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Abstract

Algorithms for symbolic partial fraction decomposition and indefinite integration
of rational functions are described. Two types of partial fraction decomposition are
investigated, square-free and complete square-free partial fraction decomposition.

A method is derived, based on the solution of a linear system, which produces the
square-free decomposition of any rational function, say A/B. The computing time is
shown to be O(n4(ln nf)z) where deg(d) < deg(B) =n and f is a number which is
closely related to the size of the coefficients which occur in A and B. The com-
plete square-free partial fraction decomposition can then be directly obtained and it
is shown that the computing time for this process is also bounded by O(n4(ln nf,)z).

A thorough analysis is then made of the classical method for rational function
integration, due to Hermite. It is shown that the most efficient implementation of
this method has a computing time of O(ksns(ln nc)Z), where ¢ is a number closely
related to f and k is the number of square-free factors of B . A new method is then
presented which avoids entirely the use of partial fraction decomposition and instead
relies on the solution of an easily obtainable linear system. Theoretical analysis
shows that the computing time for this method is O(n5(ln nf)z) and extensive testing

substantiates its superiority over Hermite's method.



1. INTRODUCTION

The idea of using computers to do symbolic mathematics has been with us now
for almost two decades. Many computer systems have been developed, some of
which concentrate on a particular task (e.g. symbolic integration) while others pro-
vide a wide variety of operations on large classes of mathematical expressions. A
rather complete list of these systems can be found in [9 ] and [10].

The classical method for symbolic rational function integration is due to the
19th century mathematician Charles Hermite, [5 ]. Several systems, such as
Engelman's MATHILAB, [ 3], and Moses' SIN, [8 ], have relied on Hermite's method
to perform partial fraction decomposition and rational function integration. Tobey,
in [11] undertook a detailed study of possible implementations resulting from
Hermite's method, expressed these strategies in algorithmic form and then proved
their correctness.

More recently people such as Collins [1 ] and Knuth [ 7 ] have developed
analysis techniques which can be applied to algorithms which perform complex,
symbolic mathematical operations. In Section 2 I will lay the theoretical framework
for the development of partial fraction decomposition and symbolic integration
algorithms. Also, the basic theorems for performing a computing time analysis of
these algorithms will be presented. In Section 3, several algorithms for partial
fraction decomposition, including a new method, will be derived and their computing
times will be analyzed. In Section 4, algorithms which implement Hermite's method
for rational function integration will be developed and analyzed. These algorithms
will then be compared to a new method. Both a theoretical and an empirical analysis
will be done. In Section 5 several extensions of this new method for integration

will be discussed.




2. DEFINITIONS AND THEORY

In order to analyze the efficiency of algorithms it is necessary to develop the
computing times for all subparts of the algorithm. Moreover, we require that these
computing times shall be independent of the particular computer on which these
algorithms may be implemented. Let us assume that integers are represented in
radix form with arbitrary base B. Then computing times for the arithmetic operations
can be expressed as functions of the number of B-digits of the numbers which occur
in the algorithms. However, since the number of B-digits of N is [logﬁN] + 1 and since
logBN = (In N)/(In B) where "In" is the natural logarithm function and since we will
usually ignore constant multipliers, the computing times are given in terms of In N. Also,
these constant multipliers are dependent upon the particular computer of implementation,
the data representation and numerous other details. Tt is . therefore, useful to ignore
them uniformly and provide an analysis which is independent of any particular com-
puter. I will now state several theorems which give the computing times for operations
on integers and univariate polynomials. For proofs of these theorems, see [1 ].

These results will be used in analyzing the algorithms which occur in the latter
sections.
Definition: f(x) = O(g(x)) means that there exists a constant ¢ such that

f(x) = c.g(x) for all sufficiently large x.

The following theorems present computing times for algorithms which can be
found in [7 ].

Theorem 2.1. Let t(a,b) be the time required to compute a+b (or a-b). Let

T(d) = max {t(a,b), |a|, |b| = d}. Then T(d) = O(ln d).



Theorem 2.2. Tot t(a,b) be the time required to compute a-b. Let

T(d,e) » max{t(a,b), [a] = d, |b| = e}. Then T(d,e) = O((In d)(In e)).
Theorem 2.2 refers to a classical multiplication algorithm. Although
recently developed algorithms for multiplication of large integers are much
faster, see [7], we will assume in this paper that the above computing time
applies.

Theorem 2.3. Let t(a,b) be the time required to compute q and r given a and b,

such that a = bg+r, o< |r| <b, ar 20, abg =z0. Let T(d,e) =

max {t(a,b), |b| = d, |q| = e}. Then T(d,e) = O((In d)(In e)).

m i
Definition: Let A(x) = z a,x  be a univariate polynomial with integer coefficients,
i=o
m

deg(A) = m. Then, norm(A) =V [ai|.
—i=0

Norm(A) is a norm for the ring of polynomials over the integers and hence satisfies

the following rules: norm(A+B) < norm(A) + norm(B), norm(A-B) < norm(A) -norm(B).

Definition: U(d,m) = {A(x): norm(A) < d, deg(A) < m}.

Theorem 2.4. The time to compute A(x) + B(x) for A, B € U(d,m) is O(m(ln d)).

Theorem 2.5. The time to compute A(x) - B(x) for A € U(d,m), B e U(e,n) is

O(mn (In d)(In e)).

Theorem 2.6. The time to compute A(x)/B(x) for B € U(d,m), A/B € U(e,n) is

O(m n (In d)(In e)).

The foundation for the analysis of more complex algorithms dealing with poly-
nomial manipulation has now been presented. Before beginning a discussion of the
algorithms for partial fraction decomposition and rational function integration, it is

necessary to define certain notions.
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A rational function R(x)will be regarded as a numerator - denominator pair of
polynomials A(x)/B(x) where A(x) and B(x) have integer coefficients, are relatively

prime and the leading coefficient of B(x) is positive.
Definition: A rational function R(x) = A(x)/B(x) is called regular if deg(d) < deg(B).

We note that every rational function can be uniquely expressed as a polynomial
plus a regular rational function. Since symbolic integration of polynomials is a
comparatively easy process, we will concern ourselves primarily with regular
rational functions.

Let I denote the integral domain of the integers and Q(I) its quotient field, the
rational numbers.
Definition: Let B(x) be a polynomial of positive degree. Then B(x) is said to be

square-free if it cannot be written in the form B(x) = C(x) Dz(x) where D(x)

is a polynomial of positive degree.

It follows that a polynomial which is square-free has only roots of multiplicity

one.

‘ k i
Definition: Let B ¢ I[x] and suppose B = bIIi_1 B; where each Bi e I[x], Bi is
primitive and has a positive leading coefficient for 1 < i < k. Also, be I
i

deg(Bk) > 0 and the Bi are pairwise relatively prime. Then bHik:1 Bi is

called the square-free factorization of B.

We now define two forms of partial fraction decomposition which will be investi-
gated in later sections. Both of these decompositions are necessary in connection with

the classical method of rational function integration.



Definition: Let A(x)/B(x) be a regular rational function and B(x) = bIIi]i1 B; (x) the

square~free factorization of B(x). Suppose also that there exist polynomials

k
Ai with coefficients in Q(I), 1 < i < k such that A(x)/B(x) =z

i
- Ai(X)/Bi(X) :

deg(Ai) < deg (B;) or if deg(Bi) = 0, Ai = 0. Then, this sum is called a square-

free partial fraction decomposition of A(x)/B(x).

Definition: Let A(x)/B(x) be a regular rational function and B(x) = bIIik_l B% (x) the

square-free factorization of B(x). Suppose also that there exist polynomials

Ai j(x) (1 =j=1i,1=1i= k) with coefficients in Q(I) such that

k i .
A(x)/B(x) = Z Z A, (x)/B(x), deg(h, .) < deg(B.) or if deg(B,) = 0,
i=1 ]:1 1,] 1 1,] 1 1

Ai i =0 for 1 < j=i. Then this sum is called a complete, square-free

partial fraction decomposition of A(x)/B(x).

