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I. Introduction and Manin's theorem 

In a Lecture ~6] delivered at the con- 

ference on "UtiLisation des caLculateurs 

en mathematzques pures" in France, we de- 

veloped some ideas regarding the impLe- 

mentation of Manin's conditional aLgo- 

rithm [7] for computing the rank and a 

basis of the group of rational points on 

an eLLiptic curve C over the rationals @. 

The aim of the present paper is to dis- 

cuss to which extent this algorithm can 

be generalized to eLLiptic curves C de- 

fined over an arbitrary finite-aLgebraic 

number field K. Furthermore, certain pro- 

btems concerning the implementation of - 

the generalized algorithm wiLL be trea- 

ted. Some results obtained in this con- 

nection seem to be also per seof interest. 

In an appendix we shaLL give complete 

proofs of the assertions made in sections 

1,4, and 6. 

Let C denote an eLLiptic curve in 

Weierstrass normal form 

Y2 = X 3 + aX + b 

with coefficients a,b in an algebraic 

number field K of finite degree n=[K:Q] 

over Q. The nonzero discriminant of C 

is a = 4a3+27b 2. Without Loss of genera- 

Lity, the coefficients a,b and thus the 

discriminant a may be assumed to be in- 

tegers in K. By the MordeLL-Weii theorem, 

the additive abeLian group C K of rational 

points of C over K is finitely generated. 

Hence this group can be written as a di- 

rect sum 

of the finite subgroup CK of aLL torsion 

points (points of finite order) in C K 

and a maximal free subgroup CK of C K of 

finite rank. The number r of basis ele- 
^ 

ments of C K is caLLed the rank of the 

eLLiptic curve C over K. Manln's conditi- 

onal algorithm consists in determining 

first the torsion subgroup CK of C K and 

second a maximal free subgroup 

cK/  of  c K 

i n  t e r m s  o f  a b a s i s .  Of  c o u r s e ,  t h i s  

y i e l d s  a t  t h e  s a m e  t i m e  t h e  r a n k  r o f  C 

o v e r  K. The  c o n d i t i o n s  o n  w h i c h  t h e  a L g o -  

r i t h m  d e p e n d s  a r e  t h e  t r u t h  o f  t h e  c o n -  

j e c t u r e  o f  B i r c h  a n d  S w i n n e r t o n - D y e r  

[7,1o] and the feasibility of estimating 

the L-series L(C,s) of C over K and its 
(i) C derivatives L (,s) at s=1, where i 

ranges from I through a certain positive 

integer r' (see [7] and Manin's theorem 

below). The Latter condition is satis- 

fied in the case K=Q provided that the 

WeiL conjecture is true (see [7,11]). 

Before stating Manin's theorem on 

which the algorithm is based we have to 

introduce some notation and recaLL cer- 

tain facts. 

Let us begin with defining the N4ron- 

Tate height h on C K which is an impor- 

tant tool in the algorithm. To this end 

we shaLL use an auxiliary function d on 
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C K. The function d is the natural genera- 

Lization of a corresponding function in- ^ 
troduced in ~6] for defining h in the 

special case K=©. For a point P= (~,~) in 

CK, the (affine) coordinates ~,~ E K can 

be written in the shape 

= 7x and ~ = z~ 9 

where x,y, and z are some integers in K. 

If ~ and ~ are both nonzero the integers 

x,y, and z are aLL nonzero and can more- 

over be chosen in such a way that the 

g.c.d.'s of x,z 2 and y,z 3 (as divisors of 

K) are 

(x,z2)=¢ 2 and (y,z3)=c 3 

with an integral divisor c of K belonging 

to a fixed system V of representatives of 

the (finiteLy many) divisor classes of K. 

The divisors c wiLL in fact be chosen in 

such a way that their norms are bounded 

by the Minkowski bound B (see [4,12,13}and 

appendix for details). 

In what foLLows Log wiLL always denote 

the Logarithm to a fixed base. 

We now define the function d on C K by 

setting 
n 

d(P)=2n~  Log H max { 2 j ~  Iz(V)12 , 
v=l 

3 ~  Iz(V)12 ' I x ( ' ) l }  f o r  PeC K , 

where a (v), b (v), x (v), and z (v) desig- 

nate the images of a,b,x, and z under the 

n = [K:~] distinct embeddings 

K ~>K(V)g ¢ (v=l ,2,. .. ,n) 

of the field K into the complex numbers e 

and I...] denotes ordinary absolute value 

on ¢. This definition can also be used if 

~=0 by simply choosing x=0, z=l. If 

p=o=(~,~) is the neutral element of the 

addition in CK, we set d(P)=O. Notice that 

the function d arises from the usual WeLt 

height h on C K by only a slight modifi- 

cation [3,8,14]. We caLL d therefore the 

modified WeLL height on C K. The N6ron- 

Tate height h on C K is now defined by 

putting 

h(P) = tim d 2 ~  for PEC K . 
m-~ 2 Lm 

The function h gives rise to a symmetric 

bitinear form g on C K × C K via [8] 

g(P,Q)=½ for (P,Q) E 

C K x C K. 

By means of the biZinear form g we de- 

fine the determinant of the eLLiptic curve 

C over K as the quantity 

H=I det ( g ( P i ' P j ) ) l i , J = l  , . . .  , r  ' 

where  t h e  p o i n t s  P 1 , . . . P r  a r e  a b a s i s  o f  

a maximal f r e e  subgroup  ~K o f  C K . The 

d e t e r m i n a n t  H cLearLy  does  n o t  depend  on 

t h e  c h o i c e  o f  t h e  g roup  CK and t h e  points 

P1,...,Pr in CK since any other choice 

just amounts to applying a unimoduLar 

transformation of determinant ±1 to the 

points P1,...,Pr originaLLy chosen. 

