] ~ (Pi-l)/2,
i = 1,2,...,m~

(AYl-dlb) i = (AYl-dlb)i + Pl(AY2-d2b)i + ... +

PlP2...Pm_l(AYm-dmb) i

< plP2...pt(p I + PlP2 + ... +

PlP2...Pm).

(3.11)

Whence, since Pi < Pj for i < j,

394

(AYl-dlb) i < plP2...ptPt+l(P2 + P2P3 + ... +

P2P3..'Pm)

< plP2...Pt+2(P3 + P3P4 + ... +

P3P4...Pm)

< plP2...Pm+t •

(3.12)

Similarly ,

(AYl-dlb)i > - plP2...Pm+t , (3.13)

so that

I (AYl-dIb)il < plP2...Pm+t. (3.14)

This contradiction completes the proof.

Corollary i: If d I ~ 0, then

x = Yi/dl (3.15)

is the solution of Ax = b.

Corollary 2: If d I = 0 and YI ~ 0, then A is
singular.

Note that the theorem does not insure
that A is singular (although we are almost
certain that it is) if both d~ ± = 0 and YI is
the zero vector. Singularity can be
guaranteed only if we know that

Idl _< (plP2...pt - 1)/2. (3.16)

Note also that d T may be such that d ~ d ~ 0
and yet (3.8) will be satisfied; so that, I for
certain systems of equations, we will have
obtained the solution, x, without having
computed the full determinant, d.

The theorem is especially interesting for
the case t = i, that is when A and b are
composed of single-precision elements
satisfying

n

laijl -< PI'
j=l

(3.17)

Ibi] -< Pi"

In this case, only one occurrence of zero
coefficients, y +I = 0 and d +~ = 0, is

m z m i
sufficient to guarantee that (YT,dT) is the
required solution. A substitution-check is,
therefore, certainly unnecessary.

For t > I, the question remains as to
whether, having encountered one occurrence of
zero coefficients, it is more economical to
make a substitution check, or to continue
iterating the process until t successive
occurrences of zero coefficients have been
encountered. An indication is provided by
comparing the number of single-precision
multiplications (or the equivalent for
multiple-precision computations) required by

both methods. If the primes, Pk' are chosen
so that they just fit into the accumulator,
multiplication of two multiple-precision

numbers, bounded by plP2. . .Pt l and plP2.. .Pt2,
respectively, will correspond approximately
to tlt 2 single-precision multiplications.
FurtNermore, since the magnitude of d will
normally he of the order

(plP2...pt)n (3.18)

an estimate for m is given by

m = nt. (3.19)

Using these assumptions, a very rough approxi-
mation to the number of single-precision
multiplications required for the substitution
check is

3 2
n t (3.20)

If we make the further assumption that one
multiplication is GF(p) corresponds to three
single-precision multiplications (one division
is required for mod p conversion of an integer,
and on most computers multiplications are
about twice as fast as divisions), the total
number of single-precision multiplications
required to produce t-i additional terms in
the mixed-radix representation (3.3) of y and
d will be of the order

(t-l) n 2 (n+3t) . (3.21)

The estimates (3.21) and (3.20) indicate that
the check described in the theorem, rather the
substitution check, will be superior except
perhaps for very small n.

While this argument does show that the
use of the theorem will save most of the tithe
required for the substitution check, it should
be noted that the overall reduction in compu-
tation time is not too spectacular. Extending
the above arguments, we find that a rough
estimate of the total number of single-
precision multiplications required to compute
the solution and to verify it by the
substitution check is

3
n t (n+6t) ,

as compared to

3
n t (n+bt)

multiplications if we make use of the theorem.
Thus, the expected reduction in the computa-
tion time required for the entire algorithm is
approximately

t/(n+6t) (3.22)

of the total time. We must not, however,
overlook the other advantages of the proposed
check; namely, the check no longer requires
multiple-precision computation, and no special
code is necessary to implement it.

An obvious shortcoming of both the pro-
posed method and the substitution check is
that always more systems of congruences are
solved than are necessary to determine the
solution (Yi,di). The inequality (3.1)

395

suggests that we might instead seek bounds for
d and y and then choose a sufficient number of
primes pl,P~,...,P so that the inequality is
satisfle~. ZThis approach has been taken by
Takahasi and Ishibashi 18 and by Newman 15, who
suggest using Hadamard's inequality to compute
bounds for d and y.