For an example of these decompositions see Figure 1.




2 2 3 3
Let A(x)/B(x) = 1/(x + 1)(x - 1)"(x - 2) " (x - 3)”. The Square-Free Partial Fraction
Decomposition of

A(x) - (x+1) 7x=5

oo .}.
B 1 000(x%+1) 32(x-1)°

3 + 180458}{2 - 249796x + 139864

4000 (x~2)3 (){—3)3

+ 871}{5 6 11944}{4 - 65567x

The Complete Square~Free Partial Fraction Decomposition of

A(x) _ _~(x+1) 7 1

= + +
B o00pP+l) 32(x-1)  16(x-1)

-871x+3234 |, -1000x+ 3540 =700 + 2200
- 2
4000(x-2)(x-3)  4000(x-2)%(x~3) 4000(x-2)> (x-3)°

Figure 1

In [ 6 ] the uniqueness of both of these decompositions is established.
The method of Hermite depends firstupon obtaining these two decompositions, suc-
cessively. In Section 4 it will be shown how the integral is obtained from the terms
of the complete square-free partial fraction decomposition.

Let us now look at some theoretical results about the form of the integral of
a rational function. The proofs of these theorems have appeared several times and so

I have omitted some of them here for the purposes of brevity.



Theorem 2.7 ([ 4], pp. 12) Let R(x) = A(x)/B(x) be a regular rational function.

N m
Then / R(x)dx = S(x) + Z di log(x—bi) where S(x) is a regular rational
i=1

function, bi are in the complex number field, @, and are the distinct roots

OfB(x),dieﬁ for 1 < i< m.

n
Proof: We can write B(x) as B(x) = bo(x—bl) 1

n
coe(x=b_) ™ where
m
bi e 7, bi are the distinct roots of B(x) and the n, are their multiplicities.
Then, expanding R(x) into a complete partial fraction decomposition where

e ¢

the denominators are the linear factors of B(x) we get constants a“ , ozlz , e

=\ - RN RN}
such that R(x) = }:i:l {ai,l/(x bi) + ai,Z/(x bi) + +a'i’ni/(x bi) }

It then follows that fR(x) dx =

m

\ | n, -1
e _ _ i .
2121 {ailllog(w—bi) - a/ilz/(x—bi)- ai,ni/(ni 1)(x bi) } Hence,

m ni-l
let S(x) = 2121 {_Qi,z/(x—bi) . ailni/(ni-l)(x-bi) } and

Theorem 2.8. ([4 ], pp. 14) Let bl' ce ’bm be distinct elements of ¢ and

m
o a e@. If z o, log(x-—bi) is a rational function, then cvi = 0 for
17" m . 1
i=1

1 <4i< m.

Corollary 2.9. Given a regular rational function A(x)/B(x) where B(x) is square-free,

m 3 3
then fA(x)/B(x) dx = z ozi log(x-b;) where the bi are the distinct roots
i=1

of B(x), a4, bi e @ and the rational part of fA(x)/B(x)dx = 0.




Proof: Since B(x) is square-free, let bl P ’bm be the distinct roots of
B(x). We can write B(x) as B(x) = bo(x——bl) (X—bm). Then there exists

7

m
constants ozi 1 for 1 < i< m such that A(x)/B(x) = z {afi 1/(X—bi)} .
i=1 !

. m
It follows that fA(x)/B(x)dx = Z afi ) log(x—bi). By the previous theorem
i=1 !

no part of this sum can be equal to a rational function.

We can now make the following definitions.

m
Definition: Let R(x) be a rational function such that f R(x)dx = S(x) +z a, log(x--bi),
i=1 '

where bi are the distinct roots of the denominator of R(x). Then §(x) is called

. m
the rational part and \ a, log(x-bi) is called the transcendental part of

Lagar ‘
f R(x)dx.

Theorem 2.10. It R(x) is a rational function, then the rational and transcendental

parts of fR(x)dx are unique.

m n

Proof: Suppose fR(x)dx = 3(x) + y ozi log(x—bi) = T(x) +>: 13i log (x~c,)
-Ji:l i:l !
n
where S(x), T(x) are rational functions. Then S(x) - T(x) = z Bi log(x—ci)
i=1

m
-~2 a/i log(x-bi). By Theorem 2.8, we have the right-hand side of this
i=1 '

equation equal to a rational function only if that rational function is equal to

. n m

zero. Therefore, S(x) = T(x) and> Bi log (x—ci) =§ @, log(x-bi).
—i=1 4i=]
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We have now defined the two types of partial fraction decomposition which will
be needed to implement Hermite's method. Also, the rational and transcendental parts
of the integral of a rational tunction have been defined and shown to be unique.

Then, what does Hermite's method really do. It gives us a constructive means
for obtaining exactly the rational part of the integral of a rational function. Moreover,
this method requires only rational operations and no a priori knowledge of the roots
of the denominator. The method has two main phases. The tirst consists of obtaining
the complete square-iree partial fraction decomposition of the integrand. The second
phase applies a reduction scheme to these partial sums, producing two rational
functions. One of these is the rational part of the integral while the integral of the
other is the transcendental part of the original integral.

In Section 3 1 will develop and analyze algorithms for tinding partial fraction
decompositions. In Section 4, I will combine the partial fraction decomposition
algorithms of Section 3 with an algorithm that implements the second phase of
Hermite's method. This resulting procedure will be compared to a new method for
obtaining the same results as Hermite's method. Both theoretical and empirical

computing time analyses of the two methods will be presented.
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3. PARTIAL FRACTION DECOMPOSITION

There are two distinct types of decompositions we wish to obtain, square-free
and complete square-iree partial fraction decomposition. The latter should be
recognized as a refinement of the tormer. The first algorithm which will be presented
is one which computes the square-tree factorization of a given polynomial. These
factors will constitute the denominators for both of these partial fraction decompositions.
This algorithm will be followed by a theorem which bounds its computing time. Then,
to obtain the numerators in the square-free partial fraction decomposition, I will
first describe and analyze the approach suggested by Hermite [ 5] and imple-
mented by several others, e.g.[3]. A new method for square-free partial fraction
decomposition will then be derived and shown to be computationally more efficient
than the previously used method. An algorithm based on this new method will be
formally presented and analyzed.

In deriving a method for producing the complete, square-free partial fraction decom-
position, two sub-algorithms are needed. The firstactuallyreduces the partial sums of
the square-free decomposition while the second controls its application. Several theorems
will be presented which establish the existence of a certain type of polynomial with integer
coefficients which occurs in the reduction to the complete square-free decomposition.
The existence of these polynomials allows for a more efficient algorithm.

Let us now begin with the algorithm which computes the square-free factorization
of a primitive polynomial. A univariate polynomial with integer coefficients, A(x) is
primitive if the greatest common divisor of its coefficients is one, [ 7]. Similarly,

the content of A(x), abbreviated cont(d), is equal to the greatest common
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divisor of the coefficients of A. Given an arbitrary polynomial A(x) € I[x] such
that A e U(f,n), then the time to compute its content and primitive part (abbreviated

2
pp(A)) is O(n(ln f)7). For a proof of this result see [1 ]. Throughout the remainder

of this paper, let ldcf(A) stand for the leading coefficient of A(x).

