
Hashing Lemmas on Time Complexities 
with Applications to Formula Manipulation 

EIICHI GOTO ' AND YASUMASA KANADA 

* DEPARTMENT OF INFORMATION SCIENCE, UNIVERSITY OF TOKYO, TOKYO, 113, JAPAN 
** INSTITUTE FOR PHYSICAL AND CHEMICAL RESEARCH, V!AKOSHI, SAITAMA, 351, JAPAN 

I. Introduction and Summary 

Johnson[l] and Horowitz[2] applied sorting to 
improve time complexity of multiplication of uni- 
variate polynomials. Their results may be regarded 
as applications of the following LEMMA: 

Sorting LEMMA. The time complexity of sorting of N 
items is O(Nlog2N) and that of binary search of 
sorted N items is O(log2N). 

In this paper, time complexities of operation on 
"sets" and "ordered n-tuples" based on a hashing 

table search technique are presented as "Hashing 
LEMMAs" and are applied to formula manipulation. 

Unique normal forms for multivariate symbolic formu- 
las resulting in 0(i) time complexity for identity 
checks are presented. The logarithmic factor log2N, 
characteristic to sorting algorithms, is shown to 
all disappear from time complexities of polynomial 
manipulations. Actual implementation of the hashing 
technique is outlined and actual timing data are 
presented in the appendix. 

II. Hashing LEMMAs on Sets and n-Tuples. 

(2.0) Denotations and Conventions : 

In case x represents a set or an n-tuple, Ix[ 
means the number of elements. 

Sets are denoted by underscored capital letter(s). 
Specially, 

INT is the set of (all) integers; 
iNT0 = INT - {0}, i.e., integers except 0; 
INT+ is the set of positive integers. 

A BNF metaobject is denoted by embracketing a set 
in the underscoring notation between "<" and ">':, 
with optional commentary un-underscored letters. 
This convention enables us to use both BNF and set 
notations. E.g., BIT. = {0,i} and <Binary digiT__> ::= 

0[i o are equivalent definitions, where "o means 
the end of a BNF definition. 

In order to present algorithms precisely and 
concisely, Lisp with three additional data types 
<ordered n-TUPie>, <SET> and <ASSociator> are used 
in this paper. <INTeger>, <SYMbol, i.e., nonnumeric 
atoms> and <CONS, i.e., data created by Lisp func- 
tions "cons" or "list"> are the three data types of 
ordinary Lisps. (Floating point numbers and arrays 
are omitted because of irrelevance to this paper.) 
Since the time complexity of high precision arithme- 
tic is not the theme of this paper, the time com- 
plexities of arithmetic operations on <INT>'s are 
assumed to be 0(i) for the sake of simplicity. 

<IDentifiables> are defined as: 
ID = INT U SYM U TUP U SET u ASS; (<CONS> ~ I D). 

While <ASS>'s are denoted as <ASS>::= (.<ID>)o, 
<TUP>'s and <SET>'s are denoted in accordance with 

ordinary mathematical notations: 
<TUP> ::= (<I_D> .... )o; <SET> ::= {<ID> .... }o, 

where ",ooo" means nonzero repetition of the same 
metaobject. Specially the 0-tuple () and the null 
set {} are regarded equivalent to NIL, i.e., 

() E {} H NIL. 
<CONS> is printed as cons[A;()] = (~A~) with extra 

blanks (M's) at both ends to discriminate them from 

a <TUP> printed as (A). 

(2.1) A function ",cons" appends an <ID> to a 
<TUP>, e.g., 

tcons[A; ()]=(A) , tcons[{A,B}; (C)]=({A,B},C). 
Lisp functions "car", "cdr", "cadr" etc. work on 

<TUP>'s as on <Lisp LIST>'s e.g. 
car[(A,B)]=A, cdr[(A,B)]=(B), cadr[(A,B)]=B. 

<TUP>'s are uniquely represented in the machine by 
making use of hashing for speed: 

LEMMA i. The time complexities of functions 
",cons", "car" and "cdr" on <TUP> are all 0(i). 

(2.2) A function "settup" transforms a <TUP> into 
a <SET> with the corresponding elements; "tupset" 
does the converse, e.g., 

settup[(A,B)]={A,B} or {B,A}; 
settup[(A,B,B)]={A,B} or {B,A}; 
tupset[{A,B}]=(A,B) or (B,A). 

