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INTRODUCTION. This paper is divided into two 
parts. Part i first presents an old and charming 
number theoretic conjecture which has been gen- 
erally believed or at least respected by the 
mathematical community for over 70 years. A pro- 
babilistic argument is then detailed which supports 
the opposite of this conjecture. A vast amount of 
computing has been recently done at various univer- 
sities all over the world in order to investigate 
the plausibility of this conjecture and it was 
largely as a result of these computations that 
the negative argument was formulated. Part II 
of the paper discusses these computations and 
describes some of the problems which were en- 
countered in this project. Not only were many 
hours of machine time consumed but hundreds of 
man-hours were spent book-keeping and "terminal- 
watching" because of the non-homogeneous character 
of the project. Finally, a software system is 
described which, when fully implemented, will 
provide the user with controlled but automatic job 
submission permitting number theoretic projects 
such as this to be carried out with much less 
constant attention. 

Part I. The mathematics. 

"An aliquot sequence (abbreviated AS) is a se- 
quence of positive integers n_,n.,.., for which 

s(n) = o(n)-n and, as usual, n k " s(nk_l) where o i 

(n) = [ d. 

dnT 

We repeatedly use the fact that o is multi- 
plicative and o(pY) = 1 + p + p2 + ... + p~,. 
There are three kinds of aliquot sequences: 

terminatin$: n k = 1 for some k 

periodic: nk+ t = n k for some t and for 

k sufficiently large (for 
example s(6) = 3.4-6 = 6) 

infinite: lim n~ = =. 
k-~ 

Catalan (1887) and Dickson (1913) have conjectured 
that infinite aliquot sequences do not exist. 
Recent computations by Guy, Selfridge, and 
Wunderlich show that of all the aliquot sequences 
for which n o < I0,000, all but 98 are known to 

terminate. In January, 1973, Richard Guy 

and John Selfridge conjectured that infinitely many 
aliquot sequences, perhaps almost all with n o even, 

are infinite. We present in this section the Guy- 
Selfridge argument. 

Table i: Example of a "long" terminating AS. 

k n(k) 

0 2880 

32 123 709593008 

55 7447648 

69 668429258 

99 6677260 

154 5108232 531623332 

203 26799040 

224 177 841798874 

251 124124 

325 36445367 869087816 

393 277 

394 i 

The sequence beginning with n O = 2880 demon- 

strates the behavior of many aliquot sequences. 
The table above lists all the terms which are re- 
lative maxima or relative minima. Table 2 is a 
detailed look at a segment of the sequence begin- 
ning with 1074. The right hand column of the table 
is the unique factorization of n(k) into primes. 
(In our notation, exponents are contained in 
parentheses and a period is used to denote multi- 
plication whenever necessary. Thus 2(3)5.7.977 
means 23.5.7.977.) The reader should note that 
each of the first 25 terms in the table contains 
a single power of 2 and no 3's whatsoever. On 
the other hand, all the other small primes appear 
about the ?right" number of times. This pattern 
seems to coincide with terms which are steadily 
decreasing in magnitude. On the other hand, the 
last 19 terms in the segment contain a single power 
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of 2, at least one power of 3 and a random repre- 
sentation of the other primes. This pattern is 
associated with terms which are steadily increasing 

but not as rapidly as the earlier terms are decreas- 
ing. We shall fully explain this phenomenon. 

TABLE 2 - -  A " S n a p s h o t "  o f  AS 1074" 

N(K) P~CTORIZATION OF N(K) 

310 436546562 900403622 
311 218273281 450201814 
312 149021921 791798186 
313 74510970 979217018 
314 37319461 709687494 
315 18659751 690304874 
316 9925399 835268694 
317 7952081 369012714 
318 4036505 399288086 
319 2018252 699644046 

320 1044364 935545554 
321 793826 522348846 
322 567018 944534914 
323 283509 592485626 
324 174559 350692374 
325 88145 963899562 
326 47282 729665750 
327 45889 133432330 
328 41058 698334550 
329 44205 596276330 

330 35364 477021082 
331 22504 667195270 
332 21119 764598890 
333 17169 3 0 5 0 3 6 1 5 0  
334 14787 136459234 
335 7393 568229620 
336 8993 118602224 
337 9348 110126616 
338 14022 327675624 
339 21673 548325656 