Algorithm PSQFRE(B)
Input: B e I[x], B # 0, B primitive, deg(B) > 0, ldci(B) > 0;

Qutput: A list L=(B,,...,B,) where B, e I[x]for1 = i< k and

i)
B = HilBi is the square-free factorization of B;

1) I« 0; Q«~—0; D«0; P~—1; A<«DB;

2) E<«gcd (A,A"); If deg(E) # 0, do (F — A/E; go to (4));

3) F A

4y If 1=0, goto (7)

5) If deg(D) # deg(F), do (Adjoin D/F to Q; go to (7));

6) Adjoin P to Q;

7) If deg(E) #0, do I+ 1; A-E; D~ F; go to (2));

8) Adjoin A to Q;

9) Let L be inverse of Q;

10) Return;

k
Note that if k > 1, then D = Hi—‘ Bi for j=1,...,k-1 at successive executions of

k i-j+1

step (7) and E =11 B1 for j=2,...,k at successive executions of step (2)

1y .

in the algorithm.
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If the polynomial B isinitially square-free, then the gcd(B,B') instep (2) has
degree zero and hence Algorithm PSQFRE(B) performs only one greatest common divisor
calculation and then terminates. If B ¢ U(f,n), then the minimum computing time
for PSQFRE(B) is O(n3(ln nf)z). In any case, step (2) is executed k times, where

k i

B has the square-free factorization B = Hi¥1 Bi'

k s
Theorem 3.1. Let B e I[x], B # 0, n = deg(B) and Hi=1 Bli" the square-free factoriza-

tion of B. Let fi = norm(Bi) forl <i<k and £ = H}i{=l fi Then the computing

time for PSQFRE(B) is bounded by O(kn3(ln nf)z).

Proof: The times for steps (1), (3), (4), (6), (7), (8) - and (9) are bounded by

2 2 -
O(k). The successive values of A at step (2) are Ble. . .BE , BZB3- . -Bt 1,

2
.o ’Bk—lBk’Bk' Each of these polynomials belongs to U(f,n) and hence their
derivatives belong to U(nf,n). The time for one execution of step(2) is
k

2
O(n>(In g)°) and hence the total time for step(2) in o(? n3 (n nH)%) = Okn>(in nfH)?).
i1

In step(5), the successive values of D belong to U(f,n) and the values of

D/F belong to U(f,ni), where nj = deg(Bi). Hence, the total time for step (5)

k-1 k-1
is OE n, - n(in f%) = Ofn(ln f)ZZ n) = om(n §%).
i=1 i=1

Now that we have investigated the determination of the square-free factorization

of B, let us examine how we might determine the polynomials Ai such that

k .
A/B = z Ai/ B; is the square-free partial fraction decomposition of the regular
i=1
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rational function A/B. Assume that the Bi’ 1 £ 1 = k have already been calculated.
Hermite has suggested that we use the following procedure:

1) PO ~— A; Co« B;

2) For i=2,...,k do

, i-1
2.1) ci_1 - ci__2 / B |

2.2) Find Fi— , A, such that

1 i-1
F Bi~l + A C =F here
i-1 "i-1 i-1"i-1  j-2c WVoer
i-1
deg(F, ;) < deg(C,_,), deg(d )< deg (B, });
3 — .
) Ak Fk—l'

The difficulty ig in step (2.2). We know that in general Pi—l and Ai—l will have
rational number coefficients. One method of solution would be to equate coefficients.

i-1
If n= deg(Bi_l)

+ deg (Ci—l) this approach would produce n linear equations in as
many unknowns. It is known that the time needed to solve such a system exactly is
O(n5(ln nf)z), where the elements of the matrix and the right-hand side are integers
bounded by the positive integer f. This computing time applies if we use either the
exact division method over the integers or Gaussian elimination over the rationals.

Also, the numerators and denominators of the elements of the solution vector will be

bounded by (nf)n. This follows directly by applying Hadamard's theorem,

n n 2 %
det(E) = 11,_, { e. .} toanymatrix E = (e, ) where le, | = f.
i=1 =1 i,j 1, nxn 1,]
We can apply these results to solving for Fi—-l and Ai-—l in (2.2). However

before we do we realize that to obtain all the numerators, the Ai’ we must perform step
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(2.2) for 2 - i - k. It must be noted that one of the outputs of step (2.2) is Fi—l'

Then, l‘i | is used as input to step (2.2) in the next iteration. If ‘fi = norm (Bi)
) k fl , . i-1

and [ = “i*l 5 then f is a bound for the coefficients of Bi-l and Ci-—l for

all iterations. However, if the numerators and denominators of the coefficients of

PO are bounded by f, then the coefficients of Fl {(which are elements of the solution
vector of a linear system) will be bounded by (nf)r1 and the corresponding bound for FZ
will be (n(nf)n)n. If we continue the analysis we will find that the total computing time
for solving step (2.2) for 2 < i < k using an algorithm for solution of linear sysfems is an

exponential function of n and k.

Suppose instead that we consider an alternate way of implementing step (2.2),
namely by using the extended Euclidean algorithm for polynomials, see [71 pp.377.
A new, fastalgorithmhas been developed whichhas a computing time ofO(n3(ln g)z) where
n bounds the degree of the inputs and g bounds their norms. Initially, this would
seem to be better than using the linear systems approach. However, if we use the
that was obtained in the analysis of

bound for the coefficients of Fi_ and Ai—

1 1

the extended Euclidean algorithm, we would again arrive at a total computing time
which is an exponential function of n and k.

This growth of the coefficient bound leads us to consider a non-iterative
approach for determining the numerators of the square-free partial fraction decompo-
sition.

k .
Given the regular rational function A/B, let y Ai/Bi be the square-free
'i=1
partial fraction decomposition of A/B, the coefficients of Ai being rational numbers.

Let n = deg(B), n, = deg(Bi) and E = B/B; for 1 < i< k. Then, if we consider

the equation
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where the coefficients of the Ai are undetermined, we can equate the corresponding
coefficients on the two sides of this equation. This will produce an nxn linear

system of equations whose solution contains the coefficients of the numerators in the

square~free decomposition of A/B. Letus examine more closely what this system will look like.

. ini -1 i n—ini , n-1 .
If A (x) :}_, a X Ei(X) = 2 e, %), then A, (x) E, (x) =z <, ‘_xJ
j=0 , j=0 ' j=o 1+

ini -1
where ci,k = z _ . ai,jei,k—j for 0< k< n-1, where j< 0 or

]—k-~n+1ni

; k
k-j < 0 implies 335 € k- 0. The coefficient of x in 2 A E, is given by
! i=1

k
2 ci i If we consider the matrix which is formed from these coefficients, we
i=1

see that we have k distinct groups of columns, the ith group consisting of the

coefficients of Ei' Thus we are able to derive the following matrix:

i ’ 0 ’ . . ° L] - ? 0’ o ° 3 s e H 0 [ . . . * O
el, n-ny k, n-—knk
e , e : . e o _p€
l,n—nl 1’ 1,n nl . - }f,n knk 1" "k, n knk. .
e ’ y ° - e ] . 0
1,n nll, o ‘ k,n knkl
e ‘e s e
. . 1, n-n ' . . k,n knk
. ’ . (3.1)
°1, 1’ )1, n-n, -1’ ek, 1 : ek, n»knk~l
€. 0 1,1 €k, 0’ 1
0 1,0 0, K, 0
0 : . .
. %1, ©1
_0 , 0, ) el,o’ , 0, 0o , ,ek,0
4 . V) -
~ "
n., columns kn, columns

1 k
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, h-1 ,
If this matrix is called E and if A(x) = Z a,xJ, we obtain the linear system
j=0
Ey = I' where vy = (al'nl-ﬂl f e ,a1 0T 'ak,knk‘—l PR 'ak,O) and
F:(an_l,an_z,...,ao). (3.2)

Examining E columnwise, we see k distinct groups, the ith group consisting

th group consists of columns which

of ini adjacent columns, for 1 < i <k. The i
contain the coefficients of Ei with possibly leading and trailing zeros. Hence,
we see that to form the matrix E, we need only compute Ei = B/Bi for 1 =i < k.
Also, if fi = norm (Bi) and f=1II )i<=1 fi, then f is a bound for the elements of E.
Moreover, the elements of the solution vector, which are the coefficients of the
Ai’ have numerators and denominators which are bounded by (nf)n provided f is also
a bound for the coefficients of A. Thus, this provides a good bound for all of the coef-
ficients of the Ai' Furthermore, we now have a new method for obtaining the square-
free partial fraction decomposition and the computing time will be the time needed
to solve a single linear system, O(n5(ln nf)?‘).

