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Abstract 

The congruential method of obtaining the 
exact solution of a system of linear equations 
with integral coefficients is critically 
reviewed. A new and efficient test for check- 
ing that a sequence of residue solutions 
determines the correct integer solution of the 
system of equations is presented. Also dis- 
cussed is an improved method for finding the 
adJoint of a singular matrix. 

i. Introduction 

The numerous proposed methods for find- 
ing the approximate solution to a system of n 
linear equations, Ax = b, are inadequate when 
exact solutions are required, or when the 
coefficient matrix, A, is "ill-conditioned". 
Methods for obtaining the exact solution of a 
system of equations with integral coefficients 
(solving systems with rational or floating- 
point coefficients can be reduced to solving 
systems with integer coefficients by appro- 
priate scaling) fill this gap. Since research 
on exact methods has been of a rather indepen- 
dent and scattered nature, a review of the 
literature is justified. 

The components of the exact solution of a 
system of equations with integral coefficients 
will normally be rational numbers with large 
numerators and denominators. This suggests 
that multiple-precision operations are 
inherent in exact methods. Since multiple- 
precision operations are relatively slow, it 
should be the intent of exact methods to 
minimize the use of such operations. 

Non-congruential methods fall far short 
of this goal. Elimination of variables by 
cross-multiplication only aggravates the pro- 
blem since this causes a tremendous growth of 
the size of intermediate results (see 
Rosserl6). Rosser develops an alternative 
method which controls the growth of inter- 
mediate results but which introduces many more 
computations on, now smaller, multiple- 
precision numbers. Briefly, his technique of 
eliminating a variable corresponds to finding 
the greatest common divisor of the n multiple- 
precision coefficients of that variable. The 
algorithm of Blankinship3 which eliminates the 
rows, rather than the columns, of the 
augmented matrix suffers from the same defects 
as does Rosser's. 

The fraction-free (integer-preserving) 
method described by Bodewig4 and by Fox8 is a 
significant attempt to minimize the size of 
intermediate results. The method is 

essentially that of Gaussian elimination, 
except that at each stage of the elimination 
a common factor is systematically removed 
from the transformed matrix. Luther and 
Guseman 14 basically rediscover the fraction- 
free technique for computing the adjoint of 
an integer matrix. More recently, Barelss 1 
has described a variant of the method which 
by eliminating two variables at-a-tlme 
(rather than one) improves the efficiency of 
the elimination considerably. The fraction- 
free method, however, still requires multiple- 
precision arithmetic for most of the 
computation. 

The significant computational advantages 
accruing from the congruential approach of 
obtaining the exact solution of a system of 
linear equations were discussed by Takahasi 
and Ishibashil8 in 1961. More recently, 
Borosh and Fraenkel5, and Newmanl5 have culti- 
vated the approach and suggested improvements. 
The congruential method permits the effective 
removal of all multiple-precision computations 
except at the initial and final steps of the 
process. 

The method consists of converting the 
given system of linear equations with integral 
coefficients to a system of congruences modulo 
a number of primes. Multiple-precision 
computations will be necessary to perform this 
step if the coefficients of the augmented 
matrix are larger than the capacity of the 
accumulator. A solution is then obtained for 
each system of congruences, using a modified 
Gaussian elimination process. Only single- 
precision computations are required by the 
elimination process if the primes are selected 
to be within the capacity of the accumulator. 
Having computed Xl, x2,...,Xk_ 1 the solution 

of the system of congruences (mod pk ) with the 

aid of the Chinese Remainder theorem (see 
Knuthl2), determines at the kth stage another 
term, Xk, of the mixed-radix representation 

(see Knuthl2) of x: 

x = x I + Pl x2 + "" " + Pl P2"''Pm-i Xm" (i.I) 

Evaluation of the expression (i.i), the final 
step, may again require multiple-preclslon 
computation. 
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2. Description of the Method 

