
The Aliquot Project:
An Application of Job Chaining in Number Theoretic Computing

M. C. Wunderlich
Northern lllinois University

DeKalb, lllinois 60115

INTRODUCTION. This paper is divided into two
parts. Part i first presents an old and charming
number theoretic conjecture which has been gen-
erally believed or at least respected by the
mathematical community for over 70 years. A pro-
babilistic argument is then detailed which supports
the opposite of this conjecture. A vast amount of
computing has been recently done at various univer-
sities all over the world in order to investigate
the plausibility of this conjecture and it was
largely as a result of these computations that
the negative argument was formulated. Part II
of the paper discusses these computations and
describes some of the problems which were en-
countered in this project. Not only were many
hours of machine time consumed but hundreds of
man-hours were spent book-keeping and "terminal-
watching" because of the non-homogeneous character
of the project. Finally, a software system is
described which, when fully implemented, will
provide the user with controlled but automatic job
submission permitting number theoretic projects
such as this to be carried out with much less
constant attention.

Part I. The mathematics.

"An aliquot sequence (abbreviated AS) is a se-
quence of positive integers n_,n.,.., for which

s(n) = o(n)-n and, as usual, n k " s(nk_l) where o i

(n) = [d.

dnT

We repeatedly use the fact that o is multi-
plicative and o(pY) = 1 + p + p2 + ... + p~,.
There are three kinds of aliquot sequences:

terminatin$: n k = 1 for some k

periodic: nk+ t = n k for some t and for

k sufficiently large (for
example s(6) = 3.4-6 = 6)

infinite: lim n~ = =.
k-~

Catalan (1887) and Dickson (1913) have conjectured
that infinite aliquot sequences do not exist.
Recent computations by Guy, Selfridge, and
Wunderlich show that of all the aliquot sequences
for which n o < I0,000, all but 98 are known to

terminate. In January, 1973, Richard Guy

and John Selfridge conjectured that infinitely many
aliquot sequences, perhaps almost all with n o even,

are infinite. We present in this section the Guy-
Selfridge argument.

Table i: Example of a "long" terminating AS.

k n(k)

0 2880

32 123 709593008

55 7447648

69 668429258

99 6677260

154 5108232 531623332

203 26799040

224 177 841798874

251 124124

325 36445367 869087816

393 277

394 i

The sequence beginning with n O = 2880 demon-

strates the behavior of many aliquot sequences.
The table above lists all the terms which are re-
lative maxima or relative minima. Table 2 is a
detailed look at a segment of the sequence begin-
ning with 1074. The right hand column of the table
is the unique factorization of n(k) into primes.
(In our notation, exponents are contained in
parentheses and a period is used to denote multi-
plication whenever necessary. Thus 2(3)5.7.977
means 23.5.7.977.) The reader should note that
each of the first 25 terms in the table contains
a single power of 2 and no 3's whatsoever. On
the other hand, all the other small primes appear
about the ?right" number of times. This pattern
seems to coincide with terms which are steadily
decreasing in magnitude. On the other hand, the
last 19 terms in the segment contain a single power

Proceedings of the 1976 ACM Symposium 276
on Symbolic and Algebraic Computation

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800205.806347&domain=pdf&date_stamp=1976-08-10

of 2, at least one power of 3 and a random repre-
sentation of the other primes. This pattern is
associated with terms which are steadily increasing

but not as rapidly as the earlier terms are decreas-
ing. We shall fully explain this phenomenon.

TABLE 2 - - A " S n a p s h o t " o f AS 1074"

N(K) P~CTORIZATION OF N(K)

310 436546562 900403622
311 218273281 450201814
312 149021921 791798186
313 74510970 979217018
314 37319461 709687494
315 18659751 690304874
316 9925399 835268694
317 7952081 369012714
318 4036505 399288086
319 2018252 699644046

320 1044364 935545554
321 793826 522348846
322 567018 944534914
323 283509 592485626
324 174559 350692374
325 88145 963899562
326 47282 729665750
327 45889 133432330
328 41058 698334550
329 44205 596276330

330 35364 477021082
331 22504 667195270
332 21119 764598890
333 17169 3 0 5 0 3 6 1 5 0
334 14787 136459234
335 7393 568229620
336 8993 118602224
337 9348 110126616
338 14022 327675624
339 21673 548325656