Suppose instead that we reconsider using the extended Euclidean algorithm with
the new bound we have just derived. Substituting (nf)rl for g and applying the
algorithm k - 1 times we have that the computing time is O (Zk n3(n In nf)z) =

i=2

O(kn5(ln nf)z). This is clearly not superior to O(n5(ln nf)z) which we obtain by
solving a linear system. In [2 ], a more efficient algorithm for the exact

solution of linear systems has been developed which is based on modular arithmetic.

The computing time for this new algorithm is O(n4(ln nf) + n3 {In nf)z).



18

Therefore, I will now present an algorithm for square-free partial fraction decom-
position which is based upon solving the matrix E. A subprogram, MUSSLE has been
developed which takes as input an n by n non-singular matrix, E, and an n element

vector F, both with integer entries. The n+$l1 vector of integers, (go,g1 f e ,gn)

is returned such that 9, = det(E) and EG =F where G = (gl/go, cee ,gn/go). The

integers g, are bounded by (nf)r1 for o < i< n, if f bounds the elements of

4 3
( (

In nf) + n’

E and F. The computing time for MUSSLE is O(n In nf)z). For the

precise algorithm specifications of MUSSLE, see [2 ].

Algorithm RSQDEC(A/B)

Input: A non-zero, regular rational function A/B, where deg(B) > 0 and
1dcf(B) > O:
Qutput: A list L = (X,Y,2) where X = (Al, e ’Ak)’ Y = (Bl’ oes ,Bk) and
k i
Z = (vl, covavy ). ALB € [x], v, €I and A/B :Ei:IAi/viBi is the

square ~-free partial fraction decomposition of A/B. If Bi = 1, then Ai =0

and v; = 1. Otherwise, deg(Ai) < deg(B;), v > 0 and gcd(vi, cont(Ai))= 1;

1) b «— cont(B); B - pp(B); X ~— 2 = 0O;

2) Y «— PSQFRE (B) obtaining Y = (By.--+,By)i k — LENGTH(Y);

H

3) If k=1, do (L= ((A), (B), (1)); return);

4) For i

i

1,...,k-1 do (If deg(Bi) # 0, go to (5));
4.1) Adjoin A to X, bto Z;
4.2) For i=1,...,k-1 do (Adjoin O0to X, 1 to Z);

4.3) L =(X,Y,2); return;
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5) Create the matrix E as defined in (3.1);
Create the vector F as defined in (3.2);
6) Use MUSSLE(E,F) to solve for the vector G: EG =F where E is nxn,
G= (9,/9,.---,9,/9,) and G =(g_,9;,---.9)
7) W -~ b-go;
8) Fori=1,...,k do
8.1) m «deg(Bi); If m = 0, do (Adjoin 0 to X, 1 to Z; go to (8.6));
8.2) n-—1im; Take the next n elements of G and create polynomial A,.
8.3) h «— gcd(w,cont(Ai));
8.4) v-—w/h ; A «Ai/h ; v < 0,do (v—-v; Ai -~ —Ai);

8.5) Adjoin A, to X, v io Z;

i
8.6) Continue;
9) X -~ INVERSE(X); Z < INVERSE(Z); L - (X,Y,2);

10) Return;

Theorem 3.2 Let A/B be a non-zero, regular rational function, deg(B) > 0 and

b H]i<*1 B; the square-free factorization of B. Let fi = norm (Bi)' n, = deg(Bi)

for 1 < i< k, and let f = max {norm(A), bﬁi]il fi }. Then, the computing time

for RSQDEC(A/B) is O(kn>(In nf)> + nt(In nf)).

Proof: Step (1) takes O(n{ln nf)z). By Theorem 3.1 step (2) takes O(kns(ln nf)?‘).
The time for steps (3),(4),(9), and (10) is bounded by O(n). The time to form
the matrix and right-hand side in step (5) is O(nz(ln nf)z) and the elements of

E, F are bounded by f. Hence, the time for step (6) is O(n4(ln nf) + n3(ln nf)z)
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and the elements of G are bounded by (nf)n. Step(7) takes O(n(ln nf)z).

Steps (8.1), (8.2), and (8.5) are bounded by O(n) and the time for steps (8.3)

and (8.4) is 0(2 1n n (ln nf) ) = O(n (In nf) ). Hence, the total time for

RSQODEC(A/B) is O(kn3(n nf)> + n*(in nf).

I have now presented an algorithm for obtaining the square-free partial fraction
k .
decomposition of a regular rational function, A/B = z Ai/vi B; , where the com-
i=1

puting time is bounded by O(n4(ln nf)z). This algorithm is faster by at least one order
of magnitude then the algorithms which resulted from iteratively applying either the
extended Euclidean algorithm or the solution of a linear system to the determination of
the Ai‘
Before we can apply Hermite's reduction process, the partial fractions Ai/Bi
for i > 2 must be decomposed further into a sum of partial fractions, Ai/Bi =
i

Z Ai J./Bi. In this case, either Ai j = Qor deg(A ) < deg(B ) for1=j =i,
j=1 7'

1

We know that in general, the coefficients of Ai i are rational numbers. The

1

following theorems will show that in fact a decomposition over I exists in the

’

. 1
i ~n+1 j
form A/, = (1/67 ") 2 A /B) where b = ldci(B)
j=1

m = deg(Ai), n = deg(Bi) and Ai j € I[x] such that either Ai | = 0 or

I

deg(l\i j) < deg(Bi) for 1 = j=1i.

Theorem 3.3. Let A and B be non-zero polynomials over an integral domain 1,

with m = deg(A), n = deg(B), m2n = 0. Let Q and R be the unique polynomials

+1
over I such that bm n A = BQ + R, with bn = ldcf(B) and either R =0 or

deg(R) < n. Then there exist Ayr- - ’qm-n € I such that Q(x) = Fin On q (b x)
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_ < i _ m-n__
Proof; Let B(x) = Zi:O bix , Qx) = -0 &

1 m-ia(i) j

i
X and Ai(x)--zjzO j X,

for 0<ism-n+! and let A ,A P be defined by AO =

m=-n=-i+1l
m-n+l m=-n=-i+1l i
bn A, Ai(x) -Ai__l(x) a . 1+l/b ). - X , for lsism=-n+l.
Then @ = (1) /b for 0si<m-n. If we can show that A is of
m-n-i - %m-i
- I : 1 :

the form A (x) = Zm bm n-lt quJ, q(,l)eI for 0<sism-n, it

i j=0 "n ] ]
follows that g = pTTRT q(l) . for 0si<m-n and hence Q(x)

m=-n-i n m-i

is of the desired form. We proceed by induction.

-n+1
Case (1): A (%) =b B py = zﬁo br;‘ n¥ aixi, s0 Aj(x) is in

the desired form.

~i+l -n+2-1 (i-1
m-i pmn i @ )xj.