Let A be an n x n nonsingular integral 
matrix, and b an integral n x i vector. 
Denote the determinant of A by d and the 

adjolnt of A by A adj, so that 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800204.806310&domain=pdf&date_stamp=1971-03-23


AadJA = AA adj = dl. (2.1) 

Then A adj is also an integral matrix, and 

y = AadJb (2.2) 

is an integral vector. The solution of the 
system of linear equations 

Ax = b (2.3) 

is then 

x = y/d. (2.4) 

Before continuing, let us introduce some 
notation. Given an integer z, the barred 
variable, ~, refers to the residue of z 
(mod pk); that is, 

Zk ~ z (mod pk ). (2.5) 

The unbarred variable, z. , refers to the kth 
coefficient of the mixed~radix representation 
of z: 

z = z I + PlZ2 + ... + plP2...Pm_iZm . (2.6) 

Given a sequence of distinct prime 
numbers {p : k = 1,2,...,m}, a corresponding 
sequence o~ solutions {(yk,~k): k = 1,2 ..... m} 
is computed such that 

A~k ~ ~k b (mod pk ), (2.7) 

where 

~k ~ d (mod pk ), 

Yk ~ y (mod pk ). (2.8) 

In section 4, we shall see that only single- 
precision computations are required to find 
the solutions (y~,~.) in the Galois field 
GF(p~), except p~rh~ps during the conversion 
of tNe system Ax = b to the system of 
congruences (mod pk ). Using the Chinese 
Remainder theorem, we can then construct the 
solution (y,d) of Ay = db, provided that the 
solutions (~k,~k) of the system of congruences 
(mod pk ) have been found for a sufficient 
number of primes pw. Since the solution (y,d) 
may have negative Values, it is desirable to 
represent GF(Pk) symmetrically about zero, 
namely by 

GF(Pk) = {(l-Pk)/2 ..... -i,0,i ..... (Pk-l)/2}. 

Given the residues Zk (l~kl N (p -1)/2) 
for k = 1,2,...,m of an integer z, tha~ is 

~k E z (mod pk ), (2.9) 

z can be reconstructed using the Chinese 
Remainder theorem as follows. Suppose that 

Jz I ~ (plP2...Pm-l)/2. (2.10) 

A sequence {su: Isul < (plP2. )/2} is 
obtained whicN satisfies "'Pk-i 

z ~ s I (mod pl ) 

z E s 2 (mod plP2 ) 

(2.11) 

z E s m (mod plP2...pm ). 

But since the Chinese Remainder theorem 
guarantees the uniqueness of residues, the 
bound (2.10) implies that z = s . 

m 
v Starting with Sl = Zl = ~i' the s k s are 

generated recursively for k = 2,3,...,m by 

= )-l(zk-s k i ) (mod pk ), (2.12) z k ( P l P 2 " ' ' P k _ i  _ 

s k = Sk_ I + PlP2...Pk_iZk (2.13) 

= z I + PlZ2 + ... + plP2...Pk_iZk • 

The proof follows by induction. The initial 
step, z ~ s I (mod pl ) is obvious. Assuming 

that z ~ Sk_ 1 (mod plP2...Pk_l ), then 

z = Sk_ 1 + cPlP2...Pk_l (2.14) 

for some integer c; and z ~ ~k (mod pk ) 
implies that 

(plP2 Pk_l )-I -- (mod pk ) (2.15) c ... (Zk-Sk_ I) . 

Let z k be the right-hand side of (2.15), and 

let s k = Sk_ 1 + plP2...Pk_iZk . Then 

s k ~ Sk_ 1 (mod plP2...Pk_l ) 

Sk ~ ~k (mod pk ). 

(2.16) 

That z ~ s. mod p.p .... p. follows by the 
k ± k 

Chinese Remainder t~eorem. 