340 40460 999578344 
341 69120 874279866 
342 71184 926630022 
343 72900 226067898 
344 74020 746222150 
345 152002 020061626 
346 202028 731286214 
347 259751 225939514 
348 272602~050924486 
349 291599 60475215h 

350 291599 604752166 
351 377374 531293738 
352 514601 633582838 
353 620322 290876682 
354 756490 598631738 
355 928230 485009862 
356 928459 246951482 
357 928651 136960550 
358 1504054 894174170 
359 2521407 331366950 

2.218273281450201811 
2.17.29.43.1249.9929.415133 
2.22316761.3338789213 
2.1747.21325406691247 
2.2687767.6942465941 
2°47.198507996705371 
2°7(2)31.3267083553413 
2.199.22861.873982063 
2.2018252699644043 
2.89.2503.4529963369 

2.7.71.139.191.39574709 
2.7.56701894453489 
2o9176053.30896669 
2.13.6917o24749.63697 
2°331.3491.75532747 
2.67.173.293,12977287 
2.5(3)19.9954258877 
2 .5 .19 .241521754907  
2.5(2)13°29.461.4724903 
2.5°4420559627633 

2 .11 .1607476228231  
2 .5 ,13 .173112824579  
2 .5 .139 .15194075251  
2 . 5 ( 2 ) 1 4 8 3 . 2 3 1 5 4 8 2 8 1  
2.7393568229617 
2 ( 2 ) 5 . 1 9 ( 2 ) 1 0 2 4 0 3 9 9 2 1  
2 (4 )19 .29582626981  
2 ( 3 ) 3 . 1 5 2 4 0 7 . 2 5 5 5 6 8 7  
2(3)3.73.241.5647.5881 
2 ( 3 ) 3 ( 2 ) 2 3 o 1 0 7 o 1 9 9 . 6 1 4 6 5 7  

2 ( 3 ) 3 ( 2 ) 5 6 1 9 5 8 3 2 7 4 7 7  
2o3 .67 .267601°642533  
2 .3 .83 .142941619739  
2 . 3 . 1 5 7 . 9 6 7 . 4 6 5 1 . 1 7 2 0 7  
2 ° 3 . 5 ( 2 ) 7 . 1 3 . 2 5 5 1 o 2 1 2 5 7 4 1  
2 ° 3 . 7 ( 2 ) 9 7 7 . 1 8 7 1 3 . 2 8 2 7 9  
2 .3 ,7 .4810207887767  
2 . 3 , 7 9 . 1 4 9 ° 1 9 3 . 1 9 0 5 6 1 7 3  
2 . 3 . 2 9 . 2 8 5 7 . 5 4 8 3 6 4 8 7 7  
2 .3 .48599934125359  

2 . 3 ( 2 ) 1 7 . 6 5 0 0 3 o 1 4 6 5 9 9 3 7  
2 .3 (2 )11°1905931976231  
2 . 3 ( 2 ) 1 0 1 . 1 2 7 . 4 4 0 5 9 . 5 0 5 8 7  
2 .3 (2 )41o840545109589  
2 . 3 ( 3 ) 4 6 3 . 3 0 2 5 7 2 0 3 3 6 9  
2 . 3 . 1 4 7 3 1 . 1 8 6 7 1 . 5 6 2 4 7 7  
2 .3 .9677 .15990824411  
2 . 3 . 5 ( 2 ) 3 1 . 4 3 . 5 9 9 2 1 . 7 7 5 0 9  
2 o 3 . 5 o 1 3 . 3 1 . 3 1 7 . 3 9 2 4 4 4 3 8 9  
2.3.5(2)13.5477.236083513 

t 

Computed by H. d. Godwin, see [6] 
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Let the set of all positive integers be partitioned 

into sets SO, Si, S 2 and S 3 as follows: 

SO; set of all odd integers 

SI; n = 2k where (k,6) = 1 

$2; n = 2.3.k where k is odd 

$3; n = 22.k. 

If C(n) is a condition on n, we will denote with 
N {C(n)} the number of positive integers n < x for 
w~ich C(n) is true. Thus for i = 0,1,2,3,--we de- 
fine the function 

Nx{n e Si;s(n ) ~ Si} 

(i) Bi(x) = N in e S.} 
X l 

which, loosely stated, measures the probability 
that a term of an aliquot sequence whose order of 
magnitude is x will "break" out of the set S.. 