Case (i): Assume A, is of the form A (x) = E)-:O n 9;

i=1
m=n=-i+2 (i-—l)/ n j¥m-n=~i+l _

n m=i+l bn) zj=O bj X

Then A(x) = Ai—l(x) - (b
m-i+l m-n+2-i (i-1) j  _m=i+l m=-n-i+l (i~1) < j
z j=0 bn qj % j=m-n-i+l n m-i+l j-m+n+i—lx

L BT T S R I S D I
: }'j:-() b N qj X,

Theorem 3.4 ' Let A and B be non=-zero polynomials over

an integral domain I, with m = deg(A), n = deg(B)

and mzn> 0. Let B(x) = X b, x' and A(x) =

m
20 i(b x) where ai’bi € I. Then, there exist Q

s

and R over I such that A = BQ +R, either R=0 or

deg(R) < n, and Q is of the form Q(x) = Zm;n aq.(b ;~c)i
i= i"'n

where qi el.
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Proof: Suppose Ai(x) = Z;n:; ajm xJ for 0sism-n+1l, and let

' _ _ (1 1)
be defined by AO = A, Ai(x) = ‘Ai—l(x) 8- l+1/b

-n-i+l oy
B{x) - xm ne for l=si<m=-n+1l., Then we define Q(x) = ;n_on qixl

A,...,A
m+n-1

where @ = a(l) ’/bn for 0<sism=-n. If we can show that Ai is

m-n-i m-i
of the form Ai(x) = Z;n;(? q)_(l) (b x)}, qj(l) €I, for 0sism-n it follows

i ", —i-1
that §_ =gt pmly g\t pmmi=l o 0<i<m-n. Since
m-n-i m=1 n n n i

m-izm-=(m-n)-l=n-120, itfollows that Q is over I and has the

m-n . itn=l i _m=-n i . A
form Q(x) —Zi:O qibn X -Zi:o qi(bnx) . We proceed by induction.

(b x)l by hypothesis.

. m-i+l _(i-1)
Case (i): Assume that Ai-k is of the form A 1(x) Zj:O qj n

N _ (1= n jtm-n=-i+l _ _
Then Ai(x) = Ai-—l<x) (am-i+l /bn) zj:O bj X = i_‘(x)
.n (i=1) m=i Jtm=n=-i+l = _m-i+l (i-1) i
20 Ym-igl Pn bjx = ZFO a (b_x)
m=i+l (i=1) . m=i j

X = Zm-J
j=m=n-i+l “m=-i+l "n jemin+i=1 " T %

(1) J
=0 qj (bnx) .

Theorem 3.5. Let A and B be non-zero polynomials over

an integral domain I, with m = deg(A), n = deg(B)
and mzn > 0. Let b =ldcf(B) and k = [m/n] +1,
Then there exist polynomials Al' . "Ak over ]

such that A/Bk = (l/bm-nﬂ) Z?:l Ai/Bi and where

either A =0 ordeg(A)<n for 1si<k.
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Proof: By Theorem 3.3 there exist polynomials Ql' Ak over [ such

m-n+1 ‘ _
that bn A= BQl + Ak and either Ak =0 or deg(Ak) <n. Also, Q1

is of the form QL(X) = ZT:BH qi(bx)1 . Now assume that Ql, . .,Qi and

Ak'Ak—l' ‘e "Ak-i+l have been defined, that deg(Qi) =m-in and that
m~in i
q’( )

§=0 (bx)j - If i+2=<k, then i+ls [m/n],

Qi has the form Qi(x) = 3
m2 (i+1l)n and m=-inzn. We then define Qi+l' Ak-—i' using Theorem

= i = <n.
3.4 by Qi BQi+l +Ak_i where either Ak-i 0 or deg(Ak_i) n

If i+l =k, then i=[m/n], m<(i+1)n and m-in <n. We then define

m-n+l _
=Q Then b A= BQl + Ak and Qi = BQ., . + Ak-i

Apog=A =Q k-1° i+l

i
for 1sizk-2. It follows that A/B" = (/6™ 7} 2, (A/BY) and
either l\i =0 or dog(Ai) <n.

Theorems 3.3, 3.4, and 3.5 establish the fact
that we can decompose 13;/}3k in the form A/Bk = (l/bm“mrl)zj,ll (.K)./Bj)

where k = [m/n] + 1 and either Kj =0 or deg(Kj) < deg(B) for | =j<k,.

In general, one needs a decomposition of the form A/Bi = (l/bm-n“)

Ejlﬂ (A),/BJ), where iz k. Then, we have that A/B' = (1™ 0%, zj,‘_l

A ] - I <3< = -
i Aj-'ik-i for i-k+1<j<i and l\j 0

H

(IK}/BjH_k) SO we can take A
for 1sj<i-k and obtain the required decomposition.

We will apply this procedure to the partial fractions in the square-
free partial fraction decomposition A/B = Zle (Ai/viBii)' We will then
obtain the complete square-free partial fraction decomposition in the form

ok i j |
A/B = Zizl (l/wi) ijl(Aij/Bi)' where either Ai j

=0 or deg(Aij) <deg(Bi)
for lsj<i, lsisk,

An algorithm is now given which performs this decomposition.
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Algorithm PCDEC(A, B)
Input: A,Be I[x], A,BZ0, m = deg(d), n=deg (B), m=n > 0;
Qutput: The list (X, b) where X = (A}/_, cee 'Av) and b is an integer such that

“‘1k s -
k=[m/n] +1 and A/B" = (1/b)2 AJ./B]. Also, b = ldefp)™F!
j=1

and either AJ. =0 or deg(A].) < deg(B) for 1 = j = k;

1) m — deg(A): n «— deg(B}: b — 1dcfB)™ . x — o

2) Q « b-A;

3) Obtain 6,1—% e I[x}: Q= BO + A and either A=Q or deg(ﬁ) < n:
4} Adjoin A to X;

5) If deg(Q) = n, do (Q = Q; go to (3));

6) Adjoin Q to X; X~ INVERSE(X);

7) Return;

Theorem 3.6. Let A,B e I[x], m = deg(A), d = norm(A), n = deg(B), e = norm(B),

m=n>0 and i=[m/n]+ 1. Then, the computing time for PCDEC(A,B) is

O(iznz(ln e) {Ind + izn(ln e)l}).

Proof: The time for step (1) is O(mz(ln e)z). The time for siep (2) is

O(mz(ln d)(Iln e)) and norm {(Q} < dem—~n+1" Steps (3) - (5) are executed i-1

jim-n+1)

times. At the jth execution, Q e U(d(l + e) m - (j=1)n). The time
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to obtain O, A is O(n(m-n+1)(In e)(In d + (m-n+1)(In e))), see [2]. Lettingm - (j-1)n

replace m and d(1+0)](m_n'{_l) replace d we have that the total time for
-1 .

step(3) is O(} n(m-jn+1)(In e){In a(i+e) ™D 1) (n e)}).
A ]':1

Now, m = O(in) and m-jn+l< j(m-n+1), so the time for step(3) is
2 i-1 2 3
O(in (In e)z {Ind+ j(m-nt+1)(Ine)} ) =0C(in (Ine){i(lnd) +i"n (Ine)}).
j=1

Steps (4), (5) and (6) are bounded by O(i).