Specially for t 6 TUP, tupset[t]=t (a coercion 
rule). Although the ordering of elements of a <SET> 
is irrelevant to its identity, the ordering of the 
elements of the <TUP> used first to define a <SET> 

establishes a "canonical order" among the elements 
of the <SET>. Whenever the canonical order is 
needed, it can be retrieved by performing tupset 
,<SET>]. <SET>'s are represented uniquely in the 
machine by making use of hashing for speed: 

LEMMA 2. For t E TUP, s E (SET u TUP), the time 
complexities of settupft] and ,upset[s] are O([tl) 
and 0 (i) , respectively. 

(2.3) For x • ID the function "ass" yields an <ASS> 
: ass[x]=(.x*). (* means actual datum represented 
by the variable). Conversely, for a=ass[x] e ASS 

the function "key" gives the <ID >, x: key[a]= x and 
the pseudo-function assign[a;v] assigns a value v, 
of any type, to <ASS>, a. The value is assign[a;v]= 
v and the assigned value can be retrieved as the 
value of the function value[a]=v. The initial value 
of an <ASS> is (). Similarly to Lisp, property 
functions are defined as put[x;y;v]= assign[ass[tup 
[x;y]];v], get[x;y]=value[ass[tup[x;y]]] and 
remprop[x;yJ=put[x;y;()], where x, y • ID and v is a 
datum of any type. These functions are implemented 

Proceedings of  the 1976 ACM Symposium 154 
on Symbolic and Algebraic Computation 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800205.806334&domain=pdf&date_stamp=1976-08-10


by making use of hashing for speed: 

LEMMA 3. The time complexities of "ass", "key", 
"assign", "value", "put", "get" and "remprop" are 
all 0(i). 

Note in ordinary Lisps that properties are more 
restrictive: x ~ SYM and y ~ (INT U SYM), and that 
in case m properties are used on a SYM the time 
complexity may increase as O(m) due to list imple- 
mentation of properties. 

(2.4) For x, y • I D, the predicate function eq[x;y] 
checks the equality of x, y in accordance with the 
mathematical common sense. Namely, in case x and y 
are of different types, eq[x;y]=(); for x, y ~ INT, 
eq[x;y]=T iff x and y are numerically equal; for x, 
y £ SYM, eq[x;y]=T iff x and y have the same spell- 
ing; for x, y • ASS, eq~x;yJ=T iff key[x]=key[y]; 
for x, y £ TUP U SET, eq[x;y]=T iff x and y repre- 
sent the same n-<TUPie> or <SET> mathematically. 
E.g., 

eq[ (A,B) ; (B,A)]=() , eq[{A,B};{B,A}]=T, 
eq[{A,B};{B,B,A}]=T, eq[(.(A));(.{A})]=(). 

LEMMA 4. The time complexity of "eq" is 0(i). 

Note that for the equality checking of Lisp data 
<CONS>, the time consuming function "equal" has to 
be used[3]. <TUPie>'s essentially differ from 
<LIST>'s in this regard. 

(2.5) Outline of an Implementation called HLISP 
(Hashed LISP). 

Each <HLISP CELL> in the FSA (Free Storage Area) 
consists of three fields: <CELL> ::= [<TAG>,<CAR 
field>,<CDR field>]o. Besides for GBC (GarBage 
Collection) marking, the <TAG> is used to specify 
the data type of the cell. Similarly to Lisp 1.5, 
a <CONS CELL> ::= [CONS,x*,y*] o is created in the 
FSA as the result of conslx;y]. The FSA itself is 

used as the (only one) hash table with the size 
being a prime p. For tup[x;y], a hash search (in- 
sert iff absent) is made for a <TUP CELL> ::= 
[TUP,x*,y*] o, using Knuth's algorithm D[4, p521], 
thereby ensuring uniqueness of the resultant <TUP>. 
For ass[x], a hash search is made for an <ASS CELL> 

::= [ASS,"don't care",x*]o, using Knuth's algorithm 
U214, p539]. The value of the <ASS> is placed in 
the <CAR field>, which is not used as the key of the 
hash search. A <Short INTeger> is represented as a 
pointer (placed in <CAR> or <CDR> field) to a non 
existing memory address. An n-precision <INT> is 

uniquely represented like a <TUP> of <Short INT>'s 
(i,, i2, ..., in) with the head cell being changed 

to an <INT CELL> ::= [INT,iz,t]o , where t is a 
<TUPie>, (i2, ..., in). A <SYM CELL>, corresponding 
to an atom header cell of Lisp 1.5, is the same as 
an <INT CELL>, except the head cell <SYM CELL> ::= 
[SYM,iz,t] with <Short INT>'s iz, ..., in being an 
unique encoding of the character string which iden- 
tifies the <SYM>. For settup[t], t=(ez* , ..., em*), 