Various methods, one of which is the 
recursion (2.12) - (2.13), of reconstructing a 
number from its residues are available. 
Detailed descriptions of these methods and 
their relative efficiencies are discussed by 
Lipson 13. It is shown that the recursion 
(2.12) - (2.13) is the best method with 
respect to storage requirements and the total 
number of operation needed. 
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Takahasi and Ishibashi 18 have implemented 
the recursion for solving systems of linear 
equations. In their paper, the recursion 
(2.13) for s k is accumulated as a multiple- 
precision sum. Multiple-precision 
computations are then also required for the 
calculation of z k in (2.12). 

If instead the zi, i = 1,2,...,k-l, are 
made available, the computation of z. is 
reduced to a sequence of single-prec~slon 
multiplications and additions in GF(Pk). None 
of the multiple-precision numbers, Sk, need be 
computed except for the last one, s , which is 
the desired multiple-precision number z. 
Although this approach does not significantly 
reduce the total computation time, it permits 
the effective removal of a large proportion of 
multiple-precision calculations. Furthermore, 
the storage required for the z 's is not 
restrictive if the algorithm i~ written for a 
compiler with dynamic storage allocation 
capabilities. While expanding the mixed-radix 
representation (2.11) for z = s , the storage 

m 
required by the Zk'S may simply be freed as we 
evaluate successive terms of the 
representation. 

3. Terminating the Recursion 

A crucial problem in the described 
algorithm is that the correct number of 
primes pl,P2,...,p m that should be used is 
not known. If a sufficiently large number of 
primes is used, so that 

Idl, IYl ~ (PlPm--.Pm-i)/2 (3.i) 

(IYl refers to the absolute value of each 
element of the vector y), a unique solution 
(y,d) is guaranteed by the Chinese Remainder 
theorem; but needless computations will be 
performed if the bound is too large. 

The approach taken by Borosh and 
Fraenkel 3 in overcoming the problem is to 
continue computing terms, y. and d. , for the 

k 
mixed-radix representation of y an~ d: 

Y = Yi + PlY2 + "'" + PiP2"''Pk-lYk + "'" 

(3.2) 

d = d I + Pld2 + ... + plP2...Pk_idk + ... 

until, for some m d .4 = 0 and y .i is the 
' m ~ ±  " tha~± " zero vector. The probabllity successlve 

terms Yk and d k for k = m+2, m+3,.., are also 
zero is then extremely high since the primes, 
p. , are large numbers. However, in order to 

K 
guarantee that 

Y = Yl + PlY2 + "'" + PlP2"''Pm-lYm 

(3.3) 

d = d I + Pld2 + ... + plP2...Pm_ldm 

is the required solution, a substitution 
check is made and more primes are used if 
Ay ~ db. 

Since the solution (y,d) will normally 
be composed of large multlple-preclsion 
numbers, the substitution check is a very 
undesirable feature. The main result of this 

paper is the following theorem which yields a 
method for completely avoiding this multiple- 
precision check. 

Theorem: Assume that the primes are ordered 
such that Pl < P2 < p3 < ... . Suppose that 
A = (aij), an n ^ n matrix, is such that 

n 

lalj I -< plPm...pt, (3.4) 
j=l 

and b = (b i) is such that 

Ibll -< plP2...pt, i = 1,2 ..... n. (3.5) 

If the mixed-radix representation of (y,d) is 

Y = Yl + PlP2 " "'Pm "0 + "'" + PlP2"''Pm+t-i "0 

+ PIP2. • .Pm+t'y R 

(3 .6)  

d = d I + plP2...Pm.0 + ... + plP2...Pm+t_l.0 

+ plP2...Pm+t'dR, 

where 

Yl = Yl + PlY2 + "'" + PlP2"''Pm-lYm 

d I = d I + Pld2 + ... + PlP2..-Pm_iYm , 

then 

(3 .7)  

Ay I = dlb. (3.8) 

Proof: Suppose the contrary; that is 
Ay T - dTb ~ 0. Then for some element of 
Ay ~- db~(say, (Ay - db).), there exists an 
integer c z 0 ((AYR-dRb~ i = c) such that 

0 = (Ay-db) i = (AYl-dlb) i + c plP2...pm+t. 