If we view PCDEC as a subpart of the complete algorithm for partial fraction
decomposition then empirical tests have shown that the time spent on PCDEC is a
small fraction of the time for the entire algorithm. We can combine RSQDEC and
PCDEC to produce an algorithm which obtains the complete, square-free partial

k i .
fraction decomposition in the form A/B =z (l/wi)z Ai j/B'i, where
i=1 j=g, '
i

if B,=1,s, =i, A, , =0 and w, =1. Otherwise 1< s, <i, w. >0 and either
i i i,i i i i
Ai ; =0 or deg(Ai J.) < deg(Bi) for s < j = i. The two main steps would be: 1)
k i
applying RSQDEC(A/B) to obtain A/B = z Ai/viBi with computing time
izl

> .
O(n4(ln nf) ); 2) applying PCDEC iteratively to Ai/B; thus giving a computing

k k
" 1 - z
time of O izniZ (In f) {n(In nf) + izni(ln f)}) = O(n(ln nf)zz (izni‘2 + igni ) =
! 1;_—_2

“’]'.32

2, 2 2 .
OMnm(nnf) (n + kn)) = O(knB(ln nf)-z). Therefore, the time for square-free decomposition
bounds the computing time for complete square-free decomposition. For a precise

statement of this final algorithm see [2 ].
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Before leaving this section it is necessary to derive good bounds for the sizes of
the coefficients in the complete square-free partial fraction decomposition. This is so

because these coefficients are manipulated by Hermite to obtain exactly the rational part

. k i
of the integral. Therefore let A/B = \ A /B where A, Je Qfx1, Ai i =0 or

Loier Lo
deg(Ai j) < deg(Bi) for 1 = j £ 1 be the complete square-free partial fraction
decomposition over the rationals of A/B. We wish to have bounds for the
numerators and denominators of the coefficients of the Ai,j° For a given i, consider
the rational function

i-1, 1
(Ai,i +Ai,i-—1Bi too. +A B )/Bi'

If ny = deg(Bi), fi = norm(Bi) and if we consider the coefficients of Ai . as

’

undetermined, we then have ini indeterminates. Hence, if we consider

k i L .
B/B = >: (Z a B L. B/B| /B
. i, i
i=1 L i=1

we can construct a linear system of order n = deg(B) by equating the corresponding

. -k i
coefficients in the numerator. If f = max {norm(a), II =1 f:iL } , then the elements

of this linear system will be bounded by f. The elements of the solution vector are
simply the coefficients of the Ai,j and so the numerators and denominators of
these coefficients are bounded by (nf)"

In order to empirically compare the efficiency of these algorithms several classes

of rational functions were used as test data. Consider the following class of

rational functions: polynomials Bi(x) with random integer coefficients bi i were

’

IA

generated such that deg(Bi) = 1 and lbi j| < 27 for j=1,2, 1<1is< n; then

r
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Bn(x) = 1[?__1 Bi’(x) is formed. A,’l(x) is a random polynomial such that

_ _ L . 9
deg(An) = deg(B ) - 1 and the coefficients of A (x), a, g satisfy Ian | =2

7 7

then the rational functions Rn(x) = An(x)/Bn(x) are formed for n=1,2,...,
In Figure 2 below the rational functions Rn(x) were used as input to two

algorithms RDEC and QRDEC. RDEC obtains the complete square-free partial
k i .

fraction decomposition of A/B in the form Z (l/wi) }: Ai J./B; and it
i=1 ji=1 !

uses the algorithms RSQDEC and PCDEC. The second algorithm, QRDEC obtains

j/B; ., where the coefficients of

’

k i
a decomposition in the form A/B = z z Zii
i=1 j=1

Ai ]. are rational numbers. The method QRDEC uses is the one suggested by Hermite

with all computations over the rationals.

Rational Function R DEC (sec) QRDEC (sec)
Rl .009 .009
R, .218 .361
R3 1.193 3.488
R4 3.761 18.782
Re 17.929 100.406

FIGURE 2.
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4. Rational Function Integration

Given the complete square-free partial fraction decomposition of
-k o k ,

A/B = Z (I/Wi) Z_. Aij/B]i’ we are now ready to apply Hermite's reduction
fi=1 j=1

i ,
process to the partial fz‘actionsx Ai j/Bi for 2 < i< k. Since Bi is square-
Lo 1=1 ’
J

free, we know that deg(gcd(Bi,Bi)) = 0 and hence that there exist polynomials

]
Ci’ Di e Q[x] such that CiBi + DiBi = Ai i For proofs of these assertions see

i

{71, pp. 377. 1If deg(Bi) = 0, then Ci 0, Bi = Ai i/B;' Otherwise, deg(Ci) < deg(Bf) and
. i

deg(Di) < deg(Bi). Ci and Di may be obtained by the extended Euclidean algorithm

for polynomials. Then by substitution
(A ./Blyax =f{c /B yax + [ (DB./B! ax
i, i1 i7" 71 17171 ’
Using integration by parts on the second term of the right-hand side of this formula we get that

f{Ai,i/Bi jdx = f {ci/Bi*l | dx - Di/(i—l)Bi“l N f{D];/(i“l)Bi~l}dx

- -p/ti-08 ™+ [ (0] + a-1Cy/6-08, ! ax.

Hence we see that by using this procedure we have reduced by one the power of Bi

which is within the integral sign. If we continue in this manner we would next find

£

polynomials Ci— D,_; such that C,_ B, + D _ o1

1 Dy 1B B, = (D, + (i-)Cy + (i-1)A, ; ;) = A

i i,i~1

We would then substitute for A’.k i1 in \/G(A:< i—l/BiMI }dx and perform integration by parts

4

again. Eventually we arrive at

i

i
i _ . N L ,
f{zj:IALj/Bi}dx— zj—;g Dj/(l 1)...(-1)B +f{Ti/Bi}dx
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where Ti is a polynomial either zero or deg(Ti) < deg(Bi). By Theorem 2.9 we know

that /Tl/B‘ is strictly transcendental and thus we have exactly found the rational
i

[®
1 1 :
part of f{? A, J./B;.l } dx. If we apply this process for 2 < i < k, then we will
" i, 1 -
i=1

obtain two rational functions S,T such that f{A/B}dx = S(x) +fT(x) and S(x) is
the rational part of this integral. Note that S,T are of the form S = U/BZB3 B]]:—I

and T = V/BIBZ. B -
I will now present two algorithms which represent an implementation of
Hermite's method. The first algorithm applies the reduction process just described to
i .
a sum of rational functions of the form Z Ai j/B;' The second algorithm takes as
j=1

input a regular rational function and determines its rational part exactly. It does
this by first performing partial fraction decomposition and then applying the previous
algorithm iteratively. The computing time analysis for this last algorithm and hence
for this implementation of Hermite's method is presented. Afterwards, a new method
for determining the rational part of the integral of a rational function will be derived

and analyzed.
Algorithm HERM(A,B,1i)

Input: A non-null list of polynomials & = (A1 Je e ’Ak)’ B € I[x] and an integer
i= 2 suchthat 1 s k =i, deg(B) > 0, Bis square-free and either Aj = 0 or
deg(A}.) < deg(B) for 1 <j <k;

OQutput: (R T) where R, T are regular rational functions such that

f z Aj/81+1~3}dx =R+ fT dx and R is the rational part of the

integral;
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1) R*—O;hwl;S*—Ali
2) 7 — PEGCD(B,B') obtaining C,D e I[x], r € I such that CB + DB' =r.
(Polynomial Extended Euclidean Algorithmj;
3) Forj=1i,...,2 do
3.1) 7 — EGCD(S,B,B',C,D,r) obtaining C,D € I[x], r € I such that
CB + DB' = r5;
3.2) 7 — INTPTS(C,D,r-h,j) obtaining G,H ¢ I[x], g,h € I such that
f{S/h B jax = G/gp ! +f(H/th‘1} dx;

j-1
3.3) R —R+ G/gB ;

3.4) If A is empty or A; = 0 do (S~ H; go to (3.6):)
3.5) S~H+h-A;
3.6) If A is empty and S = 0, go to (4);

4) T -~ S/h-B;

5) Return;

The exact specifications of algorithms PEGCD, EGCD and INTPTS are not given
here because of their length. The operations they perform can be easily understood from
the algorithm description of HERM. A computing time analysis of HERM produced the
result that if Ai € U((nc)n ,ni), B e U(C,ni) the computing time for H.’ERM((Al, cas ,Ak),B,i)
is O(in3(1n nc)2 + ni3 nz(ln nc)z). This result will be used in the next algorithm, RHERM,

which represents an implementation of Hermite's method.