a <SYSi CELL> ::= [SYSi, "don't care", "don't 
care"] o is made first, where SYSi is a system data 
tag. Secondly, a <TUP> t'=(e~'*, ..., en'*), free 
of duplicating elements is made from t by using hash 
searches for <SYS2 CELLs> ::= [SYS2, "pointer to the 
SYSi cell", ei*]o for removing duplications with 
time complexity 0(i) per element of t. Thirdly, 
using a symmetric (in respect to permutation of 
arguments) hash sequence hi(ea'*, ..., en'*) i=l, 2, 
3, ... (e.g., h,=mod(e1'*+ ... + en'*,p-l)+l, hi= 
mod(/*hz,p) with time complexity O(n+i); Algorithm 
U2[ibid], [5]), hash search is made for a cell 
s=[SET,h,, "don't care" ]. If unsuccessful, a new 

<SET CELL>, <SET CELL> ::= [SET,h,,[SYSi, Isl,t']]o, 
is created. If successful, s = settup[t] (redefined 
<SET>) or m (hash conflicting <SET>'s) is checked by 

utilizing the <SYS2 CELL>'s of t. (Time complexity 
O(It' I) at the most.) The hash search is resumed in 
the latter case. The load factor ~ of the FSA is 
limit to ~(~M<i (e.g., CiM=80%). When a~aM the GBC 
is called. A trioccupancy ("occupied" (i.e., a cell 
in use), "deleted" (not in use but in hash conflict) 
and "empty" (neither in use nor in conflict)) scheme 
is used to reclaim the garbage <CELL>'s without cell 
relocations and without using secondary storage. (A 
detailed analysis is given in [6]; McCarthy [7], 
proposed a scheme essentially the same as the pres- 
ent uniquely represented n-<TUPles>. However, he 
stated a difficulty in GBC: the neccesity of the use 

of secondary storage.) If the result of GBC does 
not satisfy a<am (e.g., (~m=60%), GGBC (Grand GBC; 
more details are given in IV) is called. If a<am is 
still not satisfied the job is terminated because of 

insufficient storage. Note that the condition oun<c~M< 
1 ensures the time complexities as claimed in LEMMAs 
1-4. If am=aM=l were used, the FSA would be usable 
up to the very last one cell, but the LEMMAs would 

not be valid. 

III. Application to Formula Manipulation. 

Let IP be the set of polynomials with integer 
coefficients and positive integer exponents. 

(3.1) The <Sum of Product> Normal Form. 
Polynomials of IP can be expressed as sum of 

products (terms) , e.g., 
pl = 2UV 2 + 3X3Y 4, p2 = 3Y4X 3 + VUV + UV 2. 

These expressions represent the same polynomial, and 
they can be faithfully represented in terms of 
<TUP>'s as follows: 

<SP*form>::=((<TERM ID*>,<COEFficient>),ooo) o and 
<TERM ID*>::=((<VARiable ID>,<EXPonent>),ooo)o, 

where <COEF> • INT0, <VAR ID> • SYM and <EXP> e 
INT+. E. g. , 
sp*(pl)=((((V,2) , (U,i)) ,~) , (((X,3) , (Y,4)),3)) 
sp*(p2)=((((Y,4), (X,3)),3), (_((V,i), (U,i), (V,i)),i), 

(((U,i), (V,2)) ,i)) . 
These SP* forms can be transformed into a unique S_P 
normal form in the following way (a program is given 
later): (i) Combine duplicating <VAR ID>'s in a 
<TERM ID*> as in VUV=V2U. (2) Absorb the commutative 
nature of multiplications into a SET: <TERM ID> ::= 
{(<VAR ID>,<EXP>) .... }o- E.g., V~=UV 2 is absorbed 
as {(V,2),(U,i)}={(U,1),(V,2I}. (3) Combine dupli- 
cating <TERM ID>'s as in V2U+V2U=2V2U. (4) Absorb 

the commutative nature of additions into a SET: <SP> 

::= {(<TERM ID>,<COEF>), ooo}o- E.g., 
sp[pl]=sp[p2]={({(V,2) , (U,i) },2), ({ (X,3) , (Y,4) },3) }. 

We now define two data structures, in order to 
formalize the definition of the <SP> form: 
A <CLUB> is a <SET> of 2-<TUPle>'s of <ID>'s (infor- 

mally, <CLUB> ::= {..., (in/, g/l, .--}o) such that 
all of the first element, to be called the £club-) 
"member", of the 2-<TUPie>'s are distinct (m/~mj for 
i~j). The second elements (gi's) of the 2-<TUPie>s 
are called "grade"s. A <MULTISET> is a special 
<CLUB> of which the grades are restricted to posi- 
tive integers. (This agrees with the "multiset" of 
Knuth[4] by regarding the "multiplicity" as the 

grade.) Thus, we can now state: "An <SP> is a 
<CLUB> of <TERM ID>'s with non-zero integer grades, 
called <COEF>; a <TERM ID> is a <MULTISET> of <SYM>' 
s, called (VAR ID>'s; specially, for the null and 
constant polynomials, 

sp(0)={}, sp(n)={({},n)}, where n £ INT0." 