340 40460 999578344
341 69120 874279866
342 71184 926630022
343 72900 226067898
344 74020 746222150
345 152002 020061626
346 202028 731286214
347 259751 225939514
348 272602~050924486
349 291599 60475215h

350 291599 604752166
351 377374 531293738
352 514601 633582838
353 620322 290876682
354 756490 598631738
355 928230 485009862
356 928459 246951482
357 928651 136960550
358 1504054 894174170
359 2521407 331366950

2.218273281450201811
2.17.29.43.1249.9929.415133
2.22316761.3338789213
2.1747.21325406691247
2.2687767.6942465941
2°47.198507996705371
2°7(2)31.3267083553413
2.199.22861.873982063
2.2018252699644043
2.89.2503.4529963369

2.7.71.139.191.39574709
2.7.56701894453489
2o9176053.30896669
2.13.6917o24749.63697
2°331.3491.75532747
2.67.173.293,12977287
2.5(3)19.9954258877
2 .5 .19 .241521754907
2.5(2)13°29.461.4724903
2.5°4420559627633

2 .11 .1607476228231
2 .5 ,13 .173112824579
2 .5 .139 .15194075251
2 . 5 (2) 1 4 8 3 . 2 3 1 5 4 8 2 8 1
2.7393568229617
2 (2) 5 . 1 9 (2) 1 0 2 4 0 3 9 9 2 1
2 (4)19 .29582626981
2 (3) 3 . 1 5 2 4 0 7 . 2 5 5 5 6 8 7
2(3)3.73.241.5647.5881
2 (3) 3 (2) 2 3 o 1 0 7 o 1 9 9 . 6 1 4 6 5 7

2 (3) 3 (2) 5 6 1 9 5 8 3 2 7 4 7 7
2o3 .67 .267601°642533
2 .3 .83 .142941619739
2 . 3 . 1 5 7 . 9 6 7 . 4 6 5 1 . 1 7 2 0 7
2 ° 3 . 5 (2) 7 . 1 3 . 2 5 5 1 o 2 1 2 5 7 4 1
2 ° 3 . 7 (2) 9 7 7 . 1 8 7 1 3 . 2 8 2 7 9
2 .3 ,7 .4810207887767
2 . 3 , 7 9 . 1 4 9 ° 1 9 3 . 1 9 0 5 6 1 7 3
2 . 3 . 2 9 . 2 8 5 7 . 5 4 8 3 6 4 8 7 7
2 .3 .48599934125359

2 . 3 (2) 1 7 . 6 5 0 0 3 o 1 4 6 5 9 9 3 7
2 .3 (2)11°1905931976231
2 . 3 (2) 1 0 1 . 1 2 7 . 4 4 0 5 9 . 5 0 5 8 7
2 .3 (2)41o840545109589
2 . 3 (3) 4 6 3 . 3 0 2 5 7 2 0 3 3 6 9
2 . 3 . 1 4 7 3 1 . 1 8 6 7 1 . 5 6 2 4 7 7
2 .3 .9677 .15990824411
2 . 3 . 5 (2) 3 1 . 4 3 . 5 9 9 2 1 . 7 7 5 0 9
2 o 3 . 5 o 1 3 . 3 1 . 3 1 7 . 3 9 2 4 4 4 3 8 9
2.3.5(2)13.5477.236083513

t

Computed by H. d. Godwin, see [6]

277

Let the set of all positive integers be partitioned

into sets SO, Si, S 2 and S 3 as follows:

SO; set of all odd integers

SI; n = 2k where (k,6) = 1

$2; n = 2.3.k where k is odd

$3; n = 22.k.

If C(n) is a condition on n, we will denote with
N {C(n)} the number of positive integers n < x for
w~ich C(n) is true. Thus for i = 0,1,2,3,--we de-
fine the function

Nx{n e Si;s(n) ~ Si}

(i) Bi(x) = N in e S.}
X l

which, loosely stated, measures the probability
that a term of an aliquot sequence whose order of
magnitude is x will "break" out of the set S..

• • ~ ,w
We will call these functions "break probabllltles .

We also define the function A. to be the
1

average order of the function s(n)/n taken over
the set of all n e S.. Formally, it is defined to
be

s (n) g (n)

n<x n<x
n eS-. n eS-.

l 1
(2) A. = lim i.

1

n~ n<x

1 1

This function measures the average growth of an
aliquot sequence term lying in one of the sets S..