Algorithm R HERM(A/B)
Input: A non-zero regular rational function A/B, with deg(B) > 0, ldci(B) > 0O

and gcd(A,B) = 1;
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Qutput: (R,S) where R is a regular rational function, S is a list of regular

k
rational functions, S = (S1 e ’Sk) such that f[A/B}dx =R +f[z Si} dx,
' ‘ i=1

and R is the rational part of f{A/B}dx;

1) R < S -~ 0;
2) Z — RDEC(A/B) obtaining Z = (L1, L2, L3),

Ll = ((A )., (A | P ) A ), L2 = (B

K,k "k, m
7 I k
k

A k -

).

. (l/wi)E . Ai,j/Bi,
i=1 4 j=m,

Z,Z'AZ,m 1" "Bk)

2
L3 = (w,,....,w,) such that A/B =?

—

3) If k=1, do (S — A/B; return);

Otherwise, adjoin Al l/wlBl to S:

4) Fori=2,...,k do
4.1)1f Bi =1, do (Qi~— 0; go to (4.4));

4.2)7Z — HERM(A, ,B,i) where A, = (A, .,...,A, _ ) obtaining P.,Q, such that
11 1 1,1 1,mi 1 1

i

K j - )
f [2 A /B Vax = Pi+fQidx,

j=m,
4.3)P, - Pi/wi; Q; ~ Qi/wi:
4.4)Adjoin Qi to §;
5) Fori=2,...,k do(R«R+Pi);
6) S «— INVERSE(S); Return;

Theorem 4.1. Let A/B be a non-zero regular rational function and

el k — i 3
2 (l/wi)> Ai ],/B'; the complete square-free partial fraction decomposition
- i=1 — j=1 '

of A/B. Let n = deg(B), fi = norm(Bi), i = H]ii:l fil and D/E the rational part

off[A/B}dx. Let ¢ = max{norm(A),norm(D),f}. Then, the computing time for

RHERM(A/B) is O(k>n(ln nc)’).
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Proof: Step (1) takes O(1) and by Theorems 3.2 and 3.6, step (2) takes

n
, T

2
(.)(n4(ln nc) ). Also, Ai j e U{(nc) 11), }Wi[ < (nc)n. Step (3) takes

()(nz(ln nc)&). Steps (4.1),(4.4) are bounded by O(k). Step (4.2) takes

k
‘ 3 : 3 2 2
o, (in’(nne)® + 0 n%(n ne)®)) = O (ln ne)’). Also, at the ith
L i=2 v

i 2
iteration, the numerators and denominators of Pi Qi € U((nc)(l+1)n+ ,ini).
— K 2 2 3 2
Therefore, step (4.3) takes O(L in‘i in (Innc) ) = O(kn (In nc) ). The
i=2

time for step (5) is bounded by the time to reduce the rational function R to

Yﬁk

lowest terms which is O(L (in.)s(in 3
ji=2 *

2 ‘
) i

. k
(In nC)Z) = O(nz(ln nc)Zz i5n ) =
i=2

O(k3n5(ln nc)z).

Hermite's method has been intensively studied, algorithms specified and
computing time analyses done. In searching for better bounds for the coefficients of
the outputs of this method an entirely new method was discovered. Moreover, the
algorithm which is derived from this method will be at least one order of magnitude
faster than this efficient implementation of Hermite's method. This method is now
presented.

Let A/B be a non-zero regular rational function, deg(B) > 0 and

k i '
let A/B = Zizl Zj:l Ai j/BJi constitute the complete square~-free partial

fraction decomposition of A/B over the rationals. Then, by Hermite's method

we are able to obtain polynomials C, D such that




f {A/B}dx

k-1
where C/BZ .. .Bk

are undetermined and note that B2

from B , see Section 3.

, k-1
C'(8,--+B) ) -C(B,

33

is the rational part of the integral.

o v

gkl

K and B1

k-1'
“Bk )

2. k-1
C/(BZB3 B") ) + f(D/(Bl---Bk)}dx.

..,Bk

k-1.2
Bk )

A
B
(B,

J e e 0 e 9 0 k-l
C'(B***B)(B," "B

)-’C(Bl° . °Bk)(B2

k-1
©++B) ) +D(B, "B

(4.1)

Suppose C and D

Then, differentiating both sides of (4.1) we get

k—l)Z
kK

(

We now prove a theorem about the form of <BZB;2° . oBk'l '

Theorem 4.2

Let B = TB( B'.i,
i=1"41

.OB

-1 8

i

Proof:

By induction on k.

Basis: k=2 and B=B B2

1

B,(B!B ~l~ZBle)°

21
Let k > 2,

2

Induction:

B

2 °

Beou

1 Bk)(Bzoee B

k

>

20

B

k)"

i+l¢’

k

Bk and
-2
i=1l

2
BZ"

B!

'Bi—l i

Then B' = (Il

[ - [ 2.
Then B —BIBZFZB

iB I.OB

--B

k=12
K )

K )

k

1B,B; =

suppose that

k-1,

iB

1
k-1 _,

k-1
TBe_p kBB
i-18; By 7B

k-1B%

Bit17 "By -

B BB

k-15x)

are easily calculated

(4.2)

-Bk_l).
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k=1 2 k=2

. 2
It folloyvs immediately that, for k 2 2, (8283 B K ) = (B3B4 B K )
ko .
(%o (=1) By oBy By Byyym *By)-
Then, applying Theorem 4.2. to equation (4.2) we get
. k-1 2 k-1, k .
A/B = (C'(B)--+B,)(B,- B ") ~CB, (BB, B L @, -1)B,
¢ o 9 o k—l 2 o o o ® o o k_l 2
Bi1BBigy B+ D(By BT )T /B) B (B, B )

. ko S
=CUB---B)-CQ, (-1 BB, --B, BB,

k=1
(Bl.,egk)(gzang )

**B,)+D(B,- B

But B = (Bl oo -Bk)(BZv . ~Bk:) and so we can equate coefficients

of like powers in the numerators of (4.3). This will produce an nxn
linear system where n = deg(B) and so we can solve for C and D .

In Section 3 it was stated that the computing time for solving such a
system is O(n4(ln nf) + n3(ln,r;f)2) where n is the order of the system
and f is a bound for the elements of the matrix and the right-hand side.
Therefore, this algorithm should be at least one order of magnitude faster
than Hermite's method. Let us now take a closer look at the linear

system which is formed under this new procedure.

Given the non-zero regular rational function A/B, let n = deg(B)

[}

and B = I%i_l B; the square-free factorization of B . Let V(x)

m i_ -k i-l _ <h-m i_ -k _
Z 0 v,x = Hi=2 B, » Ulx)s= o WX = Hi=l B, and W(x) =

n-m-1 i k ‘ . | .
220 w, X =-2 . {1 1)B, -~ “B, BB, ;- «Bk} . We will determine

the polynomials C and D by equating coefficients in the expression

A=C'U+CW+ DV.
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Since f{A/B]dx = C/V + .j{D/U}dx, C/V and D/U are regular

-1
rational functions and we can write C(x) = ZT—O S xi, D(x) =

n-m=l i . _ om=2 i
2 1=0 di X, and C'(x) = = (=0 (1+l)ci+1x .
Then Cu=3:""2 e and e =3""%341)
= 20 & 17 %5=0 VTG
n=2 i m=1
CW = Zigo fix and fi = Zj=0 Cjw,i_-»j , and
n=-1 i m
DV = Zi:O gix and gi = Zj=0 diwj vj .
, n-1 i
Therefore, if A(x) = Zizo ai X, then
a =5" {(+l)e, . u . +cw +4d v.}.
i j=0 J*+l Ti=j Joi=j i=j )