155 



Since the SP form obviously represents IP polynomi- 
als uniquely, i.e., for p, q • IP, 

sp(p) = sp(q) (set equality) iff p-q H 0, 
by LEMMA 4 we obtain: 

PROPOSITION 1. Given two I P polynomials in the S P 
form, the time complexity for identity checking of 
the two is 0(i). 

(3.2) Polynomial Manipulation in The SP Form: 
A Property Adding Auxiliary Function: 

addprop[g;x;v;r] = prog[[y];y:=get[g;x] ; 
[null[y] + prog2[put[g;x;v];r:=tcons[x;r]]; 
T -~ put[g;x;v+y]] ;return[r] ] . 

Given g, x • I D, v 6 INT and r • TUP, if the G- 
property (i.e., the value of get[g;x]) is (), 
"addprop" puts v on the property and appends x to r 
in the result, otherwise, v is added into the prop- 
erty. By LEMMAs 1 and 3, the time complexity is 
0(i). Similarly, we define: 

k 

subprop [g; x; v; r] =addprop [ g; x; -v; r]. 

A Property into Club-Grade Function: 

clubprop0 [g; r] =prog [ [c;y;w] ;w:=r; 
A [null[w] + return[settup[c]]] ;y:=get[g;car[w]]; 

[y~0 ÷ c:=tcons[tcons[car[w] ;tcons[y; ()]];c]] ; 
remprop[g; car[w] ] ;w:=cdr~w] ;go[A] ] . 

Given g • I D and r, a <TUPie> of distinct <ID__s>, 
"clubprop0" yields a club of the <IDs> with making 
the respective G-properties into grades and exclud- 
ing 0-grade members. By LEMMAs i, 2 and 3 and since 
loop A is executed Irl times, the time complexity is 
O(Irl + i). 1 is added to account the time 0(i) 
needed in case Irl = 0, i.e., r = (). 

A Club Union and Grade-Adding Function: 

addclub [p; q] =prog [ [g; r; w] ; g: =gensym[] ;w: =tupset [p] ; 
A [null[w] + prog21w:=tupset[qJ ;go [B] ] ] ; 

r:=addprop[g; caar[w] ; cadar[w] ;r] ;w:=cdr [w] ;go [A] ; 
B [null[w] + return[clubprop0[g;r]]] ; 
r :=addprop[g; caar[w] ;cadar [w] ;r] ;w:=cdr [w] ;go[B]] . 

Given clubs p, q with numerical grades, "addclub" 
yields a club of the union of members of p and q 
with the grades of common members being added in and 
0-grade members being excluded from the result. A 
"gensym" (i.e., a unique <SYM> generated by the 
system) is used to avoid possible confusions of 
properties in the auxiliary functions. Similarly, 
subclub[p;q] is defined by replacing the "addprop" 
in the last line only by "subprop". Since lo0p A is 
repeated IPl times and loop B, lql times and by 
LEMMAs i, 2 and 3, the time complexity is O([pl+lql 
+i). In case p, q • SP "addclub" adds the two and 

gives the result in the SP normal form. Hence, 

PROPOSITION 2. The time complexit~ of adding two 
polynomials p and q in the SP form is O(Ipl+lql+l). 
(Multivariateness has no effect.) 

A Polynomial Multiplier Function: 

mul sp [p; q ] =prog [ [ g; r; u; v] ; g: =gensym [] ; u: =tups et [p~ ; 
A [null [u] -~ return [clubprop0[r] ] ] ;v:=tupset[q] ; 
B [null[v] -~ prog2[u:=cdr[u] ;goIA]]]; 

r: =addprop [ g; addclub [ caar [u] ; caar Iv] ~ ; 
cadar [u] *cadar [v] ; r] ; v:=cdr[v] ; go[B] ] . 