• • ~ ,w 
We will call these functions "break probabllltles . 

We also define the function A. to be the 
1 

average order of the function s(n)/n taken over 
the set of all n e S.. Formally, it is defined to 
be 

s (n )  g (n )  

n<x n<x 
n eS-. n eS-. 

l 1 
(2) A. = lim i. 

1 

n~ n<x 

1 1 

This function measures the average growth of an 
aliquot sequence term lying in one of the sets S.. 

1 
That the limit exists is based on the following 
lemma whose proof we omit. 

Lenmaa i: If k 

n<x 
n~k(p) 

is a residue mod p, then 

o(n) 
= Cx + 0(log x) 

n 

for some constant C. 

For the remainder of this section, we adopt the 
"a n". usual notation n fOrpa+l~ivides If p 

is a prime, Pal but , we will write 
P11n 

/mmma_2~: 

(a) 

(b) 

(e) 

B0(x) = 0(i//x) 

Bl(X) ~ ~2/6 log x ~ 1.64492/iog x 

B2(x ) ~ 72/24 log x ~ .41123/iog x 

Proof: (a) follows from the fact that if k is 
odd, s(k) is even if and only if k is a square. 

(o(pa) = i + p + p2 + ... + pa). To prove (b), we 
let (k,6) = I and let M = s(2k) = 3o(k) - 2k. 
Clearly 3~M. 211M if and only if 221~(k) and 
22~(k) if and only if 

(i) k is a square (neglect this) 
(ii) k = Sp where S is a square relatively 

prime to 6 and p is a prime ~ i (mod 4). 

It is well known that the number of primes < x 
which are congruent to i mod 4 is asymptotic to 
x/21og x. Using this we obtain 

(3) N {n = Sp, S square, (S,6) = i, p prime, 
x 2 

X 

p ~ 1(4)} ~ 18 log x 

2 
7I X 

so Nx{n E Sl, s(n) ~ S I} ~ 36 log x 

~" X ~ 

( 1 ) ,  B l (X)  '~ 36 l ' o g  x 6 l o g  x 

( c ) ,  l e t  k be  odd and  l e t  

and so from 

To prove 

M = s(2.3a.k) = 3o(3a)o(k) - 2.3a.k. 

Again we discount the case where k is a square; 
thus we assume that 21o(k). Therefore 22~M 
whenever o(3 a) is odd and k = Sp, S a square 
and p --- l(mod 4). o(3 a) is odd whenever a is 
even, so we get using (3) 

Nx{n e S2,s(n) ~ S 2} 

~ x  l + i +  

18 log x . 2.34 "'" 
2 

71 X % 

288 log x 

and Nx{n c S 2} ~ x/12. 
2 2 

7I X / X  

Thus B2(x) ~ 288 "l~g x /~ 24 log x 

To obtain values forA0, Ai, and A2, we need 

average order results for o(n)/n taken over 
various sets. General theorems of this sort can 
be obtained, but we need only two special results 
whose proofs we can sketch. 

Lemma 3 : 
2 

V o(n) ~ ii x (a) g n 16 
n<x 

n odd 

2 
r ~ ( n )  ~ ~ x 

( b )  L n 27 
n < x  

(n?6) =i 

Sketch of proof: We use a result of Hardy and 
Wright to write 
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(4) 
z2 x 
6 + 0(log x)= ~ O(n)n 

nix 

= ~ ~ k °(2kn) 

k>O n<x/2 2kn 

2k<x n odd 

We then use lemma 1 to assert that a 
for which 

o(p) = Cx + 0(log x) 
n 

n<x 

n odd 

C exists 

and we substitute this for the right hand sum of 
(4). [Note that o(n) and o(n)/n are 
multiplicative.] One can thus solve for C and 
get (a) with the error 0(log2 x). This result 
is then used in a similar way to obtain (b). 

2 2 

Lemma 4: A0 - 8 i, A I = ~--- i, and 

ii~ 2 
A2 - 48 i. 

Proof: The value of A 0 follows directly from 
(2) and lemma 3. To obtain Ai, we estimate 

~.(n) : ~ o(n) . c~(2) 
n n 2 

n<x n<_x/2 
n~+~(12) n~+1(6) 

2 2 
_3~zx ~x 
2 2.27 36 

and the result follows from (2). To estimate A2, 
we write 

°(n---~ = 3- - ( : ! :~2  d C~ (n) ~ °~n)I~ 
nix n 2 n n<x/2 

n-=6(2) n +--1(6) 

ii~ 2 

12.48 

and the result follows from (2). 