1
That the limit exists is based on the following
lemma whose proof we omit.

Lenmaa i: If k

n<x
n~k(p)

is a residue mod p, then

o(n)
= Cx + 0(log x)

n

for some constant C.

For the remainder of this section, we adopt the
"a n". usual notation n fOrpa+l~ivides If p

is a prime, Pal but , we will write
P11n

/mmma_2~:

(a)

(b)

(e)

B0(x) = 0(i//x)

Bl(X) ~ ~2/6 log x ~ 1.64492/iog x

B2(x) ~ 72/24 log x ~ .41123/iog x

Proof: (a) follows from the fact that if k is
odd, s(k) is even if and only if k is a square.

(o(pa) = i + p + p2 + ... + pa). To prove (b), we
let (k,6) = I and let M = s(2k) = 3o(k) - 2k.
Clearly 3~M. 211M if and only if 221~(k) and
22~(k) if and only if

(i) k is a square (neglect this)
(ii) k = Sp where S is a square relatively

prime to 6 and p is a prime ~ i (mod 4).

It is well known that the number of primes < x
which are congruent to i mod 4 is asymptotic to
x/21og x. Using this we obtain

(3) N {n = Sp, S square, (S,6) = i, p prime,
x 2

X

p ~ 1(4)} ~ 18 log x

2
7I X

so Nx{n E Sl, s(n) ~ S I} ~ 36 log x

~" X ~

(1) , B l (X) '~ 36 l ' o g x 6 l o g x

(c) , l e t k be odd and l e t

and so from

To prove

M = s(2.3a.k) = 3o(3a)o(k) - 2.3a.k.

Again we discount the case where k is a square;
thus we assume that 21o(k). Therefore 22~M
whenever o(3 a) is odd and k = Sp, S a square
and p --- l(mod 4). o(3 a) is odd whenever a is
even, so we get using (3)

Nx{n e S2,s(n) ~ S 2}

~ x l + i +

18 log x . 2.34 "'"
2

71 X %

288 log x

and Nx{n c S 2} ~ x/12.
2 2

7I X / X

Thus B2(x) ~ 288 "l~g x /~ 24 log x

To obtain values forA0, Ai, and A2, we need

average order results for o(n)/n taken over
various sets. General theorems of this sort can
be obtained, but we need only two special results
whose proofs we can sketch.

Lemma 3 :
2

V o(n) ~ ii x (a) g n 16
n<x

n odd

2
r ~ (n) ~ ~ x

(b) L n 27
n < x

(n?6) =i

Sketch of proof: We use a result of Hardy and
Wright to write

278

(4)
z2 x
6 + 0(log x)= ~ O(n)n

nix

= ~ ~ k °(2kn)

k>O n<x/2 2kn

2k<x n odd

We then use lemma 1 to assert that a
for which

o(p) = Cx + 0(log x)
n

n<x

n odd

C exists

and we substitute this for the right hand sum of
(4). [Note that o(n) and o(n)/n are
multiplicative.] One can thus solve for C and
get (a) with the error 0(log2 x). This result
is then used in a similar way to obtain (b).

2 2

Lemma 4: A0 - 8 i, A I = ~--- i, and

ii~ 2
A2 - 48 i.

Proof: The value of A 0 follows directly from
(2) and lemma 3. To obtain Ai, we estimate

~.(n) : ~ o(n) . c~(2)
n n 2

n<x n<_x/2
n~+~(12) n~+1(6)

2 2
_3~zx ~x
2 2.27 36

and the result follows from (2). To estimate A2,
we write

°(n---~ = 3- - (: ! :~2 d C~ (n) ~ °~n)I~
nix n 2 n n<x/2

n-=6(2) n +--1(6)

ii~ 2

12.48

and the result follows from (2).