"muls " Given p, q • S P, p yields the product in the 
SP form. Note that "addclub" is used to multiply 
two <TERM ID>'s as in addclubI{(A,l), (B,2)}; 
{(B,3),(C,4)}]={(A,i),(B,5),(C,4)}. For s ~ S P, 
let T(s) = Isl+ (total number of elements in 
<TERM ID>'s of s). The dominating term (clubprop0[r] 

is o(IpJp.lql) at the most) in the time complexity of 
"mulsp" is easily seen to be O(lqlT(p)+IplT(q)), 
which arises from repeating the "addclub" on 
<TERM ID>s for IpHql times in the nested loops A 
and B. Hence, we obtain: 

PROPOSITION 3. The time complexity of multiplying 
p, q £ SP is O(lqIT(p)+Ip[T(q)); specially in case 
each term is K-variate at the most, it is o(IpI.lq I 
(K+i)) and in the univariate case it is o(IpHql). 
(Factors such as log 2 IPl or log 2 lq[ are absent. 
Sparseness of the result has no effect.) 

An SP* into SP Transformation Function: 

intosp[p]=mulsp[p;{({},l) }]o, where {({},I) }=sp(1). 

This works correctly because of the "coercion rule" 
in (.2.2). Let T*(p)=Ip[+(total number of elements 
in <TERM ID*>s of p • SP__~). We obtain: 

PROPOSITION 4. The time complexity of transforming 
an IP polynomial p in an SP* form into the S P normal 
form is O(T*(p)); specially in case the length of 
each term of p is K at the most, it is O(IpI.(K+i)). 
(If <TERM ID*> and SP* were sorted into a sorted 
normal form, the time complexity would be 
0 ( I P I" (i og2 I P I )" (K+i) 1 og2 (K+i)). ) 

(3.3) The <Signed Absolute SP> form: 

Let s=sp(p) be the SP form of a polynomial p • 
IP. As a <SET>, s can be partitioned uniquely as 

s = s+ u s-, wherein all grades of s+ are positive 
and those of s-, negative. Let -s- be the <SP> 

obtained by reversing all signs of grades of s-. 
Definition. The <Absolute SP> form asp(p) of p is 

a <SET>: asp(p)={s+,---s-}; speci--ally asp(0)={}. 

PROPOSITION 5. For p, g • I P, 
asp(pl = asp(ql iff (p _= q v p H -q). 

Definition. The <SASP> normal form sasp(p) of p 
is a 2-<T~Pie>: sasp(pl=(asp(p), sign(p)), where 
sign(p)=+l in case the canonical order of the SET 
, asp(p) is tupset [asp(p) ]= (s+,-s-) , otherwise 
sign(p)=-i (c.f., (2.2)); specially, sasp(0)=(). 

PROPOSITION 6. For p, q • I P, 
sasp(p) = sasp(q) iff p _= q. 

(3.4) Unique Normal Forms for Rationals: 
Let ~ be the set of (all) rational numbers. 

Hereinafter, for q £ 2, we use the following obvi- 
ously unique representation; if q • INTc Q use the 
integer q itself; otherwise use the 2-<TUPie>, 
(a*,b*) such that a, b ~ INT, bz2, q=a/b and a, b 
are relative primes. 

SP, ASP and SASP forms can be easily generalized 

to <QP, polynomials with rational coefficients and 
positive integer exponents> by changing the condi- 
tion <COEF> £ INT0 for <IP_~'s into <COEF> e (Q- {0} 
). 

Let ~ be the set of rational functions with 
rational coefficients and integer exponents, i.e., 

~={x/yl x • ~, y • (~- {0})}. Any function r E 
(QF- {0}) is known to be uniquely factorizable, 

except the arbitrariness of signs on the factors, as 
follows : 

e I e i e k 

r = q Pl "'" Pi "'" Pk ' 

wherein q £ (Q - {0}), e i £ INT0 and Pi ~ (IP - INT) 

such that Pi is not factorizable into elements of 

(~_Z- {-1,1}I. 
Definition. The <Factorized SASP> form fsasp(r) of 

r • (~- {0}) is a 2-<TUPie>: 

Is6 



fsasp(r) = ({ .... (asp(pi) ,e i) .... }, ~q) , where 

e I e. e k 
+q = (sign(Pl)) "'(sign(Pi)) l..(sign(Pk)) .q; 

specially, fsasp(0)=(). 

PROPOSITION 7. For x, y • QF, 
fsasp(x) = fsasp(y) iff--x ~ y. 

PROPOSITION 8. For x, y • (QF - {0}), 

car[fsasp(x)] = carIfsasp(y)] iff x/y • 2" 

Proofs of PROPOSITIONs 5 to 8 have been omitted but 

they would be easy. 
A Multiplier for x, y • (FSASP - {()}): 

mulfsasp[x;y] = tcons[addclub[car[x];car[y]]; 
tcons[mulq[cadrlx];cadr[y3];()]], 

where "mulq" is a multiplication function of ration- 

al numbers. For a divider "divfsasp", replace 
"addclub" by "subclub" and "mulq" by a rational 
number divider "divq". 