We need furthermore a Lower bound h' 

for the values of the Neron-Tate height 

the set C K\ CK (the complementary set on 

to CK in CK) , that is,a real number h' 

such that 

O<h'~ min {h(P); PECK\CK} . 

FinaLLy, the deviation of the modified 

WeLL height d from the N6ron-Tate height 

on C K plays a significant rote in Ma- 

nin's theorem. 

Let 6 denote an upper bound for this 

deviation such that we have 

Id(P)-h(P)l g 6 for PEC K . 

It is for the sake of keeping the bound 6 

as smali as possible and making the func- 

tion h easily computable that we have cho- 

sen the above modified WeLL height d in- 

stead of the usual WeLL height h for de- 

fining the N6ron-Tate height h on C K . 

Manin's theorem assumes exactly the 

same shape as in the special case K=Q 

(see [7,16]), though the constants invoL- 

ved become somewhat more compiicated. 
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T h e o r e m  (Man in  ~ o16 ] ) .  

S u p p o s e  t h a t  r ' E ~  a n d  H ' E ~  a r e  u p p e r  

b o u n d s  f o r  t h e  r a n k  r a n d  t h e  d e t e r m i n a n t  

H o f  t h e  e L L i p t i c  c u r v e  C o v e r  t h e  n u m b e r  

f i e l d  K. T h e n ,  t h e  s e t  o f  p o i n t s  PECK\C K 

satisfying the inequality 

2 2r' H,2 (1-r') 
d(P)~6+ ~ max {1,h '2 } , 

where Cr, stands for the volume ot the r'- 

dimensional unit baLL in EucLidean space, 

generates a subgroup of index p~r'! in a 

certain maximal free subgroup CKmCK/CK of 

C K • 

Of course, the set of points P~CK\C K 

mentioned in the theorem is finite since 

there are only finitely many points in C K 

having bounded Well height [8,14]. 

The proof of the theorem (see [7]) is 

based on the method of successive minima 

from geometry of numbers appZied to the 

Lattice generated by the Z -moduLe C K in 

the r-dimensiona~ reak space CK~]R. 

The NSron-Tate height h is a positive de- 

finite quadratic form [7,8,14] on C K ®z]R 

and thus defines a EucLidean norm on this 

space. Since the kerneZ of the canoncicaL 

-moduLe homomorphism C K ~ CK ~]R is 

precisely the torsion subgroup C K of CK, 

we get an injective embedding of any maxi- 

mal free subgroup CKZ-CK/CK ¢--- CK~ z ~ and 

may therefore identify C K with the Lattice 

generated by C K in the space CK®~]R. 

Martin's algorithm now consists mainly 

in finding, by triaL and error, aLL points 

satisfying the inequality of the theorem 

and then deriving from this set of points 

a maximaZ free subgroup CK of C K in terms 

of a basis. This is achieved by repeated 

"divisions by two" and the "infinite des- 

cent" procedure known from the proof of 

the MordetL-WeiL theorem [8]. So far the 

algorithm was restricted to the case K=~. 

As pointed out at the beginning, we wish 

to discuss here the possibilities of ex- 

tending it to the general case of an ar- 

bitrary finite-aLgebraic number field K as 

ground field for the curve C. The inten- 

ded discussion concerns the determination 

of the torsion subgroup CK of C K and the 

computation of the constants appearing in 

Martin's theorem. 

2. The torsion subgroup 

Manin (see [9]) has shown that, for 

any fixed prime p, the order of the p- 

of the torsion subgroup CK component 

of the rational point group C K of any 

eLLiptic curve C over K is bounded by a 

constant depending only on K and p. On the 

basis of a similar result Dem'janenko Eli 

established the boundedness of the order 

of the group CK itself, the bound depen- 

ding only on the field K (though the 

effectiveness of Dem'janenko's arguments 

does not seem to be quite clear). Thus, 

in some sense, there are not too many 

torsion points in CK: The actual determi- 

nation of the group C K can be accomplished 
A 

by applying the height functions d and h 

on C K in combination with a generaZizaticn 

of the cLassicaL theorem of NageLL and 

Lutz. This theorem hoZds originally onZy 

in the speciaZ case K=~ but it can be ge- 

neralized to an arbitrary finite-aLgebraic 

number field K as was shown in [15], the- 

orem 2. SimiLarLy, the strengthened ver- 

sion of the theorem of NageZZ and Lutz 

used in [16] for computing CK if K=~ 

carries over to the general case of an ar- 

bitrary finlte-aLgebraic number field K 

(see theorem I in [15]). Other methods 

have been recently developed in [2]. 

We shaLL state the generalized strengt- 

hened version of the NagetL-Lutz theorem 

in a form which is most appropriate for 

computational purposes. To this end we in- 

troduce the (formaL) coefficient divisor 

[15] 

m= H p~P 
P 

of the Weierstrass equation for C by 
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defining, for each prime divisor (finite 

place) ~ of K, a rational exponent 

~p= min {½ wp(a), ½ w (b)} , 

where wp denotes the normalized valuation 

on K belonging to p such that wp(K*)=~ . 
A divisibility relation mly between the 

(formaL) divisor m of K and a nonzero 

element yEK is to be understood in the 

usual sense that ~ ~wp(v)r for aLL prime 

divisors ~ of K. 

Theorem. 

Let P= (~,~) be a point of order m in 

C K. Then, the foLLowing divisibility re- 

Lations hold: 

ml~ , m31~ 2 

if m is not an odd prime power, and 

2 6 

mP -~'~" Ig , m3p -~'TT I~ 2 

if m=pV(v~1) is an odd prime power, and 

furthermore, 

~21am-3 

if m is neither 2 nor twice an odd prime 

power, and 

2 
2 ~=0 or ~ IAm-3p 

if m=2 or m=2pV(v~l) is twice an odd 

prime power. 