1172
One could also compute A 3 48 i, but the

result would be misleading. The actual "average
growth" of terms n such that 221n would not
reflect the average order of s(n)/n since the
break probability would differ for each class of
integers N a for which 2al]n. The following
computation, however, indicates that the general
tendency for numbers in Sq would be to grow
upwards. We let n = 2ak Vfor a > 2 and k
odd and write

~(2ak) _ o(2 a) ~(k) > ~ ~(k____~

2ak 2 a k 4 k '

(k) but the average order of over k odd i s ~2 k
- - a n d
8

2
7
-- • --A 2.15897 > 2.
4 8

The results thus far can be summarized in the
following table:

Bj(x) A n

i / F x

~2/6 log x

~2/24 log x

< 1

z2/8-i : .23369

z2/6-i : .64493

i17r2/48-i : 1.26178

> 1

Since for all n, s(n) s S O only if n is a
square or twice a square, aliquot sequences with
large terms will be dominated by terms in Si, $2,
and S~. The Guy-Selfridge argument is based on

IV j II the e x p e c t e d - v a l u e b e h a v i o r o f an a l i q u o t
sequence dominated by terms in S 1 and S 2. Terms
in S 3 can only help matters.

Now, suppose l I consecutive terms occur of
type i, after which n has been reduced to n
The geometric mean of the size of the term is

n ~I+~I)/2"'" The "mean probability" of this type
breaking is

2 2
=

6 log n (I +al)/2 3(l+al) log n

so the expected length of this string, £i, is

3(l+al)lOg n

£i = 2

But, on average, s(n) = nAI
Thus

2 £1 a 1 n (b - iI = n

2
~r

where A I = ~--- i.

2
log n + 3(i+~)io$2 D log(W--- i) = a I log n

2
2 z 2

z + 3(l+al)lOg (~-- - i) = ~ a I

2
2 31og(-1)

a I = = .76479
2

2 log(l)
3(i+~ I)

Ii 2 log n = .53643 log n.

For type 2 sequence,

12(i+~2)io~ n

£2 = 2

l l z 2
and on average s(n) = nA 2 where A 2 48

279

so in a string of 12'

[ii~ 2 _ 1)£2 ~2
n~ 48 =n

or

12(l+a2)log n . rll 2 i) =
log n + 2 ±og[-~---

= e2 log n,

2 + 12(i+c~2)iog~ii~ 2 i) = 7r2c~2 ,
< 48 -

2
2 . rll~ i) + 12 ±ogL-~---

~2 = 2 rll~2 i) = 1.78831,
- 12 log< 48 -

£2 -

12(l+e 2)

2
log n = 3.39018 log n.

If an aliquot sequence began with terms in $2,
continued for 11 terms, broke into terms in
Si, continued for 12 terms, the size would be

~i 1.36768 (n ~2) = n

The total number of terms would be approximately

3.39 log n + .536 log(n 1"79) = 4.35 log n.

Thus the expected behaviour of an aliquot sequence
dominated by the type i and 2 terms is for
geometrical growth. To repeat, type 3 terms can
only help, the type 0 "down driver" is entered
with prob. 0(i/Jx) and hence can be neglected.

The above argument is an over-simplified
analysis of a very complicated two dimensional
Markov process. The set of integers should be
partitioned into a larger collection of sets,
each associated with its own "driver". For a
discussion of which drivers should be included,
see Guy and Selfridge [7]. A break matrix can
be constructed giving the probability of a sequence
going from one driver to another - these pro-
babilities are, of course, functions of x,
the magnitude of the term. Each driver has
its own growth distribution describing how
rapidly terms are increasing or decreasing in
each category. In order for such a model to
be convincing, one should compare it with driver
statistics collected from a large number of com-
puted aliquot sequences. We will now turn our
attention to the problems associated with the
computing of aliquot sequences.

Part II. The Computation. The following algorithm
replaces the positive integer N with O(N) - N,
the next term in the aliquot sequence.

Al$orithm

i. (Initialize) Set S ÷ I; set M + N.

2. Perform steps 2.1 through 2.4 while M is

3.

4.

composite.

2.1 Search for p, the smallest prime such
that plM. If no such p can be found,
the program fails.

2.2 Let M ÷ M/p and F + i + p.

2.3 Do while pIM; F ÷ i + Fp; M ÷ M/p; End;

2.4 S ÷ S • F;

If M > i, set S ÷ S • (i + M)

Let N ÷ S - N;

For each pY][N, step 2.3 accumulates the
value o(pY) = i + p + p~ + ... + pY and step
2.4 accumulates the product of these values for
all piN. In practice, a program would test for

n k = nk_l, n k = nk_ 2 and perhaps even n k = nk_ 4

since many aliquot sequences are known of period
i, 2 and 4. There is also a well known sequence
of period 43 which a sophisticated program can
look for. Also, since this program is designed to
collect driver statistics, steps 2.1/2.3 must be
elaborated upon in order to determine which driver
is in effect. These are all easy problems to
solve, however, and we omit discussing them in this
narrative. The purpose of this paper is to discuss
some computational problems which are unique to
number theoretic computing and to suggest some
novel ways to solve them.