1172 
One could also compute A 3 48 i, but the 

result would be misleading. The actual "average 
growth" of terms n such that 221n would not 
reflect the average order of s(n)/n since the 
break probability would differ for each class of 
integers N a for which 2al]n. The following 
computation, however, indicates that the general 
tendency for numbers in Sq would be to grow 
upwards. We let n = 2ak Vfor a > 2 and k 
odd and write 

~(2ak) _ o(2 a) ~(k) > ~ ~(k____~ 

2ak 2 a k 4 k ' 

(k) but the average order  of over  k odd i s  ~2 k 
- -  a n d  
8 

2 
7 
-- • --A 2.15897 > 2. 
4 8 

The results thus far can be summarized in the 
following table: 

Bj(x) A n 

i / F x  

~2/6 log x 

~2/24 log x 

< 1 

z2/8-i : .23369 

z2/6-i : .64493 

i17r2/48-i : 1.26178 

> 1 

Since for all n, s(n) s S O only if n is a 
square or twice a square, aliquot sequences with 
large terms will be dominated by terms in Si, $2, 
and S~. The Guy-Selfridge argument is based on 

IV j II the e x p e c t e d - v a l u e  b e h a v i o r  o f  an a l i q u o t  
sequence dominated by terms in S 1 and S 2. Terms 
in S 3 can only help matters. 

Now, suppose l I consecutive terms occur of 
type i, after which n has been reduced to n 
The geometric mean of the size of the term is 

n ~I+~I)/2"'" The "mean probability" of this type 
breaking is 

2 2 
= 

6 log n (I +al)/2 3(l+al) log n 

so the expected length of this string, £i, is 

3(l+al)lOg n 

£i = 2 

But, on average, s(n) = nAI 
Thus 

2 £1 a 1 n ( b -  iI = n 

2 
~r 

where A I = ~--- i. 

2 
log n + 3(i+~)io$2 D log(W--- i) = a I log n 

2 
2 z 2 

z + 3(l+al)lOg (~-- - i) = ~ a I 

2 
2 31og( -1) 

a I = = .76479 
2 

2  log(  l) 
3(i+~ I) 

Ii 2 log n = .53643 log n. 

For type 2 sequence, 

12(i+~2)io~ n 

£2 = 2 

l l z  2 
and on average s(n) = nA 2 where A 2 48 
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so in a string of 12' 

[ii~ 2 _ 1)£2 ~2 
n~ 48 =n 

or 

12(l+a2)log n . rll 2 i) = 
log n + 2 ±og[-~--- 

= e2 log n, 

2 + 12(i+c~2)iog~ii~ 2 i) = 7r2c~2 , 
< 48 - 

2 
2 . rll~ i) + 12 ±ogL-~--- 

~2 = 2 rll~2 i) = 1.78831, 
- 12 log< 48 - 

£2 - 

12(l+e 2) 

2 
log n = 3.39018 log n. 

If an aliquot sequence began with terms in $2, 
continued for 11 terms, broke into terms in 
Si, continued for 12 terms, the size would be 

~i 1.36768 (n ~2) = n 

The total number of terms would be approximately 

3.39 log n + .536 log(n 1"79) = 4.35 log n. 

Thus the expected behaviour of an aliquot sequence 
dominated by the type i and 2 terms is for 
geometrical growth. To repeat, type 3 terms can 
only help, the type 0 "down driver" is entered 
with prob. 0(i/Jx) and hence can be neglected. 

The above argument is an over-simplified 
analysis of a very complicated two dimensional 
Markov process. The set of integers should be 
partitioned into a larger collection of sets, 
each associated with its own "driver". For a 
discussion of which drivers should be included, 
see Guy and Selfridge [7]. A break matrix can 
be constructed giving the probability of a sequence 
going from one driver to another - these pro- 
babilities are, of course, functions of x, 
the magnitude of the term. Each driver has 
its own growth distribution describing how 
rapidly terms are increasing or decreasing in 
each category. In order for such a model to 
be convincing, one should compare it with driver 
statistics collected from a large number of com- 
puted aliquot sequences. We will now turn our 
attention to the problems associated with the 
computing of aliquot sequences. 