(3.5) Poisson series is a function as: 

p = ~. a i eos(ui) + ~ bj sin(vj), 

where ai,lui, bj, vj ~ QF. J 

A unique normal form POIS for this series can be 
obtained by absorbing the arbitrariness caused by 
cos(u) = cos(-u) and sin(v) = -sin(-v) into ASP 
forms: <POIS> ::= (<POIS COS>,<POIS SIN>)o, wherein 
<POIS COS> and <POIS SIN> are clubs: 

<POIS COS> ::= {(asp(u),sp(a)),ooo}o and 
<POIS SIN> ::= {(asp(v),sp(sign(v)b)),ooo} o 

with u • QF and a, b, v • (QF - {0}). It would be 
a matter of exercise to define Lisp functions to 
perform addition, subtraction and multiplication on 
POIS normal forms. 

(3.6) The <Associator List SP> Form: 

So far stress has been laid on unique normal forms 

and on time complexities. However, for improvements 
in actual speed of computation, constant factors 
neglected in time complexities must be taken into 
account. Although time complexities of cons[x;y] 
and tcons[x;y] are both 0(i), "cons" would actually 
work faster than "icons" because of extra hashing 
overhead time needed in "tcons" to ensure unique- 
ness. Similarly, "value", "key" and "assign" would 
be faster than "ass" (c.f., (2.3)). The same would 
hold for the O(n) complexity for list[xl; ,...;xn] 
and settup[t] with Itl=n. It would be a reasonable 
strategy to use unique normal forms only where they 
are essentially needed. For example, in the manipu- 
lation (add, sub and multiply) of <IP>'s in the SP 

form, use of the unique normal forms for <TERM ID>'s 
is essential but use of a <SET> for sum of terms is 
not. Use of the following ALSP form would be better 
for the sake of speed: <ALSP> ::= (~(.(g*,<TERM ID> 

)),ooo M) o. For p £ I P, alsp(p) is a <LIST> of 
<AS Sociator>'s of 2-<TUPle>'s of a "gensym", g* and 

a <TERM ID>. <COEF>'s of the sp(p) are given as G- 
properties (i.e., getlg*;<i-th TERM ID>] = <i-th 
COEF>). Rewriting functions for SP forms in (3.2) 
into those for ALSP forms would be a matter of exer- 
cise. The similar applies to Poisson series: Use ASP 
forms for u's and v's and ALSP forms for a's and b's. 

IV. Computing Schemes with Reclaimable Hash Tables 

The choice between tabulation and recomputation 
is a basic problem in programming. While (hashed) 
tabulation provides the best time complexity of 0(i) 
in many cases, extra storage space is needed to keep 
the tables. 

In HLISP two features called tabulative and 

associative computing are provided, which enable 
users to utilize the full advantages of computing 
with hash tables. Moreover, in order to make a 
compromise between the space and time requirements 
automatically, a two staged garbage collection 
scheme, GBC and GGBC of (2.5), is employed. The 
<CELL>'s used for hash table entries in "tab-" and 
"assoc-comp" schemes are reclaimed by GGBC but not 
by GBC. Hence, these entries are termed "reclaim- 
able". After having been reclaimed, the table 
entries are reconstructed on demand. 

(.4.1) "Tabcomp" is applied to member[x;s]=(x E s) 
for x £ ID, s • SET and to n-way switching and se- 
lecting functions: tabc~8[x;a;e*] with c~ • {a,d,q,g} 
and 8 • {q,g} - The value of a must be an n-<TUPie> 
of the form a=(..., (mi*, gi*), ... ) and e* must be 
a constant <ID> datum. If x matches with mi (a 
I D), the resultant value is respectively cadr[(mi*, 

gi*)]=gl *, cdr[(m/*, gi*)]=(gl *) or (mi*, gi*) for 
ct=a, d or q; for c~=g the result is "GO TO gi*". If 

no match, for 8=q the resultant value is e* and for 
8=g the result is "GO TO e*". 