The main difficulty arises in steps 2 and 2.1,
the only two places where failure can occur. The
condition in step 2 is tested by using Fermat's
test for compositeness. If p is a prime, then

a p-I ~ i mod p for any integer a. Thus, if

a N-I ~ I mod N, N is surely composite.
Furthermore, if N is composite, it is very im-
probable that a N-I E i mod N. The exponent
N-I

a can be computed in O(log N) operations so
we have a very inexpensive method for verifying
compositeness. If a N-I ~ i mod N however, we
should really not proceed until we have proved N
prime.

Proofs of primality for large numbers N can
be long, tedious and fraught with danger. A
large collection of theorems related to primality
proofs can be read in [i]. A complete algorithm
for efficient prime testing appears in [14] and
we have a working program which is essentially
based on that algorithm. Primality proofs are
produced by that program by obtaining partial or
complete fac~orizations of N - i and N + i. In
most cases, when N is less than 40 digits, these
factors can be found by the simple divide and
factor algorithm [9] which attempts to divide
N ! i by the primes 2, 3, 5,... until enough
factors are collected to obtain a proof. The
entire proof usually takes less than 12 seconds
on a 360/67 computer and so the program can be
easily invoked as a sub-procedure of the main
aliquot generating program. However, there are
cases in which N + i and N - I only have a few
small divisors--insufficient for a proof. If after

280

dividing out these factors, one or more of the re-
suiting cofactors fails Fermat's test for compo-
siteness, then the program continues recursively
by attempting a primality proof of the cofactor.
If both cofactors are composite, a more sophisti-
cated proof can often be obtained by using not
only the factors of N + i but also a bound b
for which piN + i ~> p-> b. The program can
compute the smallest such bound b which would be
sufficient to provide a proof if no additional
factors were discovered. If this value is too
high, the routine must send back to the main pro-
gram the message, "We're sorry. Your number is
most assuredly prime but we cannot produce a
proof of such without possibly investing n
minutes of computer time," Where n may be any-
where from one or two to several hundred.

The main program now has basically two options.
It can proceed with its computation after noting
that the number in question has been merely proved
"pseudoprime." Then at the end of the semester
when more computer time is available or when the
economy improves and a new computer is obtained
at our university these difficult primality proofs
can be "cleaned up" and the PSP's denoting pseudo-
primes can be removed from the aliquot sequence
output. Of course, there is that minute possibil-
ity that a pseudoprime may turn out to be composite
and all the subsequent terms in the aliquot
sequence would be incorrect. Thus the other more
conservative option would be for the main program
to halt all operations until a complete primality
proof is obtained. We adopted the former philoso-
phy in our computations. In fact, we employed a
very crude primality proving program for the bulk
of the aliquot project while we were developing the
more sophisticated program described above. By
now, all PSP's have been removed from our output
and not a single composite pseudomprime was dis-
covered.

The other difficulty arises in step 2.1 of
the algorithm. We have already assertained that
M is composite but all of our efforts to find a
factor of M have proved unsuccessful and we are
faced with the possibility of exceeding our es-
timated computer time for the job. At this point,
there is really nothing the main program can do
but terminate the job. There is no such thing as
a pseudo-factorization which would enable the
program to carry on. Since both difficulites in
this algorithm involve the factorization of large
numbers, we shall digress for a moment to discuss
the general question, "How long does it take to
factor a number."

It depends very strongly on the method you
wish to use, and having chosen the method it
may depend on the number you are factoring. In
order to completely factor n using the divide
and factor method discussed earlier, one must
divide by the primes which are less than the
second largest prime dividing n, which we will
denote by F2(n). D. E. Knuth and L. T. Pardo
[9, i0] have recently analysed the distribution of
the values F2(n) for n < x and their results
show that for about half o~ the integers n < x

F2(n) ~ x "21172. Thus, for about half the 36

digit numbers we factor, a complete factorization

can be gotten by dividing up to 42 million. On our
computer, this would take about 7.3 minutes of
computer time. To put it another way, we can
factor a 36 digit number up to 1,000,000 in about
i0 seconds. Again, using the Knuth-Pardo tables,
we completely factor about 37% of the 36 digit
numbers by dividing up to 1,000,000. However, for
25% of the 36 digit numbers,