In particular, we have

n=-1 "~ dn---m--l Vin *

+(m=1l)c

o]
it

n-2 - °m-1 wn—m-l m-1 urx-—erdn-»m--l Vm-l+dn-m°2 Vi’

m=1 n-m-1 *(m=2) cm-—Z un--m * cm-l wnvm-z

o
]
3
[

=
Q
c

Cm—z wn-m-l + dn--m-”.’: Vm + dn-=-m--2 vm-l + dn-m-l V=2’

3c., u.+2c¢

2 T2C3UpTecutc

u

[¢]
il

u+cw+cw+cw+d2v

1707270 "171" 7072 0

1

+ dl vl-i-dov2 s

o
]

] Zczu0 + Cl \.1l + clwO + cow1 +dlv0 -i~dovl ,

o]
]

C,u. +c.w +dov

0 7170 00 0°



36

Hence if X =(c__,» .1 Cp d._m-1° ,,,do) and F = (an_l, ceer @)

then X is the unique vector satisfying EX = F, where E is the following

matrix:
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Algorithm RINTG(A/B)

1)

2)

3)

4)

6)

7)
8)
9)

10)

Input: A non-zero regular rational function A/B, deg(B) > 0 and gcd(A,B) = 1;

Qutput: (R,S) where R,S are either zero or regular rational functions, R is the

rational part of f{A/B}dx and f{A/B}dx =R +/de;

b «— cont(B); B -~ pp(B); U - 1;

Z < PSQFRE(B); retuming Z = (B1 PR ’Bk) where B = HiEIBi is the square-
free factorization of B;

If k=1, do (R= 0; S - A/B; return);

Fori=1,...,kdo (U~—TU-B); V- B/Uii-deg(V)-1; j ~ deg(U)~1;
Form the matrix E previously defined;

Form the vector F previously defined;

G -~ MUSSLE(E,F) obtaining G = (go,g1 e ,gn) where n = deg(B),
g, = det(E) and EG = F where G = (gl/go, .. ,gn/go)

The first i elements of G are the coefficients of the numerator of R
The next j elements of G are the coefficients of the numerator of S
R—R/b.-V; S~—8/b-U;

Return:

Theorem 4.3 Let A/B be a non-zero regular rational function, n = deg(B) > 0,

B = H]::IB; the square-free factorization of B. Let fi = norm(Bi) and
f = max {norm(ad), b H]i:l f; }. Then, the computing time for RINTG(A/B)

is O(n5(ln nf)z).
Proof: Step (1) takes O(n(ln f)z). By Theorem 3 step (2) takes O(kn3(ln nf)z).

Steps (3),(4) and (5) are all bounded by O(nz(ln f)z). The time for MUSSLE
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is O(n4(ln nf) + n3(ln nf)z). Now the numerators of R and S are polynomials
in (_I((nf)n,n). Therefore, in step (9) when we reduce the rational functions to

lowest terms, the computing time is bounded by the gcd operation. This

-
takes O )’(n(ln nf:))a) : (f)(n')(ln nf)z).

The theoretical computing time for Hermite's method was shown to be

3 5 2 K
Otk ™ n (In nec) ). Remember, n =) ini where n, = deg(Bi) and so in general all

Lig=

we can say about k is that it is bounded above by n. For the rational functions used
1

in the table below, k =~ nz. In any case, the theoretical computing time for the new
5 2 , .
method, O(n™ (In nf) ), is clearly superior.
The empirical studies which were done agree with these theoretical bounds.

Below, I present the results from one set of rational functions which were input to

> ,
both algorithms. R, is a rational function of the form R, = A, /B, B _.. .B% ,
i i i" 7,1, 2 i,i

where Ai’Bi j € I[x] and they have random coefficients in the range [-~29,29]. Also,

. 2 i
deg(B, ) = <j<i ) = . cu -
eg( i,J) 1 forl <£j<i and deg(Al) deg(Bi,1 Bi,Z Bi,i) 1.

Comparison of Computing Times for the New Method
vs. Hermites Method (RHERM) in Seconds

Rational Function Algorithm RINTG Algorithm RHERM
Rl .001 .017
R2 .034 .542
R3 .886 3.432
R4 4.412 22,246
R 82,684 271.523
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5, Extensions

There are three questions which arise in connection with the previous work.
Can the new partial fraction decomposition and integration methods be extended to
multivariable rational functions ? What results can be derived for iterated integrals ?
‘How can the transcendental part be exactly obtained? In this section I will mention
some results and outline some approaches which apply to the solution of these
questions.

In a natural way we may extend the notions of square-free factorization to
polynomials in n variables and square-free partial fraction decomposition to rational
functions in n variables. Both of these definitions will then make reference to a
specific variable. The notion of the rational part of the integral of a multivariable
rational function can also be defined. Then, the final methods of Sections 3 and 4
will apply to n variable rational functions for alln = 1. The only difference is that
instead of matrices with integer entries, the entries will be polynomials in n-1
variables. These polynomials are easily obtainable when the machine representation
for polynomials is in recursive canonical form (i.e. given A(x1 PP ,Xn) the coefficients

of x, are polynomials in SEERE Xy for 2 =i < n). A capability for solving exactly

a linear system with multivariable polynomial entries is needed. Algorithms for this
operation are currently being developed.
Suppose we wish to find the mth iterated integral f . f R{x)dx...dx
L ‘\_s__v.__J

m m

for some univariate rational function R(x). We can apply our method iteratively e.q.
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H

\/R(x)dx

S1 (%) +‘/T1 (x)dx
[/ R(x)dx dx SZ(X) +fT2(x)d>< +/fT1(x)dx.
Finally we have that

/\. . .fR(x)dx. Lodx = Sm(x) +f’1‘m(x)dx + ... +[. . .le(X)dX. . .dx.

m

5
The computing time for determining Sm’Tm’ N ,Tl would be O(}: n {In nf)z) =
i=1

H

2
O(mnS(ln nf) ), if R(x) = A(x)/B(x), n = deg(B) and f bounds all of the coefficients in the

numerators and denominators of Sm,T yeee,T We can go further if we recognize that

m 1°

k
the denominators ot the Ti are le_iBj for 1 <i<m = k where B(x) has the square-free

k i
factorization ”1—1 Bi' In fact, we can generalize the method of Section 4 to produce

a single linear system whose solution vector contains the coefficients of Sm’Tm’ oo ’Tl'

The consequences of this result are twofold. First, a single bound for these coefficients

in terms of the coefficients of R(x) is produced. Secondly, the total computing time

2,).

5
bound for determining Sm’Tm’ ..., T isreduced to O(n (In nf)

1
Let us return to the one dimensional case of fR(x)dx = S(x) +fT(x)dx where

5(x) is the rational part of the integral. There are two approaches which can be followed
to obtain a more precise answer than fT(x)dx, one numeric and one symbolic, T (x)

has the form T(x) = U(x)/Bl (x).. .Bk(x), where Bi(x) is square-free for 1 < i <k, If

we are given a range of integration, [a,b], we can use a numerical integration technique
and apply it to be(X)dX. Care must be taken if the poles of T(x) lie within [a,b]. In

“a

any case this method will work quite well to provide us with a numerical result for the

transcendental part of the integral.
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If we try to continue our symbolic approach, we must do the following
1) factor the denominator, 2) perform a partial fraction decomposition and 3) check
if the numerators are constant multiples of the derivative of their denominators. If(3) is
satisfied for all partial fractions, then we are done. If not, we continue these three
steps, factoring first into irreducibles over Q(I) and then factoring over successively
larger algebraic extension fields of Q(I). Tobey, in [11] has given a more thorough
treatment of these problems. At this time, algorithms for performing these operations

are extremely time consuming and suffer from exponential growth.
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