Part II. The Computation. The following algorithm 
replaces the positive integer N with O(N) - N, 
the next term in the aliquot sequence. 

Al$orithm 

i. (Initialize) Set S ÷ I; set M + N. 

2. Perform steps 2.1 through 2.4 while M is 

3. 

4. 

composite. 

2.1 Search for p, the smallest prime such 
that plM. If no such p can be found, 
the program fails. 

2.2 Let M ÷ M/p and F + i + p. 

2.3 Do while pIM; F ÷ i + Fp; M ÷ M/p; End; 

2.4 S ÷ S • F; 

If M > i, set S ÷ S • (i + M) 

Let N ÷ S - N; 

For each pY][N, step 2.3 accumulates the 
value o(pY) = i + p + p~ + ... + pY and step 
2.4 accumulates the product of these values for 
all piN. In practice, a program would test for 

n k = nk_l, n k = nk_ 2 and perhaps even n k = nk_ 4 

since many aliquot sequences are known of period 
i, 2 and 4. There is also a well known sequence 
of period 43 which a sophisticated program can 
look for. Also, since this program is designed to 
collect driver statistics, steps 2.1/2.3 must be 
elaborated upon in order to determine which driver 
is in effect. These are all easy problems to 
solve, however, and we omit discussing them in this 
narrative. The purpose of this paper is to discuss 
some computational problems which are unique to 
number theoretic computing and to suggest some 
novel ways to solve them. 

The main difficulty arises in steps 2 and 2.1, 
the only two places where failure can occur. The 
condition in step 2 is tested by using Fermat's 
test for compositeness. If p is a prime, then 

a p-I ~ i mod p for any integer a. Thus, if 

a N-I ~ I mod N, N is surely composite. 
Furthermore, if N is composite, it is very im- 
probable that a N-I E i mod N. The exponent 
N-I 

a can be computed in O(log N) operations so 
we have a very inexpensive method for verifying 
compositeness. If a N-I ~ i mod N however, we 
should really not proceed until we have proved N 
prime. 

Proofs of primality for large numbers N can 
be long, tedious and fraught with danger. A 
large collection of theorems related to primality 
proofs can be read in [i]. A complete algorithm 
for efficient prime testing appears in [14] and 
we have a working program which is essentially 
based on that algorithm. Primality proofs are 
produced by that program by obtaining partial or 
complete fac~orizations of N - i and N + i. In 
most cases, when N is less than 40 digits, these 
factors can be found by the simple divide and 
factor algorithm [9] which attempts to divide 
N ! i by the primes 2, 3, 5,... until enough 
factors are collected to obtain a proof. The 
entire proof usually takes less than 12 seconds 
on a 360/67 computer and so the program can be 
easily invoked as a sub-procedure of the main 
aliquot generating program. However, there are 
cases in which N + i and N - I only have a few 
small divisors--insufficient for a proof. If after 
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dividing out these factors, one or more of the re- 
suiting cofactors fails Fermat's test for compo- 
siteness, then the program continues recursively 
by attempting a primality proof of the cofactor. 
If both cofactors are composite, a more sophisti- 
cated proof can often be obtained by using not 
only the factors of N + i but also a bound b 
for which piN + i ~> p-> b. The program can 
compute the smallest such bound b which would be 
sufficient to provide a proof if no additional 
factors were discovered. If this value is too 
high, the routine must send back to the main pro- 
gram the message, "We're sorry. Your number is 
most assuredly prime but we cannot produce a 
proof of such without possibly investing n 
minutes of computer time," Where n may be any- 
where from one or two to several hundred. 

The main program now has basically two options. 
It can proceed with its computation after noting 
that the number in question has been merely proved 
"pseudoprime." Then at the end of the semester 
when more computer time is available or when the 
economy improves and a new computer is obtained 
at our university these difficult primality proofs 
can be "cleaned up" and the PSP's denoting pseudo- 
primes can be removed from the aliquot sequence 
output. Of course, there is that minute possibil- 
ity that a pseudoprime may turn out to be composite 
and all the subsequent terms in the aliquot 
sequence would be incorrect. Thus the other more 
conservative option would be for the main program 
to halt all operations until a complete primality 
proof is obtained. We adopted the former philoso- 
phy in our computations. In fact, we employed a 
very crude primality proving program for the bulk 
of the aliquot project while we were developing the 
more sophisticated program described above. By 
now, all PSP's have been removed from our output 
and not a single composite pseudomprime was dis- 
covered. 