.29153 m 31 x 109 . To factor this high F 2 (n) > n

would take about 90 hours of machine time. There
are two other recently discovered methods of
factoring which shorten this time considerably.
Pollard's Monte Carlo method requires roughly ~p
operations where p is the second largest prime
dividing n, but each operation is at least i00
times as costly as the single division counted in
the divide and factor algorithm. Never-the-less,
in the example cited just above, only 176823
operations would be required. This should be
possible in a few minutes with a good program.
Even with the Pollard Monte Carlo method, one 36
digit number in 20 will take over 4 hours of
computer time. (Another interesting method was
discovered earlier by Pollard which requires p
operations where p is the largest prime dividing
q - 1 where qln. [12,13]) For two good discus-
sions of factorization, see [8,10].

There are other methods of factoring which do
not depend at all on the particular distribution
of the factors but rather depend only on the size
of the number. The best example of this type of
faetorizer is the continued fraction method
developed by John Brillhart [ii]. Although per-
formance characteristics have not been theoretical-
ly obtained for this method, our experience with
the program suggests the timing formula

(4) TIME = .0003324 N "1574

where TIME is the estimated time in 360/67 com-
puter minutes to factor the number N. This
formula yields the following values.

N TIME
(minutes)

1016

1020

1024

1028

1032

1036

.ii0

.467

1.992

8.489

36.18

154.2

The formula was obtained by doing a linear re-
gression analysis of log T versus log N on i00
actual factorizations using the program in which
N was factored in T minutes. The I00 ob-
servations ranged in size from 1016 to 1036 . The
fit was quite good producing a correlation coef-
ficient of 0.968. For each of these observations
the ratio ACTUAL TIME/PREDICTED TIME was computed.
The largest and second largest of these ratios

281

were 2.84 and 2.01 respectively and the smallest
ratio was .492. The computed mean was 1.05 and the
standard deviation was .344. Thus the timing
estimate will almost always predict the actual
time to within a factor of 2.

The point we are making is that any general
factoring subroutine presents the calling program
with a hopeless problem. There is absolutely no
way the main program can know how much computer
time it will take to factor a number. It may
take less than i0 seconds or over one hour. Clear-
ly the i0 second jobs can be handled as a normal
subroutine but what happens when a main program
with a 5 minute time estimate calls a factoring
subprogram which decides it requires over an
hour to do its task? It must send back the mes-
sage, "We cannot factor your number in the alloted
time. You had better terminate your job."

Thus, the computation of a single sequence up
to the limits of our computational power was a
tedious and time consuming project. The early
elements of the sequence were computed very
rapidly, but as soon as hard-to-factor number was
encountered, the program simply "timed out" and
the output obtained was filed away. The dif-
ficult number was then submitted to a variety of
programs for factorization and ultimately, if
no other method succeeded, it was submitted to the
continued fraction program. This usually required
an over-night run so that in the morning after we
collected our factor from the output bin, we had
to compute the next term of the aliquot sequence
on a desk computer (the Ollivetti i01) before we
could rekindle our aliquot program. (In the later
stages of the project, our aliquot program could
receive a "hint list" of large factors which it
would always try before giving up. This feature
also provided us with a relatively fast procedure
for recalculating a long sequence in order to
provide contiguous output.) Since we had a very
large number of sequences to compute, we gen-
erally had four or five going at any one time.
The bookkeeping was very tedious and the proba-
bility of error was disturbingly high. At one
point in the project, we were all very excited at
the prospect of the sequence beginning with 4488
exceeding i000 terms in length. When we made
a recalculation of the sequence using our Hint
feature, we discovered that many months (and
terms) earlier a mistake was made on the desk
computer and we had been computing a different
and thoroughly uninteresting sequence ever since.
In fact, 4488 terminates with the 459th term.
Mistakes such as these were very rare--a credit
to precision bookkeeping and data handling, not
to versatile and efficient software.

Our new FACTOR program, which is in the de-
sign stage at the time of this writing (March,
1976), will automate this entire process. It's
novelity relies on the fact that under the IBM
OS operating system using HASP any program can
send data to the internal reader, a special out-
put channel provided by the system. Such data is
immediately processed by HASP and introduced into
the input stream as a job which will be queued in-
to execution along with any other jobs that are
currently awaiting execution. Thus a program has
the capability of submitting another program for

execution into the Job queue. The program FACTOR
has five parameters and could be invoked from an
assembly language program using the following macro
call.