The proof of this theorem is to be 

found in [15]. 

The theorem, giving only a necessary con- 

dition for a point P=(~,~) in C K to be 

a torsion point, can be applied in com- 

bination with the height functions d 

and h on CK in order to determine the fi- 

nite group C K as foLLows. A point P in 

C K belongs to C K if and only if h(P)=O 

(see [14]). Therefore, we conclude from 

section 1 that CK is contained in the 

finite set ~K of aLL points P in C K 

satisfying 

d(P)~6 

with the real bound 6 which wiLL be ex- 

pLicitLy given in section 4. The set ~K 

is known from Manin's theorem. Now we de- 

termine the subset ~K~SK consisting of 

the zero point 0 and aLL points P=(~,~) 

in ~K which fuLfiLL the necessary con- 

dition of the above theorem. Then we get 

rid of those points in ~K having infinite 

order by checking repeatedly if 2PEN K 

whenever PEN K. In case 2 ~  for some 

PE~K we discard the point P from the set 

~K" After a finite number of steps we end 

with the searched group C K. up 

3. Bounds for the rank 

Up to now it is not known if the rank 

r of any eLLiptic curve C over a number 

field K is bounded by a constant depen- 

ding only on K or if r can become arbitra- 

rily Large as C ranges say over a sui- 

tably chosen infinite set of eLLiptic 

curves C over K. However, for a fixed 

eLLiptic curve C over K upper bounds for 

r, depending on C and K, can be given. 

Whereas in the special case K=@ trea- 

ted in [16] we used a method of Tate for 

estimating the rank r of C over K, we 

shaLL here refer to a bound for r which 

was recently given by Heuss [5] in the 

general case of a finite-aLgebraic number 

field K as ground field for C. Instead of 

the assumption, made in [163, that the 

group C@ contains a point of order 2, we 

shaLL here require the group C K to con- 

tain aLL points of order L of the curve 

C for a fixed prime number t. These so- 

caLLed L-divislon points of C are known 

to form a subgroup of isomorphism type 

~/L × ~/L in the torsion group C~ of 

the curve C over the algebraic closure K 

of K. The requirement imposed on the rati- 

onal point group C K amounts to a rather 

severe restriction of generality. Of 

course, one can always shift from K to 
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the finite extension T of K obtained by 

adjoining to K the coordinates of the L- 

division points of C and thus shift from 

C K to the rational point group C T of C 

considered as an eLLiptic curve over T. 

But then one encounters the open problem 

as to how the rank of the curve C behaves 

under the shift from K to the L-divislon 

field T over K as the new ground field 

for C. 

Now we shaLL state the theorem giving 

a bound for the rank r of the eLLiptic 

curve C over K provided that C K contains 

the L-division points of C for a fixed 

prime number L. Let S denote the set of 

prime divisors p of K such that either p 

divides the prime number L or the func- 

tion field Fc/K of the curve C over K has 

bad reduction modulo p. Observe that S is 

a finite set. 

Theorem (Heuss [5]. 

Let C be an eLLiptic curve over a fi- 

nite-algebraic number field K whose rati- 

onal point group C K contains the L-divi- 

sion points of C for a fixed prime number 

L. Denote by S the set defined above. 

Then, the rank r of C over K satisfies 

the inequality 

r(2{rkt~s(E) + rk U(K) + ISI} + I, 

where rkL~s(K ) and rk u(K) stand for the 

usual rank of the L-component of the 

S-cLass group ~s(K) of K and the usual 

rank of the unit group u(K) of K, res- 

pectively, and IS] designates the cardi- 

naLity of the set S. 

Remark, Section 2 yields right away 

the decision as to whether or not the 

condition of the theorem regarding the 

L-division points of C is satisfied for 

the given eLLiptic curve C over the aLge- 

braic number field K. As G. Frey pointed 

out to the author, a similar estimate for 

r can be derived from the theorem of 

Bashmakov and Tate (see [7]) even without 

the restriction made in the above theorem. 

It is the bound of this theorem which 

we propose as the choice of the number r' 

occurring in Manin's theorem. This bound 

proves to be sharper than a similar bound 

exhibited by Honda (see [5,6]). 

s 

4. CaLcuLations inyoLving the Neron-Tate 

height 

Let us first estimate the deviation of 

the function d defined in section I from 
# 

the Neron-Tate height h on the rational 

point group C K. RecaLL that K is a finite- 

algebraic number field of degree n=[K:@]. 

We have n=rl+2r2, where r I is the number 

of real and 2r 2 the number of complex em- 

beddings of the field K into the complex 

numbers g. Designate by D the discriminant 

of the field K. Then we have for PEC K 

-2 Log Log B, 

where the quantity ~ is defined by (com- 

pare section I and appendix) 

n 
~= Log H max {~a~V/~,~Ib~VJ~} 

and B denotes the Minkowski bound of K 

(see [4,12,13]), that is, 

n! , ~ "  • B= (~) r2 nn 

The above estimate for the difference 

d(P)-h(P), where PECK, coincides precise- 

Ly with the one indicated in [16] in the 

special case K=Q because we have then n=l 

and the term involving the Minkowski bound 

disappears. AccordingLy, we choose the 

constant 5 of Manin's theorem as 

5= 5 Log 2+ 2n ~ W~+ ~ Log B 

which is the adaquate generalization of 

the choice of 8 made in [16]. 