The other difficulty arises in step 2.1 of 
the algorithm. We have already assertained that 
M is composite but all of our efforts to find a 
factor of M have proved unsuccessful and we are 
faced with the possibility of exceeding our es- 
timated computer time for the job. At this point, 
there is really nothing the main program can do 
but terminate the job. There is no such thing as 
a pseudo-factorization which would enable the 
program to carry on. Since both difficulites in 
this algorithm involve the factorization of large 
numbers, we shall digress for a moment to discuss 
the general question, "How long does it take to 
factor a number." 

It depends very strongly on the method you 
wish to use, and having chosen the method it 
may depend on the number you are factoring. In 
order to completely factor n using the divide 
and factor method discussed earlier, one must 
divide by the primes which are less than the 
second largest prime dividing n, which we will 
denote by F2(n ). D. E. Knuth and L. T. Pardo 
[9, i0] have recently analysed the distribution of 
the values F2(n) for n < x and their results 
show that for about half o~ the integers n < x 

F2(n) ~ x "21172. Thus, for about half the 36 

digit numbers we factor, a complete factorization 

can be gotten by dividing up to 42 million. On our 
computer, this would take about 7.3 minutes of 
computer time. To put it another way, we can 
factor a 36 digit number up to 1,000,000 in about 
i0 seconds. Again, using the Knuth-Pardo tables, 
we completely factor about 37% of the 36 digit 
numbers by dividing up to 1,000,000. However, for 
25% of the 36 digit numbers, 

.29153 m 31 x 109 . To factor this high F 2 (n) > n 

would take about 90 hours of machine time. There 
are two other recently discovered methods of 
factoring which shorten this time considerably. 
Pollard's Monte Carlo method requires roughly ~p 
operations where p is the second largest prime 
dividing n, but each operation is at least i00 
times as costly as the single division counted in 
the divide and factor algorithm. Never-the-less, 
in the example cited just above, only 176823 
operations would be required. This should be 
possible in a few minutes with a good program. 
Even with the Pollard Monte Carlo method, one 36 
digit number in 20 will take over 4 hours of 
computer time. (Another interesting method was 
discovered earlier by Pollard which requires p 
operations where p is the largest prime dividing 
q - 1 where qln. [12,13]) For two good discus- 
sions of factorization, see [8,10]. 

There are other methods of factoring which do 
not depend at all on the particular distribution 
of the factors but rather depend only on the size 
of the number. The best example of this type of 
faetorizer is the continued fraction method 
developed by John Brillhart [ii]. Although per- 
formance characteristics have not been theoretical- 
ly obtained for this method, our experience with 
the program suggests the timing formula 

(4) TIME = .0003324 N "1574 

where TIME is the estimated time in 360/67 com- 
puter minutes to factor the number N. This 
formula yields the following values. 

N TIME 
(minutes) 

1016 

1020 

1024 

1028 

1032 

1036 

.ii0 

.467 

1.992 

8.489 

36.18 

154.2 

The formula was obtained by doing a linear re- 
gression analysis of log T versus log N on i00 
actual factorizations using the program in which 
N was factored in T minutes. The I00 ob- 
servations ranged in size from 1016 to 1036 . The 
fit was quite good producing a correlation coef- 
ficient of 0.968. For each of these observations 
the ratio ACTUAL TIME/PREDICTED TIME was computed. 
The largest and second largest of these ratios 
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were 2.84 and 2.01 respectively and the smallest 
ratio was .492. The computed mean was 1.05 and the 
standard deviation was .344. Thus the timing 
estimate will almost always predict the actual 
time to within a factor of 2. 

The point we are making is that any general 
factoring subroutine presents the calling program 
with a hopeless problem. There is absolutely no 
way the main program can know how much computer 
time it will take to factor a number. It may 
take less than i0 seconds or over one hour. Clear- 
ly the i0 second jobs can be handled as a normal 
subroutine but what happens when a main program 
with a 5 minute time estimate calls a factoring 
subprogram which decides it requires over an 
hour to do its task? It must send back the mes- 
sage, "We cannot factor your number in the alloted 
time. You had better terminate your job." 