(4.2) "Assoccomp" effectively avoids the recomputa- 
tion of the same function for the same argument(s) 
by inserting the results of the previous computation 

in the reclaimable hash table entries. Evaluation 
of a function is made in the "assoccomp" mode by so 
specifying to the compiler or interpreter. By 
"assoccomp", the time complexity of recursive algo- 
rithms such as follows can be improved automatically 
without rewriting. 
factorial[n]=fc[n]=.[n=0 ÷ i;T -~ n*fc[n-l]], 
fibonacci[nJ=fb[n]=[n_<l + n;T ÷ fb[n-l]+fb[n-2]], 

C =c[n;m]=[m=0 v m=n + i;T + c[n-l;m]+c[n-l;m-l]]. 
n m 

(4.3) LEMMA 5. Time Complexities of Tab- and 

Assoc-comp features are as in the following table: 

WITHOUT Tab- WITH Tab- or Assoc-comp 
and As soc-comp 
features. INITIAL REPEATED EXTRA 

Function TIME TIME TIME CELLS 

member~x, s] o(Jsl) o(Isl) o(i) Isl 
tabe~x, a, e*] o(lal) o(lal) 0(i) lal+l 

factorialIn] 0 (n) n 0 (~) 0 (i) 2n+3 
fibonacci [n] 0(1.618 ) O(n) 0(i) 2n+3 

C =c [n,m] O(nCm) O(n 2) 0(i) 3n2/2 
n m 

The initial time means the time complexity immedi- 
ately after a GGBC call. Extra cells are the 

number of <CELL>'s needed for reclaimable hash 
entries. E.g., repeated evaluation of fb121]=i0946 
runs 30,000 times faster in HLISP by merely feeding 
a card "ASSOCCOMP ((FB))". clubmember[x;c]= tabqq 
~x;tupset~c]; ()] checks whether x is a member of the 
<CLUB>, c. The time complexity of O(Isl'Itl) in the 
pure Lisp algorithms[3] for s u t and s N t of sets 
s, t is greatly improved by applying "tabcomp" to 
"member" (even immediately after a GGBC call): 

LEMMA 6. Time complexity of s u t and s N t for s, 
t c SET is O(Isl+Itl). 

(4.4) Outline of an HLISP Implementation: 
For "member" <SYS2 CELL>'s of (2.5) are utilized. 

When <SYS2 CELL>'s are reclaimed by GGBC, the 
<SYSi CELL> is switched to a <SYSi* CELL> to indi- 
cate the necessity of reconstruction of the <SYS2 
CELL>'s. For "tabs8 ''~, initially (i.e., after GGBC) 
a <SYS3 CELL> ::= [SYS3,a*,e*]o is hash inserted (as 
a result of an unsuccessful search) and then 

157 



<SYS4 CELLs> ::= [SYS4,(m/*,gi*),[SYS3,a*,e*]] o are 
hash inserted by using a hash sequences determined 
by mi's (not the <TUP> (m/, gi)) and the pointer to 
the <SYS3 CELL>. Hash retrieval is made by utiliz- 
ing these <SYS3 CELL> and <SYS4 CELL>'s, which are 
all reclaimed by GGBC. In the assoccomp mode, a 
function fb[n], say, is evaluated as: First, make a 

hash search for <SYS5 CELL> ::= [SYS5, "don't care", 
t]o, with t=tcons[n;FB], and if unsuccessful insert 
a <CELL>, [SYS5,1*,t], where i* is a <SYStem SYMbol> 
, then compute fb[n] and replace i* by fb[n] for 
future retrieval of fb[n3. Else if successful 
retrieve the value from the <CAR field>. Specially, 
in case the <CAR field> contains i*, there must have 
been a vicious circle in the algorithm such as 

fb[n]=[n~l ÷ n; T + fb[n]+ fb[n-l]]. Thus a message 
"CIRCULAR DEFINITION ERROR IN FB °.." is printed. 
GGBC reclaims <SYS5 CELL>'s except those containing 
i*. Hence, 

LEMMA 7. "Assoccomp" effectively checks circular 
definitions at runtime. 

(4.5) For fc[n], fb[n], c[n,m] etc., "assoccomp" is 
more convenient than "tabcomp" since the range of 
argument(s) is generally not known in advance. Con- 
versely, if "assoccomp" were used for member[x;s~, 
say, a great number of wasteful hash entries for x 

s would be created. Thus, "tab- and assoc-comp" 
are complementary and each has its own raison d'etre. 

V. Concluding Remarks 

The first version of HLISP without the SET 

feature has been in operation for two years[8], but 
with the TUP feature alone little advantage in 
formula manipulation could be found. The combina- 
tion of SETs and TUPs is believed to have provided a 
really powerful tool for formula manipulation as 

indicated in III. Tab- and assoc-comp features 

would also be useful. Since the implementation of 
efficient hashing and garbage collection algorithms 
is a very specialized art, it would be better to 

separate them from the general users. Therefore, 
external specifications of such algorithms have been 

given as LEMMAs in this paper. 
The following improvements are now in progress 

to make the schemes presented in this paper into 
truly useful tools for symbolic and algebraic 

computations: 
(i) Writing of an efficient HLISP compiler[9]. 
(2) Implementation of a language system called 
"FLATS" which would enable us to absorb any existing 
algorithm written in Fortran, Lisp or Algol 60; and 
to write new algorithms with T uples and Sets added 
to any of the three languages F, L or A, whichever 
the user may prefer (HLISP = ~L~TS). 
(3) Design of hashing, GBC and runtime type check 
hardware to improve the ultimate speed of "FLATS". 