The determination of a Lower bound h' 

for the N~ron-Tate height h on CK\ CK 

is achieved as in [7,16]. Since 

d(P)-h(P)~8 for P(C K , 
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it suffices to choose 

h'= rain {6,h(P);  PECK\C K such that 
d(P)<2~ } 

because there holds h(P)a6 for aLL PEC K 

such that d(P)~28. As pointed out in sec- 

tion 2, we have h(P)=0 if and only if 

PECK. Thus 

O<h'¢ min {h(P); PECK\CK} 

as desired, the positivity of h' being a 

consequence of the facts that h is posi- 

tive definite on CK\C K.. and that there are 

only finitely many points P in C K satis- 

fying d(P)<26 (see [8,14]). 

For actuaLLy determining h', one has 

to approximately caLcuLate h(P) for a fi- 

nite number of points PECK\C K.__ These 

points are found by trial and error as 

in the application of Manin's theorem. In 

order to approximately compute h(P) for 

a given point PECK\CK, one can utilize 

the relation [14] 

d ( 2 i - l p ' 2 i - l P )  

i=1 22i 

in which the expressions 

d(2i-1 p, 2i-lp)=d(2ip)-4d(2i-lp) 
s a t i s f y  the i n e q u a l i t i e s  (see appendix) 

U~ 12 -15(Log 2+ -~-)- -~- Log B~d(2i-lp,2i-lp) 

6(Log 2+ 7i.~)+ n ~ ~og B. 

Hence, the degree of accuracy in the caL- 

culation of h(P) is evident from the es- 

timate (see appendix) 

2~m U~ 4 - (Log 2+ n2 t o g  B 

m d(2i-lp,2i-lp) 
h(P)-d(P)-  E 

i=1 22i 

27m U~ 1 (Log 2+ ~)+ n22m log B . 

An approximate caLcuLation of h(P) for 

aLL PECK\C K such that d(P)<26 in accor- 

dance with the above explanations Zeads 

to the corresponding approximation of 

the searched value h', and this approxi- 

mation can be carried through to a suffi- 

cient degree of accuracy. 

5. Estimation of the determinant 

In this section the most critical 

point of the attempted generalization of 

Manin's algorithm is reached. Estimating 

the determinant H of the eLLiptic curve C 

over K means a difficult problem because 

H is defined by virtue of a basis of the 

rational point group C K (see section 1), 

whereas such a basis is just to be deter- 

mined by the algorithm using H. Manin [7] 

solved this problem in the case K=~ under 

the condition that the Welt conjecture 

and the Birch and Swinnerton-Dyer conjec- 

ture are true. The determinant H is close- 

Ly connected with the behavior of the L- 

series L(C,s) of C over K near s=l via 

the conjecture of Birch and Swinnerton- 

Dyer (see below). But for K=Q the function 

L(C,s) and its derivatives Lti)(C,s) for 
/ %  

i=l,...,r' can be approximately evaluated 

at s=1 via the Well conjecture. In this 

way the desired estimation of H is then 

accomplished. 

Turning to the general case of an ar- 

bitrary finite-aLgebraic number field K 

over which the curve C is defined we stiLL 

can utilize the relation, supplied by the 

conjecture of Birch and Swinnerton-Dyer, 

between the determinant H of C over K and 

the behavior of the L-series of C over K 

near s=1. But since an analogue of the 

Well conjecture is Lacking (see [11]), 

there seems to be no comparable tool for 

approximately evaluating L(C,s) and 

L~i)(C,s) for i=1,...,r' at s=l in the 
7 % 

general case. 

Let us discuss the general situation 

in detaiL. 
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For each prime divisor p of the number 

field K, we define the Local L-series of 

the eLLiptic curve C over K as foLLows. 

Suppose first that C has good reduction 

modulo p such that the reduced curve 

C(p)=C mod p is an eLLiptic curve defi- 

ned over the residue field K(p) of K with 

respect to p. RecaLL that the norm 

~p=pfP=q is just the cardinaLity of K(p) 

(see [4,12]), where fp= [K(p):]F~ stands 

for the degree of p over the prime p of 

such that plp(IFp being the prime field 

of characteristic p). The Local L-series 

of the curve C over K at p is now defi- 

ned by 

Lp(C,s) = {(1-epq-s)(1-~ q-S)} -1, 

where the (compLex) numbers ~p and ~p are 

characterized by the relations 

I=pl=i pl= ~ and Np=l+q-Ep-=% , 

Np denoting the number of points of the 

reduced curve C(~) over the finite field 

K(p). Suppose next that C has bad reduc- 

tion modulo p such that C(p)=C mod p is 

a cubic defined over K(p) and having a 

singularity. Then we set 

Lp(C,s)=(1-q-S) -1 , (1+q-S) -1, or  1 , 

according as the singularity of the redu- 

ced curve C(p) over K(p) is an ordinary 

double point with two (distinct) ratio- 

nal tangents, an ordinary double point 

with two irrational tangents, or a cusp, 

respectively. Again we caLL L (C,s) the 

Local L-series of the curve CPover K at 

p. 

Now the gLobaL L-series of the curve 

C over K is defined as the EuLer product 

L(C,s) = H L (C,s) 
p P 

taken over aLL prime divisors (finite pLa- 

ces) p of K. The gLobaL L-series L(C,s) 

is known to converge in the complex half- 

plane Re s>~ . 

To state the conjecture of Birch and 

Swinnerton-Dyer, one has to presuppose 

that L(C,s) can be anaLyticaLLy continu- 

ed over the whole complex plane or at 

Least up to a neighbourhood of s=1. Fur- 
V 

thermore, the Tate-Safarevic group L!Jof C 

over K must be assumed finite (see [7,1o, 

11]). 

Conjecture of Birch add Swinnerton-Dyer 

[ 7 . 1o .11 ]  

The L-series of the eLLiptic curve C 

over K has the asymptotic expansion near 

s=1 

r ~ 2r2 
L ( C , s )  -- ( s - l )  • • M , 

where the bars signify cardinaLities and 

M is the product of some Local factors 

which correspond to a certain finite set 

of places of K including aLL the infinite 

places and those finite places p at which 

C has bad reduction modulo p. 