(3 .9)  

Thus, 

I (AYl-dlb)il e plP2...Pm+t. (3.i0) 

But, using the bounds (3.4) and (3.5), and the 

fact that lyll ~ (el-l)/2, Idi] ~ (Pi-l)/2, 
i = 1,2,...,m~ 

(AYl-dlb) i = (AYl-dlb)i + Pl(AY2-d2b)i + ... + 

PlP2...Pm_l(AYm-dmb) i 

< plP2...pt(p I + PlP2 + ... + 

PlP2...Pm). 

(3.11)  

Whence, since Pi < Pj for i < j, 
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(AYl-dlb) i < plP2...ptPt+l(P2 + P2P3 + ... + 

P2P3..'Pm ) 

< plP2...Pt+2(P3 + P3P4 + ... + 

P3P4...Pm ) 

< plP2...Pm+t • 

(3.12) 

Similarly , 

(AYl-dlb)i > - plP2...Pm+t , (3.13) 

so that 

I (AYl-dIb)il < plP2...Pm+t. (3.14) 

This contradiction completes the proof. 

Corollary i: If d I ~ 0, then 

x = Yi/dl (3.15) 

is the solution of Ax = b. 

Corollary 2: If d I = 0 and YI ~ 0, then A is 
singular. 

Note that the theorem does not insure 
that A is singular (although we are almost 
certain that it is) if both d~ ± = 0 and YI is 
the zero vector. Singularity can be 
guaranteed only if we know that 

Idl _< (plP2...pt - 1)/2. (3.16) 

Note also that d T may be such that d ~ d ~ 0 
and yet (3.8) will be satisfied; so that, I for 
certain systems of equations, we will have 
obtained the solution, x, without having 
computed the full determinant, d. 

The theorem is especially interesting for 
the case t = i, that is when A and b are 
composed of single-precision elements 
satisfying 

n 

laijl -< PI' 
j=l 

(3.17) 

Ibi] -< Pi" 

In this case, only one occurrence of zero 
coefficients, y +I = 0 and d +~ = 0, is 

m z m i 
sufficient to guarantee that (YT,dT) is the 
required solution. A substitution-check is, 
therefore, certainly unnecessary. 

For t > I, the question remains as to 
whether, having encountered one occurrence of 
zero coefficients, it is more economical to 
make a substitution check, or to continue 
iterating the process until t successive 
occurrences of zero coefficients have been 
encountered. An indication is provided by 
comparing the number of single-precision 
multiplications (or the equivalent for 
multiple-precision computations) required by 

both methods. If the primes, Pk' are chosen 
so that they just fit into the accumulator, 
multiplication of two multiple-precision 

numbers, bounded by plP2. . .Pt l  and plP2.. .Pt2,  
respectively, will correspond approximately 
to tlt 2 single-precision multiplications. 
FurtNermore, since the magnitude of d will 
normally he of the order 

(plP2...pt)n (3.18) 

an estimate for m is given by 

m = nt. (3.19) 

Using these assumptions, a very rough approxi- 
mation to the number of single-precision 
multiplications required for the substitution 
check is 

3 2 
n t (3.20) 

If we make the further assumption that one 
multiplication is GF(p) corresponds to three 
single-precision multiplications (one division 
is required for mod p conversion of an integer, 
and on most computers multiplications are 
about twice as fast as divisions), the total 
number of single-precision multiplications 
required to produce t-i additional terms in 
the mixed-radix representation (3.3) of y and 
d will be of the order 

(t-l) n 2 (n+3t) . (3.21) 

The estimates (3.21) and (3.20) indicate that 
the check described in the theorem, rather the 
substitution check, will be superior except 
perhaps for very small n. 