CALL FACTOR,(NUMBER, TIME, AFACT, #FACT, DSN)

The parameters are used as follows:

NUMBER - The number which is to be factored

TIME - The maximum amount of computer time
which FACTOR can use in factoring
the number.

AFACT A pointer to the address in the main
program where the factors are to be
stored.

#FACT On input, this is the maximum number
of factors which can be stored at
AFACT. After execution, it contains
the number of factors.

DSN A pointer to a character string which
is the name of a catalogued data set
located on an I/O device such as a
magnetic disk.

The program also utilizes an external file
called MEMORY. Its use will be described in de-
tail later but for the moment, it will suffice to
say that whenever a "major effort" is required to
obtain a factorization, such as the use of
Brillhart's continued fraction program, the number
and its factorization is placed on the file MEMORY.
We now describe the operation of FACTOR.

i. (Has the number already been factoredy)
The program first searches the file MEMORY to see
if the number and its factorization has already
been obtained. If so, it returns the factors to
the main program, deletes them from the MEMORY
~ile and returns.

2. (The number is not on MEMORY) The program
attempts to factor the number in the time alloted.
It can succeed in two ways.

a) It obtains a complete factorizations
and it has factored sufficiently far
to guarantee that all the factors are
indeed prime including the largest one~
In this case, it returns the factors
and returns to the main program with
a condition code of i0.

b) It obtains a complete factorization
but the largest factor has only been
tested for being pseudoprime. That
is, it failed Fermat's test for com-
positeness. In this case, the factors
are returned and the program returns
after setting the condition code to 4.
Thus we make it the responsibility of
the main program to do the prime test-
ing.

3. (The program fails) The TIME allotted by
the main program wasn't sufficient to factor the
number. In this event, the factors obtained to-
gether with the composite cofactor are returned
and preparation is made to return to the main

282

program with a condition code of 8. First, however,
an estimate is made as to how much additional com-
puter time may be required to complete the factori-
zation and if this amount of time is not excessive
a job is introduced into the job stream by writing
to the internal reader. This job, which we will
call FACTOR2, will not execute immediately, of
course, but will ultimately be queued into
execution by the operating system.

4. (FACTOR2 executes). This program can
now use all the high powered and time consuming
methods it needs in order to factor the trouble-
some number. If it succeeds it performs the
following two operations before terminating.

a) The factorization together with the
original small factors (if any) found
by the initial execution of the pro-
gram are placed on the MEMORY file so
that subsequent execution of the main
program will obtain the factorization
immediately when it re-invokes the
FACTOR program.

b) The data set whose name is DSN is
written to the internal reader as an
executable job. This is the data set
name originally communicated to FACTOR
by the original call statement in the
main program. If the main program is
contained in the data set DSN, con-
trol is effectively passed back to
the main program through the job
submission process.

If the factoring is not successful, the pro-
cedure is essentially the same. The partial fac-
torization is put on the MEMORY file and it is
marked as being essentially unfactorable. Then
DSN is submitted as described as above. When
FACTOR is again invoked, the partial factorization
can be returned with a condition code of 12,
telling the main program that a complete fac-
torization is not feasible with present technology.

It is now evident how a main program can be
designed around this factorization system to
generate an aliquot sequence. The input for the
program would reside on a data set. Whenever the
program terminates either by exceeding execution
time or attempting to factor a difficult number,
restart information is written to the input data
set. If the aliquot program exceeds time itself,
it must first submit the data set DSN to the in-
ternal readers so that the program will re-execute.
The output generated by the program must be directed
to an output data set rather than being sent to
the system printer. Thus a clean copy of the
output can be obtained after the entire chain
of jobs is completed.

This has been an oversimplified description
of the factorization system which we really want
to implement. We will conclude this paper by
briefly describing some additional features which
this system will ultimately have.

a) An additional parameter BOUND should be
provided. This tells the factor program
that although a complete factorization
would be nice, it would be acceptable to

b)

c)

d)

e)

f)

provide a set of factors the largest of
which has no factor less than BOUND. This
would be important for prime testing. On
output, in case of failure, BOUND could be
set by FACTOR to the extent to which
factoring has been done.