The authors acknowledge Messrs. M. Terashima[10] 
and F. Motoyoshi[9] for their valuable contributions 
in implementing HLISP. 

VI. References 

[i] S.C. Johnson, SIGSAM Bulletin, 8, 3, p.63, '73. 
[2] E. Horowitz, J. ACM, 22, 4, p.450, 1975. 

[3] J. McCarthy, et al., LISP 1.5 Programmer's 
Manual, MIT press. 

[4] D.E. Knuth, The Art of Computer Programming, 
vol. 3, Addison-Wesley, Reading, Mass., '73. 

[5] M. Sassa and E. Goto, A Hashing Method for Fast 
Set Operations, submitted for publication. 

16] T. Gunji, Tech. Rep. 76-03, ISD (Information 
Science Department, the University of Tokyo), 

1976. 
[7] J. McCarthy, Page 151 of Symbol Manipulation 

Languages and Technique, D. Bobrow, ed., North- 
Holland, 1971. 

18] Y. Kanada, Tech. Rep. 75-01, ISD, 1975. 
19] F. Motoyoshi, Tech. Rep. 76-05, ISD, 1976. 

Ii0] M. Terashima, Tech. Rep. 75-03, ISD, 1975. 
[ii] A.C. Hearn, REDUCE2 User's Manual, 2nd. ed., 

Salt Lake City, Utah., 1973. 

APPENDIX. Actual Timing Data for Polynomial and Poisson Series Manipulations. 
REMARKS: (i) The machine used is HITAC 8800/8700 at the Computer Centre of the University of Tokyo. 

(2) The same HLISP interpreter system was used as the host system for REDUCE 2[i1]. The free 
storage area was 75K cells in which 25K cells were reserved for <ID> objects. 

(3) The data for polynomial multiplication were obtained to observe the dependence of time on n 

(number of terms in polynomials) and multiplicity, K. Observed times were normalized by 
n2(K+l) as PROPOSITION 3 predicate. Unit of time is in msec. '*' means 'not measured'. 

(4) The FORTRAN data of univariate case were taken by a program with explicit code for hashing. 
The program is similar to the algorithm by Gustavson and Yun to be given at this SYMSAC '76. 

The hash area was selected to 5011 (a prime) and the hash probe sequence was given by 
Algorithm U2 of Knuth[4, p539]. 

(5) The programs in HLISP were written for the ALSP and ASP forms of (3.6). 

Formulas \ n 4 8 16 32 4 8 16 32 i 4 8 16 32 
t=resultant # of terms 

n n 
([ A i) * ([ A j) 
i=l j=l t=2n-i 

n n 
([ Ai) * (I AJn+l) 

i=l j = l  t = n .  n 

1.71 1.69 1.60 1.60 
4.42 2.95 3.97 5.45 
.025 .024 .020 .016 

1.76 1.74 1.72 1.73 
5.50 6.08 15.4 51.3 
.025 .028 .020 .018 

1.85 1.73 1.71 1.67 
3.67 3.50 4.43 7.20 

1.98 1.78 1.76 1.80 
4.33 7.37 21.6 * 

1.82 1.74 1.74 1.77 
4.65 4.04 5.54 9.10 

1.81 1.80 1.79 1.84 
4.40 8°48 * * 

n . n 1.96 1.71 1.68 1.63 1.88 1.82 1.73 1.74 1.84 1.83 1.79 1.77 
(~ A-2+31)*(~ A -3+4J)~ 5.35 5.85 8.20 14.3 5.42 6.53 10.6 * 5.16 7.64 12.2 

i=l j=l t=7n-12 .028 .025 .020 .016 

K-variate l-variate (A=X) 2-variate (A=XY) 4-variate (A=XYZU) 

+ HLISP 
+ REDUCE 

+ FORTRAN 

I+ HLISP 

÷ REDUCE 
+ FORTRAN 

+ HLISP 
+ REDUCE 
I+ FORTRAN 

Timing Data for Poisson Series Manipulation: HLISP 

(AI*COS(WT)+A3*COS(3*WT)+Bi*SIN (WT)+B3*SIN (3*WT))**3 1587 msec 

REDUCE 

8077 msec 

158 