While this argument does show that the 
use of the theorem will save most of the tithe 
required for the substitution check, it should 
be noted that the overall reduction in compu- 
tation time is not too spectacular. Extending 
the above arguments, we find that a rough 
estimate of the total number of single- 
precision multiplications required to compute 
the solution and to verify it by the 
substitution check is 

3 
n t (n+6t) , 

as compared to 

3 
n t (n+bt) 

multiplications if we make use of the theorem. 
Thus, the expected reduction in the computa- 
tion time required for the entire algorithm is 
approximately 

t/(n+6t) (3.22) 

of the total time. We must not, however, 
overlook the other advantages of the proposed 
check; namely, the check no longer requires 
multiple-precision computation, and no special 
code is necessary to implement it. 

An obvious shortcoming of both the pro- 
posed method and the substitution check is 
that always more systems of congruences are 
solved than are necessary to determine the 
solution (Yi,di). The inequality (3.1) 
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suggests that we might instead seek bounds for 
d and y and then choose a sufficient number of 
primes pl,P~,...,P so that the inequality is 
satisfle~. ZThis approach has been taken by 
Takahasi and Ishibashi 18 and by Newman 15, who 
suggest using Hadamard's inequality to compute 
bounds for d and y. 

The merits of this approach are apparent 
when A and b are such that Hadamard's inequa- 
lity yields good bounds for y and d (for 
example, the bound for d will be attained for 
any A which can be reduced by row-scaling to 
an orthogonal matrix). Even for near-slngular 
matrices, when d will he "small" relative to 
its bound computed by Hadamard's inequality, 
the number of primes selected by this approach 
will closely approximate the correct number 
(except for very special b). The calculation 
of these bounds, however, will require 
multiple-preclsion computations, including 
multlple-precislon comparisons when searching 
for larger elements of a multiple-precislon 
matrix A. Despite this fact, it may very well 
be that this approach of choosing the required 
number of primes will require less computation 
than the method proposed by the theorem. 

In any case, from an argument similar to 
the one which led to (3.22), we see that the 
overall reduction in computation time using 
either method will be negligible (except for 
very special systems for which Hadamard's 
bounds for d and for y are had). Thus, we 
suggest the use of the method proposed by the 
theorem because of its elegance and ease of 
implementation. 

4. Ad~oint Solution of Ax = b in GF(p) 

Given a system of linear equation Ax = b 
with integral coefficients, it is required to 
obtain a scalar, ~, and a vector, y, in GF(p) 
such that 

Ay ~ db (mod p), (4.1) 

where the determinant, d, of A satisfies 

E d (mod p). (4.2) 

We begin by computing A and b with elements in 
GF(p) (using multiple-precision arithmetic if 
A and b contain multiple-precision elements), 
such that 

5 A (mod p) 
(4.3) 

~ b (mod p). 

The solution (d,y) of 

A y ~ d b (4.4) 

will then also be the solution of (4.1). Note 
that 

E AadJb (mod p). (4.5) 

* Although we focus our attention in this sec- 
tion on the finite field GF(p), the argu- 
ments which follow hold equally well in any 
field. 

To solve the system of congruences (4.4), 
one can use the usual Gaussian elimination 
method with partial pivoting, except that now 
all operations are performed in GF(p). Thus, 
the division, a/b, involves computing b -I in 
GF(p) and then multiplying b -I by a. Search- 
ing for a pivot row no longer involves search- 
ing for the largest pivot element; any 
non-zero element will suffice since round off 
errors do not enter into the computation. 
Elimination and back-substitutlon normally 
yield a vector z in GF(p) such that 

~ 5 b (mod p). (4.6) 

Then if d ~ 0 (d is the product of the pivot 
elements), 

= d z (mod p) (4.7) 

is the solution of (4.1). 