The merits of this approach are apparent
when A and b are such that Hadamard's inequa-
lity yields good bounds for y and d (for
example, the bound for d will be attained for
any A which can be reduced by row-scaling to
an orthogonal matrix). Even for near-slngular
matrices, when d will he "small" relative to
its bound computed by Hadamard's inequality,
the number of primes selected by this approach
will closely approximate the correct number
(except for very special b). The calculation
of these bounds, however, will require
multiple-preclsion computations, including
multlple-precislon comparisons when searching
for larger elements of a multiple-precislon
matrix A. Despite this fact, it may very well
be that this approach of choosing the required
number of primes will require less computation
than the method proposed by the theorem.

In any case, from an argument similar to
the one which led to (3.22), we see that the
overall reduction in computation time using
either method will be negligible (except for
very special systems for which Hadamard's
bounds for d and for y are had). Thus, we
suggest the use of the method proposed by the
theorem because of its elegance and ease of
implementation.

4. Ad~oint Solution of Ax = b in GF(p)

Given a system of linear equation Ax = b
with integral coefficients, it is required to
obtain a scalar, ~, and a vector, y, in GF(p)
such that

Ay ~ db (mod p), (4.1)

where the determinant, d, of A satisfies

E d (mod p). (4.2)

We begin by computing A and b with elements in
GF(p) (using multiple-precision arithmetic if
A and b contain multiple-precision elements),
such that

5 A (mod p)
(4.3)

~ b (mod p).

The solution (d,y) of

A y ~ d b (4.4)

will then also be the solution of (4.1). Note
that

E AadJb (mod p). (4.5)

* Although we focus our attention in this sec-
tion on the finite field GF(p), the argu-
ments which follow hold equally well in any
field.

To solve the system of congruences (4.4),
one can use the usual Gaussian elimination
method with partial pivoting, except that now
all operations are performed in GF(p). Thus,
the division, a/b, involves computing b -I in
GF(p) and then multiplying b -I by a. Search-
ing for a pivot row no longer involves search-
ing for the largest pivot element; any
non-zero element will suffice since round off
errors do not enter into the computation.
Elimination and back-substitutlon normally
yield a vector z in GF(p) such that

~ 5 b (mod p). (4.6)

Then if d ~ 0 (d is the product of the pivot
elements),

= d z (mod p) (4.7)

is the solution of (4.1).

If d = 0, then d = 0 (that is, the
coefficient matrlx, A, is singular) or d is
multiple of p, and y cannot be determined by
(4.7). Newman 15, and Takahasl and Ishibashi 18
suggest terminating the search for a solution
when ~ = 0, inasmuch as A is then probably
singular. Borosh and Fraenkel 5 suggest
discarding this particular prime if it is
known that d ~ 0 (e.g. ~ ~ 0 in GF(p) for
previous primes, p). It turns out, however,
that by modifying the Gaussian elimination
process, y can still be found.

The modification is the reduction of A to \
echelon form rather than upper-triangular
form, during the forward Gauss process. If
rank (A) = n (mod p), the modification does
not alter the normal Gaussian elimination
process; no zero pivot column (column
currently being eliminated, with zero elements
on and below the diagonal) will be encountered.
If, however, a zero pivot column is encountered
(the ith column, say), elimination of this
column is omitted, and we now eliminate
column j, j = i+l,i+2,.., as if it were the
J-lst column. In this case the nth row of the
echelon form will be zero, so that rank
(~) < n (mod p).

If no more zero columns are encountered,
then rank (~) = n-i (mod p). The echelon form
of the system ~ z E ~ (rood p) becomes

~(n-2)~ = ~(n-2) (4.8)

where

X(n-2) =

a (0) a (0) a(0) a(0)
i,i " ' " l,i-i l,i " " " l,n

(i-2) a (i-2)
ai-l,i-1 i-l,i

0
a(n-2
n-l,1

0

= • . . . , b i _ l (i - 2) , . . . , b L q 2) , bn(n-2)

396

(see Forsythe and Moler 7 for notation).
Applying (4.5) to the reduced system (4.8), we
immediately obtain

(_l)n-ia(0) (i-2) (i-l)
~i = i.i • . -ai_l,i_l.ai,i+ I. • .

a (n-Z) b (n-2)
n-l,n" n ; (4.9)

that is, ~ is the determinant of the matrix
appearing in (4.8) with the ith column
replaced by the right-hand side. Furthermore,

= 0 implies that

Ay ~ 0 (mod p), (4.10)

so that the remaining elements of y can be
obtained by back-substitution in (4.8) with
zero right-hand side;

4"0,
|

YJ = I r (j-l)]-i i
L-Laj ,j

k=j+l

j = n,n-l,...,i+l

(j -i) .77k a
j,k

(mod p),

j = i-l,i-2,...,l.