Taking the r-th derivatives on both 

sides, we derive from the Birch and 

Swlnnerton-Dyer conjecture the asymptotic 

expansion near s=1 
r 2 

L i r ) ( c , s ) "  " ~ r !  IWIH.  2 . N. 
i~Ki 2 

Now suppose we know an upper bound A for 

the r-th derivative of L(C,s) at s=1 and 

a Lower bound ~ for the factor M, more 

precisely, suppose that 

I 1 L(r)(c,I)I ~]k and M~k>O. r~ .  

Then i t  foLLows f rom t h e  a s y m p t o t i c  ex-  
/ %  

p a n s i o n o f  L ~ r J ( c , s )  n e a r  s=l t h a t  we have  

H ~ 2-r2x - 1 A  I~KI 2 , / i -~ -'~- 

Thus we can choose this upper bound for H 

as the constant H' in Manin's theorem. In 

the case K=~ this choice for H' is exact- 

%y the same as the one made in [7,16]. 

However, as pointed out at the begin- 

ning of this section, the feasibility of 
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estimating L(r)(c,1) is an open problem 

in the general case of an eLLiptic curve 

C over a finite-aLgebraic number field 

K~m. 

6. "Division by two" a n d  the "infinite 

descent" 

As soon as the constants in Manin's 

are known, the points P~CK\C K theorem 

satisfying the inequality for d(P) in that 

theorem can be determined by the method 

indicated in section I. Suppose we have 

found these points by trial and error. De- 

note them by P1,...,Pm. According to Ma- 

nin's theorem, the points PI,...,Pm gene- 

rate a certain subgroup 

K 

of finite index p~r'! in a maximal free 

subgroup CK m CK/C K of rank rgr' in the 

rational point group C K. The group CK is 

to be determined in terms of a basis. 

Next we factor out the subgroup 2C K of 

CK consisting of aLL points P~C K such 

that P=2Q for some Q~C K. This yields 

(C(~) + 2CK)12C K g CKI2CK , 

where the factor g r o u p  o n  the right has 

order 2 r. By a finite procedure of repea- 

ted "divisions by two" of the points in 

C(~) we shaLL obtain a subgroup C(~)g CK 

such that 

+ : 

in the foLLowing manner. 

We have C(~) ...,Pm ~. the = <PI' AppLy 
subsequent two steps executing the re- 

quired divisions by two by means of the 

duplication formula for the point addi- 

tion in C K. 

(1) Try to divide a~ points Pi by 2 

(i=1,...,m). Suppose that PI,...,P are 

not divisible by 2, whereas Pa+1,...,Pm 

are divisible by 2. Then we have 

P =2P for some PriCK (v=g+l,...,m). 

(2) Try to divide all points Pi+Pj by 2 

(l~i<j~). 

Suppose that PI,...,P8 are such that the 

Pi+Pj are not divisible by 2(lgi<j~8), 

whereas we have 
, ! 

P =Pj +2P for some P ~CK(~=8+~,...,~ ; 

1~j~). 

Having carried out steps (I) and (2) 

we proceed as foLLows. For v=1,...,~ ,we 
$ 

write P =P . For v=G+l,...,~,...,m , we 
v v , 

replace Pv by Pv whenever P~Pi for 
! 

i=l,...,v-1, and we drop P and P other- 
V V 

wise. After a suitable renumbering of 

the points P for ~=B+l,...,e,...,m , if 
V A, 

need be, we obtain a subgroup C K = 
, , , ! 

~P1,...,P~,...,Pm,>Of index p in K such 
^' 

that C ~ CK ~ CK' P'[P' and m ~m. Then 

we repeat steps (1) and (2) for the points 
! , ^! 

PB+I,.~.,P~ of the new group C K in place 

of - C(~), keeping in mind that the points 
, ! 

PI,...,P~ have been treated already. Go- 

ing on this way we end up, after a fi- 

nite number of steps, with a certain sub- 

that neither the --P~ ) (i=1,...,m (~")) nor 

the P. +P. (Igi<jgm ) are divisible l j ? ~ 
by 2, where m~Jgm. Then, we conclude 

that C(~)has odd index p(~) in CK' where 
g ~ 

p~)[p. Hence, we see that 

C(~)+ 2CK = CK and, afortiori, 

2 K)/2  K :  K/2 K 

as desired. From the set of aLL points 

of the form P~) + ... + P~)(1~i1<...<i v 

~m (~)) in C(~) we can therefore select a 

complete set of representatives inAC K of 

the 2 r cosets in the factor group CK/2C K. 

As a by-product of this process, we ob- 

tain the rank r of the curve C over K. 

Let {Q1,...,Q2r} be such a set of 
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representatives in CK for CK/2CK. There 

is a point Qv(lgvg2r) such that 

fl(%) = max 

i=1,...,2 r 

We shaLL briefly write Q=Q . The "infi- 
v 

nite descent" procedure now shows that 

the group CK is generated by the set 

{Q1,...,Q2r } and the set {R1,...,Rt} of 

air points RjEC K such that 

 (Rj) , 

(see append ix ) ,  where the f a c t  t h a t  t<~  

was a l ready  noted i n  s e c t i o n  1. For ac tu -  

aLLy finding aLL points RjEC K satisfying 

this condition it suffices to determine 

the (possibLy a tittle Larger) finite set 

of aLL points RjEC K such that 

d(Rj) ~ I+2 Log 2 + 6 + d(Q) 

= 1+7 tog  tog  B + d ( Q )  

This is clear from the estimate of the 

difference d(P) - h(P) given in section 

4. The points RjEC K fuLfiLLing this Lat- 

ter condition are obtained by employing 

once more the triaL-and-error method. In 

doing so, one can utilize earlier caLcu- 

Lations in connection with Manin's theo- 

rem (section 1) and the theorem on the 

torsion subgroup CK (section 2). 