If d = 0, then d = 0 (that is, the 
coefficient matrlx, A, is singular) or d is 
multiple of p, and y cannot be determined by 
(4.7). Newman 15, and Takahasl and Ishibashi 18 
suggest terminating the search for a solution 
when ~ = 0, inasmuch as A is then probably 
singular. Borosh and Fraenkel 5 suggest 
discarding this particular prime if it is 
known that d ~ 0 (e.g. ~ ~ 0 in GF(p) for 
previous primes, p). It turns out, however, 
that by modifying the Gaussian elimination 
process, y can still be found. 

The modification is the reduction of A to \ 
echelon form rather than upper-triangular 
form, during the forward Gauss process. If 
rank (A) = n (mod p), the modification does 
not alter the normal Gaussian elimination 
process; no zero pivot column (column 
currently being eliminated, with zero elements 
on and below the diagonal) will be encountered. 
If, however, a zero pivot column is encountered 
(the ith column, say), elimination of this 
column is omitted, and we now eliminate 
column j, j = i+l,i+2,.., as if it were the 
J-lst column. In this case the nth row of the 
echelon form will be zero, so that rank 
(~) < n (mod p). 

If no more zero columns are encountered, 
then rank (~) = n-i (mod p). The echelon form 
of the system ~ z E ~ (rood p) becomes 

~(n-2)~ = ~(n-2) (4.8) 

where 

X( n-2 ) = 

a (0) a (0) a(0) a(0) 
i,i " ' "  l,i-i l,i " " " l,n 

(i-2) a (i-2) 
ai-l,i-1 i-l,i 

0 
a(n-2 
n-l,1 

0 

= • . . . ,  b i _ l ( i - 2 )  , . . . ,  b L q 2 )  , bn(n-2)   
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(see Forsythe and Moler 7 for notation). 
Applying (4.5) to the reduced system (4.8), we 
immediately obtain 

(_l)n-ia(0) (i-2) (i-l) 
~i = i.i • . -ai_l,i_l.ai,i+ I. • . 

a (n-Z) b (n-2) 
n-l,n" n ; (4.9) 

that is, ~ is the determinant of the matrix 
appearing in (4.8) with the ith column 
replaced by the right-hand side. Furthermore, 

= 0 implies that 

Ay ~ 0 (mod p), (4.10) 

so that the remaining elements of y can be 
obtained by back-substitution in (4.8) with 
zero right-hand side; 

4"0, 
| 

YJ = I r (j-l)]-i i 
L-Laj ,j 

k=j+l 

j = n,n-l,...,i+l 

(j -i) .77k a 
j,k 

(mod p), 

j = i-l,i-2,...,l. 

(4.11) 

In the case that a second zero pivot is 
encountered, at least the last two rows of the 
echelon form of A will be zero. Then rank 

(A) < n-l, rank (AIb) < n (mod p); and by 
Cramer's rule, y is the zero vector. 

Shapiro 17 describes a method of computing 
the adjoint of a singular matrix, A, which is 
comparable to the proposed method in that 
Cramer's rule is used to compute one row of 
the adjoint matrix. In his method, however, 
is first reduced to upper-triangular form, 
which when rank (A) < n (mod p) will contain 
zero diagonal elements. 

Since the occurrence of more than one 
zero diagonal element in an upper-triangular 
matrix does not necessarily indicate a matrix 
of rank less than n-l, Shapiro's method does 
not distinguish between the cases rank 
(~) = n-i and rank (~) < n-i during the 
forward elimination. The trivial case rank 
(~) < n-i is detected only during the backward 
elimination process when two zero rows of the 
transformed matrix ~ occur simultaneously. 

The case rank (~) = n-1 is more complex 
than the proposed method as well, inasmuch as 
further reduction on A will be necessary 
before Cramer's rule can be applied to deter- 
mine a row of the adjoint. This, however, 
results in only a moderate increase in the 
total number of operations, since the 
inefficiency occurs during the backward 
elimination process. 
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