The factoring program will automatically
collect performance statistics and store
them on another auxiliary file. It is
very important that we continually sharpen
our time and core estimates regarding
factoring.

A parameter MAXTIME could tell FACTOR how
large a job it is permitted to submit to
the external reader. The user may decide
that certain number theoretic projects
aren't important enough to consume hours
of computer time every night.

The main program may wish to decide after
receiving partial factorization informa-
tion whether or not FACTOR2 should be
submitted. There are a variety of ways
to implement this feature. A special
macro PAUSE can be provided which calls
an alternate entry point in FACTOR which
submits the job FACTOR2 and then returns
normally. If the main program ends with
a normal RETURN, the job will not be sub-
mitted.

The program FACTOR2 will itself be a chain
of separate jobs. We already have a very
successful version of Brillhart's con-
tinued fraction program which submits a
sequence of small jobs each of which
generates a collection of factored quad-
ratic residues. When a large enough col-
lection of factored residues are generated,
a 1 minute program is submitted which com-
pletes the factorization process by doing
a Gaussian elimination on a very large
(360,000 bytes) 0-i matrix. One of our
36 digit factorizations took from Wed-
nesday afternoon to Saturday morning to
complete its work, going through a chain
of i0 twenty minute jobs.

When this system becomes heavily used, a
queuing system will be designed. A file
FQUEUE will be maintained which contains
all the numbers which are awaiting fac-
torization. The file will be sorted ac-
cording to the size of the number so that
small jobs will be executed first. When
the in-stream FACTOR program submits
FACTOR2, this merely inserts the number
together with any small factors which have
been found and the return DSN onto the file
FQUEUE and sorts it. A separate chain of
factoring programs will be removing numbers
from the top of the file and factoring
them as time permits. Provision will also
be made for entering numbers onto FQUEUE
from a computer terminal. In this case,
the character string DSN will serve as a
label rather than a return program so that
the factored number can be identified.

283

i.

2.

3.

4.

5.

6.

7.

9.

REFERENCES

J. BRILLHART, D. H. LEHMER, J. L. SELFRIDGE,
"Primality testing and new factorizations of
2 n ! i," Math. Comp. 29 (1975).

E. CATALAN, Bull. Soc. Math. France, v. 16,
1887-88 pp. 128-129.

L. E. DICKSON, "Theorems and tables on the
sums of divisors of a number," Quart. J. Math.
v. 44, 1913, pp. 264-296.

R. K. GUY and J. L. SELFRIDGE, "Interim re-
port on aliquot series," Proc. Manitoba Conf.
Numerical Math., Winnipeg, 1971, pp. 557-580.

R. K. GUY, D. H. LEHMER, J. L. SELFRIDGE and
M. C. WUNDERLICH, "Second report on a aliquot
sequences," Proc. 3rd Manitoba Conf. Numerical
Math., Winnipeg, 1973, pp. 57-368.

R. K. GUY and J. L. SELFRIDGE, Combined Report
on Aliquot Sequences, University of Calgary
Math. Research Report No. 225, May 1974.

R. K. GUY and J. L. SELFRIDGE, "What drives an
aliquot sequence," Math. of Comp. v. 29, n.
129, 1975, pp. 101-107.

R. K. GUY, "How to factor a number," Proc.
Fifth Manitoba Conf. on Numerical Math. 1975.

D. E. KNUTH and L. T. PARDO, "Analysis of a
simple factorization algorithm", Submitted for
Publication.

i0. D. E. KNUTH, "The art of computer programming,"
Vol. II, Revised edition. Addison-Wesley, to
appear.

ii. M. A. MORRISON and J. BRILLHART, "A method of
factoring and the factorization of FT," Math.
of Comp. v. 29, n. 129, 1975, pp. 183-206.

12. J. M. POLLARD, "Theorems on factorization and
primality testing," Proc. Cambridge Philos.
Soc. 76 (1974) 521-528.

13.

14.

"A Monte Carlo method for
factorization," Nordisk Tidskr. Information-
sbehandling (BIT) 15 (1975).

J. L. SELFRIDGE and M. C. WUNDERLICH, "An
efficient algorithm for testing large numbers
for primality," Proc. Fourth Manitoba Conf.
on Numerical Mathematics, 1974, pp. 109-120.

284