FinaLLy, we get a basis of the group 

CK by applying the elementary divisor 

theorem to the set {QI,...,Q2r,RI,...Rt} 
^ 

of generators of C K. Since the torsion 

subgroup CK of the rational point group 

C K is known from section 2, one can exhi- 

bit a basis of the whole group CK=CKeC K 

itself. 

7. ConcLuding remarks 

The above exposition of a generaLiza- 

tion of Manin's conditional algorithm is 

to be considered a modest first step to- 

wards the implementation of a procedure 

for determining the rank and a basis of 

the group C K of rational points on an eL- 

Liptic curve C over a finlte-atgebralc 

number field K. The amount of caLcuLation 

involved wilt surety require the use of 

an electronic high speed computer. The aL- 

gorithm is "conditionaL" insofar as its 

feasibility depends essentiaLLy on the 

truth of the conjecture of Birch and 

Swlnnerton-Dyer which has to be taken for 

granted. The term "conditionaL" is more- 

over referring to the (open) problem of 

estimating the r-th derivative of the L- 

series L(C,s) of C over K at s=l. In the 

special case K=~, this problem can be sot- 

ved by assuming the truth of the WeLt con- 

jecture as was shown by Manin [7]. The 

WeLt conjecture guarantees in particular 

also that L(C,s) can be anaLyticaLLy con- 

tinued over the whole complex plane, a 

property needed for stating the conjec- 

ture of Birch and Swinnerton-Dyer. 

Next we remind of the condition, app- 

earing in the theorem of section 3, acc- 

ording to which the i-divislon points of 

C over K have to belong to K for some 

prime number t. (But compare the remark at 

the end of section 3.) 

Beyond the above-mentioned conditions, 

the feasibility of the generalized aLgo- 

rithm depends also on a rather good know- 

ledge of the arithmetic of the number 

field K over which the ettiptlc curve C 

is defined. 

For example, a complete system of in- 

tegral divisors of K, representing the 

finitely many divisor classes of K, is 

used for writing the coordinates of the 

points PEC K as quotients of integers in 

a suitabie manner as required in the de- 

finition of d(P) (see section 1). Such a 

system can be obtained, e.g., by the met- 

hod described in [13]. The same method 

yields also the class number and the 

structure of the class group ~(K) of the 

field K and, more generaLLy, the S-cLass 

number and the structure of the S-cLass 
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group ¢s(K) of K for any finite set S of 

prime divisors of K. Then, the rank 

rkLgs(K) of the L-Sytow subgroup of gs(K) 
can be computed for any prime number L. 

Of course, the quantity rkL$s(K), appea- 

ring in the bound for the rank r of C 

over K in the theorem of section 3, does 

not exceed the L-rank rkL~ (K) of the or- 

dinary class group ¢(K) (see [12]). 

The definition of d(P) is furthermore 

based on the n=rl+2r 2 distinct embeddings 

of the field K into the complex numbers ¢ 

(see section 1). Wlth these embeddings of 

K, we know the rank rk U(K)=rl+r 2 of the 

unit group U(K) of K which also appears 

in the bound for the rank r of C over K 

given in the theorem of section 3. 

For determining the torsion subgroup 

C K of C K by virtue of the theorem of sec- 

tion 2, an explicit knowledge of the de- 

composition Law [4,12], according to 

which the primes p of @ split in K, is 

heLpfuL (compare [15]). The decomposition 

Law is also useful as a tool in the caL- 

culation of the Local L-series Lp(C,s) 

of C over K. SpecificaLLy, the dlscrimi- 

nant D of the field K must be computed. 

We have seen that D occurs in the Min- 

kowski bound of K and thus in the bound 

measuring the deviation of the modified 

WeLL height d from the Neron-Tate height 

on C K. 

In passing, we direct attention to 

the remarkable fact that Manin's conditi- 

onal algorithm is the first procedure de- 

vised for determining a basis of the ra- 

tional point group C K of the curve C over 

the number field K. 

Appendix 

We shaLL prove here those assertions 

which were Left without proof in the a- 

bove exposition, thus verifying also the 

corresponding unproved assertions in [19. 

To section 1 

Let us begin with establishing the re- 

presentation required in section 1 for 

the coordinates of the rational points 

P=(~,~) in C K such that ~0, ~0. We 

foLLow cLoseLy [5]. 

The Weierstrass equation of C applied 

to such a point P in C K yields divisor 

representations of its coordinates in K 

of the form 

~ - ~  and ~ ~,, 

with some integral divisors ~,9, and 8 

of K having the g.c.d.'s 

(~,~) = (~,8) = 1 .  

Choose a fixed system V of representa- 

tives for the (finiteLy many) divisor 

classes of K such that V is made up of 

integral divisors c of K whose norms do 

not exceed the Minkowski bound B of K 

(see [4,12,13]), 

~c~B 

Then, for the given divisor 8 of K, there 

exists a divisor cEV such that ~c is a 

principal divisor of K, 

ac ~ z for some nonzero zEK. 

Hence we obtain the representations 

2 x' c 3 
~ ~c2 m 7 and ~ ~ m z 3~ f°r s°me 

nonzero x',y' E K. 