(4.11)

In the case that a second zero pivot is
encountered, at least the last two rows of the
echelon form of A will be zero. Then rank

(A) < n-l, rank (AIb) < n (mod p); and by
Cramer's rule, y is the zero vector.

Shapiro 17 describes a method of computing
the adjoint of a singular matrix, A, which is
comparable to the proposed method in that
Cramer's rule is used to compute one row of
the adjoint matrix. In his method, however,
is first reduced to upper-triangular form,
which when rank (A) < n (mod p) will contain
zero diagonal elements.

Since the occurrence of more than one
zero diagonal element in an upper-triangular
matrix does not necessarily indicate a matrix
of rank less than n-l, Shapiro's method does
not distinguish between the cases rank
(~) = n-i and rank (~) < n-i during the
forward elimination. The trivial case rank
(~) < n-i is detected only during the backward
elimination process when two zero rows of the
transformed matrix ~ occur simultaneously.

The case rank (~) = n-1 is more complex
than the proposed method as well, inasmuch as
further reduction on A will be necessary
before Cramer's rule can be applied to deter-
mine a row of the adjoint. This, however,
results in only a moderate increase in the
total number of operations, since the
inefficiency occurs during the backward
elimination process.

5. Acknowledgement

The author is indebted to Professor J.D.
Lipson of the University of Toronto for his
direction during the numerous inspiring
consultations.

6. Bibliography

1 E.H. Bareiss, "Sylvester's Identity and
Multistep Integer-Preserving Gaussian
Elimination", Math. Comp. 22 (1968),
565-578.

2 W.A. Blankinship, "A New Version of the
Euclidean Algorithm", Amer. Math. Month•
70 (1963), 742-745.

3 W.A. Blankinship, "Algorithm 288:
Solution of Simultaneous Linear
Diophantine Equations", Comm. ACM 9 (July
1966), 514.

4 E. Bodewig, Matrix Calculus, North-Holland,
1959.

I. Borosh and A.S. Fraenkel, "Exact
Solutions of Linear Equations with
Rational Coefficients by Congruence
Techniques", Math. Compe 20 (1966),
107-112.

6 G.E. Collins, "Computing Multiplicative
Inverses in GF(p)", Math. Comp. 23 (1969),
197-200.

7 G. Forsythe and C.B. Moler, Computer
Solution of Linear Algebraic Equations,
Prentice-Hall, 1967.

8 L. Fox, An Introduction to Numerical
Linear Algebra, Clarendon Press, 1964.

9 J.A. Howell and R.T. Gregory, "An
Algorithm for Solving Linear Algebraic
Equations using Residue Arithmetic I", BIT
9 (1969), 200-224.

i0 J.A. Howell and R.T. Gregory, "An
Algorithm for Solving Linear Algebraic
Equations using Residue Arithmetic II", BIT
9 (1969), 324-337•

ii J.A. Howell and R.T. Gregory, "Solving
Linear Equations using Residue Arithmetic -
Algorithm II", BIT i0 (1970), 23-37.

12 D.E. Knuth, The Art of Computer Programming
Vol. 2: Seminumerical Algorithms, Addison-
Wesley, 1969.

13 J.D. Lipson, "Interpolation and Chinese
Remainder Algorithms", University of
Toronto Computer Science Technical Report,
1970.

14 H.A. Luther and L.F. Guseman, Jr., "A
Finite Sequentially Compact Process for the
Adjoints of Matrices over Arbitrary
Integral Domains", Comm. ACM 5 (1962),
447-448.

15 M. Newman, "Solving Equations Exactly",
J. Res. Nat. Bureau Standards-B, 71B
(1967), 171-179.

16 J.B. Rosser, "A Method of Computing Exact
Inverses of Matrices with Integer
Coefficients", J. Res. Nat. Bureau
Standards, 49 (1952), 349-358.

397

17

18

G. Shapiro, "Gauss Elimination for
Singular Matrices", Math. Comp. 17 (1963),
441-445.

H. Takahasi and Y. Ishibashi, "A New
Method for 'Exact Calculation' by a
Digital Computer", Information Processing
in Japan, i (1961), 28-42.

398