Thus, the computation of a single sequence up 
to the limits of our computational power was a 
tedious and time consuming project. The early 
elements of the sequence were computed very 
rapidly, but as soon as hard-to-factor number was 
encountered, the program simply "timed out" and 
the output obtained was filed away. The dif- 
ficult number was then submitted to a variety of 
programs for factorization and ultimately, if 
no other method succeeded, it was submitted to the 
continued fraction program. This usually required 
an over-night run so that in the morning after we 
collected our factor from the output bin, we had 
to compute the next term of the aliquot sequence 
on a desk computer (the Ollivetti i01) before we 
could rekindle our aliquot program. (In the later 
stages of the project, our aliquot program could 
receive a "hint list" of large factors which it 
would always try before giving up. This feature 
also provided us with a relatively fast procedure 
for recalculating a long sequence in order to 
provide contiguous output.) Since we had a very 
large number of sequences to compute, we gen- 
erally had four or five going at any one time. 
The bookkeeping was very tedious and the proba- 
bility of error was disturbingly high. At one 
point in the project, we were all very excited at 
the prospect of the sequence beginning with 4488 
exceeding i000 terms in length. When we made 
a recalculation of the sequence using our Hint 
feature, we discovered that many months (and 
terms) earlier a mistake was made on the desk 
computer and we had been computing a different 
and thoroughly uninteresting sequence ever since. 
In fact, 4488 terminates with the 459th term. 
Mistakes such as these were very rare--a credit 
to precision bookkeeping and data handling, not 
to versatile and efficient software. 

Our new FACTOR program, which is in the de- 
sign stage at the time of this writing (March, 
1976), will automate this entire process. It's 
novelity relies on the fact that under the IBM 
OS operating system using HASP any program can 
send data to the internal reader, a special out- 
put channel provided by the system. Such data is 
immediately processed by HASP and introduced into 
the input stream as a job which will be queued in- 
to execution along with any other jobs that are 
currently awaiting execution. Thus a program has 
the capability of submitting another program for 

execution into the Job queue. The program FACTOR 
has five parameters and could be invoked from an 
assembly language program using the following macro 
call. 

CALL FACTOR,(NUMBER, TIME, AFACT, #FACT, DSN) 

The parameters are used as follows: 

NUMBER - The number which is to be factored 

TIME - The maximum amount of computer time 
which FACTOR can use in factoring 
the number. 

AFACT A pointer to the address in the main 
program where the factors are to be 
stored. 

#FACT On input, this is the maximum number 
of factors which can be stored at 
AFACT. After execution, it contains 
the number of factors. 

DSN A pointer to a character string which 
is the name of a catalogued data set 
located on an I/O device such as a 
magnetic disk. 

The program also utilizes an external file 
called MEMORY. Its use will be described in de- 
tail later but for the moment, it will suffice to 
say that whenever a "major effort" is required to 
obtain a factorization, such as the use of 
Brillhart's continued fraction program, the number 
and its factorization is placed on the file MEMORY. 
We now describe the operation of FACTOR. 

i. (Has the number already been factoredy) 
The program first searches the file MEMORY to see 
if the number and its factorization has already 
been obtained. If so, it returns the factors to 
the main program, deletes them from the MEMORY 
~ile and returns. 

2. (The number is not on MEMORY) The program 
attempts to factor the number in the time alloted. 
It can succeed in two ways. 

a) It obtains a complete factorizations 
and it has factored sufficiently far 
to guarantee that all the factors are 
indeed prime including the largest one~ 
In this case, it returns the factors 
and returns to the main program with 
a condition code of i0. 

b) It obtains a complete factorization 
but the largest factor has only been 
tested for being pseudoprime. That 
is, it failed Fermat's test for com- 
positeness. In this case, the factors 
are returned and the program returns 
after setting the condition code to 4. 
Thus we make it the responsibility of 
the main program to do the prime test- 
ing. 

3. (The program fails) The TIME allotted by 
the main program wasn't sufficient to factor the 
number. In this event, the factors obtained to- 
gether with the composite cofactor are returned 
and preparation is made to return to the main 
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program with a condition code of 8. First, however, 
an estimate is made as to how much additional com- 
puter time may be required to complete the factori- 
zation and if this amount of time is not excessive 
a job is introduced into the job stream by writing 
to the internal reader. This job, which we will 
call FACTOR2, will not execute immediately, of 
course, but will ultimately be queued into 
execution by the operating system. 