On muLtipLying x' and y' by suitably cho- 

sen units of K, we end up with two non- 

zero elements x and y in K which furnish 

the desired representations 

x 
g= z~ and ~= 

of the coordinates of PEC K as quotients 

of integers x, z 2 and y, z 5 in K having 

the g.c.d.'s 

(x,z 2) = c 2 and (y,z 3) = ¢3. 
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To section 4 

(a) We wish to derive the estimate cLai- 

med for the difference of the modified 

Well height d and the N~ron-Tate height 

on the group C K. In what foLLows we 

shaLL use the notation pl ~ or p~ for 

the infinite or the finite places p of K, 

writing in the Latter case also plp in- 

stead of p~ in order to signify the 

prime p of ~ over which p Lies. Let v , 

normalized as in [14], designate the ab- 

solute value on K corresponding to the 

(finite or infinite) place p of K. Observe 

that this normalization of vp differs 

from the normalization of the valuation 

wp used in section 2 for the finite pLa- 

ces p of K. In fact, we have, for each 

nonzero cEK, the relation 

1 w (c)Log p whenever plP v (c)= ~p 

(see [4]), where ep denotes the ramifi- 

cation index of p. As in [14] we now in- 

troduce the real numbers 

~p=min {½ Vp(a), ½ Vp(b)} for each place 

p of K. 

Notice that the numbers ~p differ, for 

each place p of K such that PiP, only by 

1 Log p or ~epLOg p from the a factor ~p_ 

numbers ~p introduced in section 2. For 

each place p of K, Let np= [Kp:%] or 

= [K :~] denote the Local degree of p 

according as PiP or pl ~ respectively (see 

[4,12,14]). Then we put as in [14] 

P np~p 

the  sum being t aken  over  aLL ( f i n i t e  and 
infinite) places p of K. 

The function used in [14] for defining 
A 

the N~ron-Tate height h on C K was 

d I (P)= P P 

L-- ~ ~ if P=O 

where n: [K:©] is the field degree of K 

over © as before. (ActuaLLy, we used in 

[14] the function nd I and caLLed it d). 

The difference function dl-h on C K was 

shown in [14] to fuLfiLL the estimate 

-2 Log 2~dl (P) -h(P)~5  Log 2+~ ~ f o r  PEC K . 

Starting off with this estimate we are 

Left with the task of estimating the dif- 

ference function d-d I on C K. The modified 

Well height d on C K was introduced in sec- 

tion I as 

2~ n n 2~-a ~--v~ (v) 2 d(P)= Log H max{ (v)llz I , 
v=l 

3 7 ~ 7 7 ~  I z (V)I 2 , lX(~)l } 

with the coordinates of the point P=(~,~) 

in C K written in the shape 

x -Y-- (x,y,and z integers ~= -~-z and ~= z3 

in K) 

as described in section I and at the be- 

ginning of this appendix. Hence, we obtain 

in the notation of [14] (making the con- 

vention that Log O= -~) 

2n3~v! a (v) z(V) d(P)= max{½ Logl ]+2 Logl ], 
1 

! b(~) ) ) 3 togl l+2 t og l z  (v I ,Loglx  (v I} 

: 2n 3~ p~ np max{½ Loglalp+2 Loglzl, , 

1 toglbl +2 toglzl toglxl } 

= -2n~p~ np min{½ Vp(a)+2Vp(Z),½ vp(b) + 

+ 2%(z) ,  vp(x)} 

=--~-2n P'~! np min{~p+2vp(z), Vp(X)}. 

On the other hand, the sum formula for the 

absolute values v D on K (see [14]) yields 

for the function d I on C K 

d1(P)= - 2n ~ ~np min {~p,Vp(z~) } 

= -2n ~ zn min {ap+2vp(z) vp(x)}. p P 
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A comparison of the Last expressions for 

the functions d and d I on C K shows at 
once that for P~C K 

dl(P)= d(P)- ~ p~ n min{~p+2Vp (Z) ,V (x)}. 

Hence, taking into account that a,b,x, and 
z are integers in K, we obtain the ine- 

quality 

d l(P)gd(P) for P~C K. 

It remains to establish an inequality in 

the opposite direction between dl(P) and 
d(P) up to an additive constant not de- 
pending on the point P. We shaLL explicit- 
%y exhibit such a constant. Remembering 
the fact that ~pmO for each finite place 
p of K and keeping in mind the choice of 

the coordinate ~= ~ of P such that 
Z 

(x,z 2) = ¢2 with ¢6V, we derive from the 

above equation between dl(P ) and d(P) the 
inequality 

d l(P)md(P)- ~ ~ npmin{u +2vp(z),up+vp(x)} 

:d(P)- 2~n ~ n, - 2~ ~ npmin{2v (z), 

=d(P)- ~ ~ npup- ~n p~ npvp(¢). 

Consider the second and the third term of 
the Last expression. 

As regards the second term, we have in 
the notation of [14] and section 4 

0 ~- 2~n p~ np~p= ~ ~+ ~ p~ spFL p 

= ~,+ ~ p~ n min{½ vp(a).½ vp(b)} 

= 2Ln . -  2~n p~ n max{½ tog la lp ,~  %oglb'p} 

: ~_ n max{½ togl a(v) 2n " -  ~ ~ 1,½ toglb(~')I} 
v : l  

n 

= 2n p- Log H max 
v--1 

: 

3 
In particular, dropping the factor ~ and 

applying the sum formula for the absolute 
values v on K, we obtain 

~= -~npu~= -~n~min{q~ vp (a),~ vp (b)} 

Iii zn v (a) 
m 2p p ~ 

En v (b )  
~ P P 

if 1 
if b OJ 

= O. 

Hence, the above second term under consi- 
deration satisfies the inequality 

- ~  ~ n ~ ~- ~ ~. 

Now Let us took at the third term 

_2 p~ npvp(¢)_ of the above expression. n 

Since ¢~V, the norm of ¢ does not exceed 
the Minkowski bound B, 

• c ~ B. 

For the time being we shaLL denote, for 

each finite place p of K, by pp the prime 
of @ such that plpg.Then , the norm ine- 
quality can be expLicitLy written as (see 
[ 4 , 1 2 ] )  

f wp (c) 
~c= ~pp ~ B, 

where fp as usual stands for the degree 
of p over p~ (see section 5). 