4. (FACTOR2 executes). This program can 
now use all the high powered and time consuming 
methods it needs in order to factor the trouble- 
some number. If it succeeds it performs the 
following two operations before terminating. 

a) The factorization together with the 
original small factors (if any) found 
by the initial execution of the pro- 
gram are placed on the MEMORY file so 
that subsequent execution of the main 
program will obtain the factorization 
immediately when it re-invokes the 
FACTOR program. 

b) The data set whose name is DSN is 
written to the internal reader as an 
executable job. This is the data set 
name originally communicated to FACTOR 
by the original call statement in the 
main program. If the main program is 
contained in the data set DSN, con- 
trol is effectively passed back to 
the main program through the job 
submission process. 

If the factoring is not successful, the pro- 
cedure is essentially the same. The partial fac- 
torization is put on the MEMORY file and it is 
marked as being essentially unfactorable. Then 
DSN is submitted as described as above. When 
FACTOR is again invoked, the partial factorization 
can be returned with a condition code of 12, 
telling the main program that a complete fac- 
torization is not feasible with present technology. 

It is now evident how a main program can be 
designed around this factorization system to 
generate an aliquot sequence. The input for the 
program would reside on a data set. Whenever the 
program terminates either by exceeding execution 
time or attempting to factor a difficult number, 
restart information is written to the input data 
set. If the aliquot program exceeds time itself, 
it must first submit the data set DSN to the in- 
ternal readers so that the program will re-execute. 
The output generated by the program must be directed 
to an output data set rather than being sent to 
the system printer. Thus a clean copy of the 
output can be obtained after the entire chain 
of jobs is completed. 

This has been an oversimplified description 
of the factorization system which we really want 
to implement. We will conclude this paper by 
briefly describing some additional features which 
this system will ultimately have. 

a) An additional parameter BOUND should be 
provided. This tells the factor program 
that although a complete factorization 
would be nice, it would be acceptable to 

b) 

c) 

d) 

e) 

f) 

provide a set of factors the largest of 
which has no factor less than BOUND. This 
would be important for prime testing. On 
output, in case of failure, BOUND could be 
set by FACTOR to the extent to which 
factoring has been done. 

The factoring program will automatically 
collect performance statistics and store 
them on another auxiliary file. It is 
very important that we continually sharpen 
our time and core estimates regarding 
factoring. 

A parameter MAXTIME could tell FACTOR how 
large a job it is permitted to submit to 
the external reader. The user may decide 
that certain number theoretic projects 
aren't important enough to consume hours 
of computer time every night. 

The main program may wish to decide after 
receiving partial factorization informa- 
tion whether or not FACTOR2 should be 
submitted. There are a variety of ways 
to implement this feature. A special 
macro PAUSE can be provided which calls 
an alternate entry point in FACTOR which 
submits the job FACTOR2 and then returns 
normally. If the main program ends with 
a normal RETURN, the job will not be sub- 
mitted. 

The program FACTOR2 will itself be a chain 
of separate jobs. We already have a very 
successful version of Brillhart's con- 
tinued fraction program which submits a 
sequence of small jobs each of which 
generates a collection of factored quad- 
ratic residues. When a large enough col- 
lection of factored residues are generated, 
a 1 minute program is submitted which com- 
pletes the factorization process by doing 
a Gaussian elimination on a very large 
(360,000 bytes) 0-i matrix. One of our 
36 digit factorizations took from Wed- 
nesday afternoon to Saturday morning to 
complete its work, going through a chain 
of i0 twenty minute jobs. 

When this system becomes heavily used, a 
queuing system will be designed. A file 
FQUEUE will be maintained which contains 
all the numbers which are awaiting fac- 
torization. The file will be sorted ac- 
cording to the size of the number so that 
small jobs will be executed first. When 
the in-stream FACTOR program submits 
FACTOR2, this merely inserts the number 
together with any small factors which have 
been found and the return DSN onto the file 
FQUEUE and sorts it. A separate chain of 
factoring programs will be removing numbers 
from the top of the file and factoring 
them as time permits. Provision will also 
be made for entering numbers onto FQUEUE 
from a computer terminal. In this case, 
the character string DSN will serve as a 
label rather than a return program so that 
the factored number can be identified. 
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