Taking Logarithms on both sides, we 
get 

Log ~¢= p~ fpwp(¢) Log pp~ Log B. 

Hence, since np=epfp with the ramification 
index ep of p, we have 

! 
p~ npvp(¢)= p~epn~wp (¢ )tog p~ = 

P fpwp(¢)  tog pp g Log B. 

The above third term under consideration 
thus satisfies the inequality 

-~n p~ npvp(c)m-~ Log B. 
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In sum, we have established the esti- 

mate 

dl(P)~d(P)- ~ ~- ~ Log B for PECK . 

Combining this estimate with the inequa- 

Lity dl(P)gd(P) derived before we obtain 

the desired estimate 

0~d(P)-d1(P)g 2~ ~'+ ~ tog B for PEC K . 

In combination with the above-quoted esti- 

mate for the difference dl-h on CK, this 

result Leads to the asserted inequalities 

-2 tog 2~d(Pl-~(p)~5 ~og 2. ~ ~+ ~ =  

+ ~ Log B 

~5 Log 2+ ~ +  ~ Log B for PEC K , 

where in the Last step we have again em- 

ployed the relation WgW~ which was shown 

above to be valid. 

(b) Now we shaLL prove the estimate indi- 

cated in section 4 for the expression 

d(P,P)=d(2P)-4d(P) as P ranges over the 

group C K. To begin with we quote from 

[14] for the analog expression dl(P,P)= 

dl(2P)-4dl(P) the estimate 

-(15 Log 2+ ~ ~)~dl(P,P)~6 tog 2 for PEC K . 

(ActuaLLy, we estimated in [14] the ex- 

pression ndl(P,P) and denoted it by 

d(P,P)). On the other hand, it foLLows 

by definition of d(P,P) and dl(P,P) from 

the estimate established in part (a) for 

the difference function d-d I on CK, that 

we have 

6 12 Log B~d(P,P)~dl(P,P) + d I(P,P)- ~ ~.- .~- 

2n ~+ ~ tog B for PEC K . 

On replacing dl(P,P) by its cited tower 

and upper bound from [14], respectively, 

and remembering that ~g~, we get 

~ 12 -15(tog 2+ ~-)- -~- Log Bgd(P,P) g 

g6(tog 2+ ~)+ n ~ tog B for PEC K 

as asserted in section 4. 

In particular, this yields for the sum 

m d(2i-lp, 2i-1p) 
~(P)-d(P)- z 22 i 

i=1 

d(2i-lp,2i-lp) 1 [ 

= % 2 2i  = 2 ~ i  1 i=m+l 

d(2 m+i-1 p 2m+i-lp) 

2~i 
the asserted estimate (compare [14]) 

2•m Uoo 4 1 = - (Log 2. ~1- ~ -  tog ~ ~ 
i=1 

d(2m+i-lp'2m+i-lp) g 22~(%og 2+ ~) 
2 2i  

1 
+ n2 ~ tog B for PEC K . 

To section 6 
Let us show how to get a set 

of generators for the group C K by appLy- 

ing the method of "infinite descent" (see 

[8]) to a given set {QI~.~.,Qr 2r} of re- 

presentatives in ~K of h 2 cosets in 

the factor group CK/2C K. 

We have 

CK/2CK: {Q1,...,Q r}/2CK • 
2 

The "infinite descent" works as foLLows. 

Let RECK be an a r b i t r a r y  r a t i o n a l  p o i n t :  
Put Ro=R. There is a rational point RIEC K 

such that 

Ro=~o+2R 1 for some index v o in I~vo~2 r. 

Furthermore, there is a rational point 

R2EC K such t h a t  

~=QVl+2R2 for some index v I in 1~v1~2 r. 

Going on this way we obtain an infinite 

sequence Ro,RI~ .... Rj_I,Rj,... of ratio- 

nat points in C K sucht that 
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Rj_I=~j_I+2R j for some index ~j-1 in 

I~vj_I~2 r, where 3~I. 

FortunateLy, only a finite portion of this 

infinite sequence is needed for finding a 

basis of C K as we shaLL see. By induction 

on 3, it foLLows from the Last relation 

that the given rational point RECK admits 

a representation of the form 

+...+2Q (j~l) (*) R=23Rj+2J-IQ~3_I Vl+QVo • 

We wish to estimate the value of the 

N~ron-Tate height h at the point Rj.^To 

this end we utilize the property of h to 

be a positive definite quadratic form on 

the group^C K (see [8,14]). AppLying the 

function h to the relation 2R.=R. ~-Q J 0-I ~j-1 
we obtain for j~l 

I+Q ) 4h(R3 )=2h (R3-I)+2h(Q~ j_ I o- 3_ I 

2h(Rj_ 1 )+2h(Q v ). 
j-1 

In this inequality we may replace Q 
v3-1 

by the point Q chosen in section 6 in or- 

der to gain 

4h (Rj)~2h (Rj_ I )+2h(Q) (j~l). 

Now we use induction on j to infer from 

this the new inequality 

I {h(R)-h(Q) } (j~1) 
T 

When we choose the index j sufficiently 

Large, we arrive at a rational point R iEC K 

such that 

h(R3)~fl+h(Q):1+ max 2r {fi(Qi)}. 
i=1,..., 

Thus the given point RECK can be represen- 

ted as a Linear combination (*) of the 

points QI,...,Q2r and a point R 3 satis- 
^ 

fying the above inequality for its h-va- 

Lue. By virtue of the estimate for the 

difference function d-h on CK' this Last 

inequality turns into the corresponding 

inequality with the N~ron-Tate height 

replaced by the modified Weir height d. 
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